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Abstract—Some results obtained by the present author in the field of designing the finite-
dimensional root-mean-square filters for stochastic systems with polynomial equations of state
and multiplicative noise from the linear observations were overviewed. A procedure to derive the
finite-dimensional system of approximate filtering equations for a polynomial arbitrary-order
equation of state was presented. The closed system of filtering equations for the root-mean-
square estimate and covariance matrix error was deduced explicitly for special cases of linear
and quadratic coefficients of drift and diffusion in the equation of state. For linear stochastic
systems with unknown parameters, the problem of joint root-mean-square state filtering and
identification of the parameters from linear observations was considered in the Appendix.
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1. INTRODUCTION

In the general case, the optimal solution of the problem of filtering for the stochastic systems
obeying the nonlinear equations of state and observation with the Gaussian white noise is given by
the Stratonovich–Kushner equations [1, 2]. However, some examples are known of the nonlinear
systems where the Stratonovich–Kushner equations can be reduced to a finite-dimensional closed
system of equations for the conditional moments of lower order. The most popular result repre-
sented by the Kalman–Bucy filter [3] was obtained for the case of linear equations of state and
observation. The Kalman–Bucy equations make up a closed system of filtering equations with re-
spect to the two lower conditional moments, expectation, and covariance matrix. Nevertheless, the
finite-dimensional system of equations of nonlinear filtering can be obtained in some other cases,
provided that the state vector can assume only a finite number of permissible states [4] or the obser-
vation equation is linear and the drift vector f in the equation of state satisfies the Riccati equation
df
dx = f2 = x2 [5]. The reader is referred to [6] for complete classification of the “general situation”
cases,—which means that there are no special assumptions about the structure of the equations of
state and observation and the initial conditions,—where the optimal nonlinear finite-dimensional
filter exists. In fact, the two latter references consider the problem of filtering for some polynomial
systems. Apart from the aforementioned results, the finite-dimensional filters for some classes of
systems with invertible measurement matrix, polynomial equations of state, and Gaussian initial
conditions from linear observations were suggested in [7–10].

The present paper overviews some results established by the author in the field of designing
the finite-dimensional root-mean-square (rms) filters for the stochastic systems with polynomial
equations of state and multiplicative noise from the linear observations with an arbitrary—not
necessarily invertible—observation matrices, thus generalizing the findings of [7–9]. Yet, in distinc-
tion to [7–9], it removes the requirement of invertibility of the observation matrix. Additionally,
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obtained was a procedure to deduce approximate rms equations of filtering for an arbitrary-order
polynomial equation of state.

The aforementioned procedure for derivation of the approximate rms equations of filtering for
the polynomial stochastic systems with multiplicative noise was later used to solve the problem
of optimal control in the polynomial stochastic systems with unknown parameters [11], problem
of filtering from observations with polynomial nonlinearities [12], problems of filtering and control
for the polynomial stochastic systems in the sliding modes [13, 14], as well as the problems of
filtering and control for the polynomial stochastic systems with Poisson noise [15, 16]. Among
other publications devoted to determining the general approximate solution of the problem of
nonlinear filtering, the references [17–19] deserve special mentioning (see also their bibliographies).

The problem of filtering for the polynomial state of a system with multiplicative noise from the
linear observations with arbitrary measurement matrix is formulated in Section 2. The following
Section 3 derives relations for the Ito differentials of the rms estimate and the error covariance
matrix. The observation equation is transformed so as to reduce the original problem of filtering to
the problem with invertible observation matrix that was solved before. Described here is a procedure
for determining the closed system of approximate rms filtering equations for the arbitrary-order
polynomial equations of state from the linear observations. The closed system is deduced explicitly
for special cases of linear and quadratic coefficients of drift and diffusion in the equation of state.
An example given in Section 4 illustrates efficiency of the obtained filter. The following Section 5
formulates the problem of joint rms filtering of state and identification of the parameters for the
linear stochastic systems with unknown parameters from the linear observations. Section 6 reduces
the posed problem to the considered problem of rms filtering for the extended state vector involving
unknown parameters as additional components of the state vector. The equations of joint filtering
and identification are sought on the basis of the equations of filtering from Section 3. Efficiency of
the resulting filter-identifier is illustrated by way of an example in Section 7.

2. FORMULATION OF THE PROBLEM OF FILTERING THE STATE OF POLYNOMIAL
STOCHASTIC SYSTEMS FROM LINEAR OBSERVATIONS

Let (Ω, F, P ) be a full probabilistic space with an increasing right-continuous family of σ-al-
gebras Ft, t ≥ t0 where given are independent standard Wiener processes (W1(t), Ft, t ≥ t0) and
(W2(t), Ft, t ≥ t0). Let also the Ft-measurable random process (x(t), y(t)) be described by the
nonlinear polynomial differential equation of state of the system

dx(t) = f(x, t)dt+ g(x, t)dW1(t), x(t0) = x0 (2.1)

and the linear differential equation of the observation process

dy(t) = (A0(t) +A(t)x(t))dt +B(t)dW2(t), (2.2)

where x(t)∈Rn is the state vector and y(t)∈Rl is the vector of linear observations. The Gaussian
vector of initial state x0 ∈Rn and the standard Wiener processes W1(t) ∈Rp and W2(t) ∈Rq are
assumed to be independent. It is assumed that B(t)BT(t) is a positive definite matrix, and,
consequently, l≤ q. We also notice that, in distinction to the results presented in [7–9], it is not
required here that A(t) ∈Rl×n be an invertible or even square matrix. All coefficients in (2.1)
and (2.2) are determinate functions of corresponding sizes. It is assumed that here and in what
follows meant are the stochastic differential Ito equations.

The nonlinear functions f(x, t) and g(x, t) represent polynomials of n variables, the components
of the state vector x(t)∈Rn with time-dependent coefficients. Since x(t) ∈Rn is a vector, the
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polynomial of size n> 1 needs a special definition. According to [9], the polynomial of degree p of
the vector x(t) ∈Rn is understood as a p-linear form of n components of the vector x(t)

f(x, t) = a0(t) + a1(t)x+ a2(t)xx
T + · · ·+ ap(t)x . . .p times . . . x, (2.3)

where a0(t) is the vector of size n, a1 is an n × n matrix, a2 is a 3D n× n× n tensor, ap is
a (p + 1)D n× . . .(p+1) time . . .× n tensor, and x× . . .p times . . . × x is a pD n× . . .p times . . . × n
tensor obtained by the p-fold spatial multiplication of the vector x(t) by itself. Such polynomial is
also representable as the sum

fk(x, t) = a0 k(t) +
∑

i

a1 ki(t)xi(t) +
∑

ij

a2 kij(t)xi(t)xj(t) + . . .

+
∑

i1...ip

ap ki1...ip(t)xi1(t) . . . xip(t), k, i, j, i1, . . . , ip = 1, . . . , n.

The tensor operations are executed according to [20].

The problem of rms filtering lies in determining the optimal estimate x̂(t) of the state of system
x(t) from all observations from the initial time instant to the current time instant Y (t) = {y(s),
t0 ≤ s ≤ t} which minimizes the rms criterion

J = E
[
(x(t)− x̂(t))T(x(t)− x̂(t))|F Y

t

]

at each instant t. Here, E[ξ(t)|F Y
t ] denotes the conditional expectation of the random process

ξ(t) = (x(t)− x̂(t))T(x(t)− x̂(t)) with respect to the α-algebra F Y
t generated by the process of

observation Y (t) over the interval [t0, t]. This optimal estimate is known [21] to be defined by
the conditional expectation x̂(t) = m(t) = E(x(t)|F Y

t ) of the state of system x(t) relative to the
α-algebra F Y

t . The matrix function P (t) = E[(x(t)−m(t))(x(t) −m(t))T|F Y
t ] is the covariance

matrix of the estimation error.

The proposed solution of the formulated problem of filtering which relies on the formulas for the
Ito differential conditional expectation E(x(t)|F Y

t ) and the error covariance matrix P (t) (see [21])
is given in the following section.

3. ROOT-MEAN-SQUARE FILTERING OF THE STATE OF POLYNOMIAL STOCHASTIC
SYSTEMS FROM LINEAR OBSERVATIONS

The rms filtering equations can be derived using the Ito formula of the conditional differential
expectation m(t) = E(x(t)|F Y

t ) (see [21])

dm(t) = E
(
f(x, t)|F Y

t

)
dt+ E

(
x[ϕ1(x)− E(ϕ1(x)|F Y

t )]T|F Y
t

)

×
(
B(t)BT(t)

)−1 (
dy(t)− E(ϕ1(x)|F Y

t )dt
)
,

where ϕ1(x) is the linear term in the observation equation equal to ϕ1(x, t) = A0(t)+A(t)x(t). With
regard for this expression, we establish the estimate equation

dm(t) = E
(
f(x, t)|F Y

t

)
dt+ E

(
x(t)[A(t)(x(t) −m(t))]T|F Y

t

)
(3.1)

×
(
B(t)BT(t)

)−1
(dy(t) − (A0(t) +A(t)m(t))dt)

= E
(
f(x, t)|F Y

t

)
dt+ E

(
x(t)(x(t)−m(t))T|F Y

t

)
AT(t)

×
(
B(t)BT(t)

)−1
(dy(t)− (A0(t) +A(t)m(t))dt)

= E
(
f(x, t)|F Y

t

)
dt+ P (t)AT(t)

(
B(t)BT(t)

)−1
(dy(t) − (A0(t) +A(t)m(t))dt).
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Equation (3.1) is completed by the initial condition m(t0) = E(x(t0) |F Y
t0 ) calculated by processing

the measurement at the initial time instant.

At generating the closed system of filtering equations, Eq. (3.1) should be completed by the
equation for covariance of the error matrix P (t) based on the formula for the Ito differential of the
covariance matrix [21]:

dP (t) =
(
E

(
(x(t)−m(t))fT(x, t)|F Y

t

)
+ E

(
f(x, t)(x(t) −m(t))T

)
|F Y

t

)

+ E
(
g(x, t)gT(x, t)|F Y

t

)
− E

(
x(t)

[
ϕ1(x)− E

(
ϕ1(x)|F Y

t

) ]T |F Y
t

)

×
(
B(t)BT(t)

)−1
E

( [
ϕ1(x)− E

(
ϕ1(x)|F Y

t

) ]
xT(t)|F Y

t

)
dt

+ E

(
(x(t)−m(t))(x(t) −m(t))

[
ϕ1(x)− E

(
ϕ1(x)|F Y

t

) ]T |F Y
t

)

×
(
B(t)BT(t)

)−1 (
dy(t)− E

(
ϕ1(x)|F Y

t

)
dt
)
,

where the nonlinear polynomial g(x, t) is the diffusion term in the state equation. The last term in
this expression (under the sign of expectation) must be understood as the 3D tensor [20]. Substi-
tution of the expression for ϕ1, gives rise to the following formula:

dP (t) =
(
E

(
(x(t)−m(t))fT(x, t)|F Y

t

)
+ E

(
f(x, t)(x(t) −m(t))T

)
|F Y

t

)

+ E
(
g(x, t)gT(x, t)|F Y

t

)
−

(
E

(
x(t)(x(t)−m(t))T|F Y

t

)
AT(t)

×
(
B(t)BT(t)

)−1
A(t)E

(
(x(t)−m(t))xT(t)

)
|F Y

t

)
dt

+ E
(
(x(t)−m(t))(x(t) −m(t))(A(t)x(t)m(t))T|F Y

t

)

×
(
B(t)BT(t)

)−1
(dy(t)− (A0(t) +A(t)m(t))dt) .

Using the formula of the covariance matrix

P (t) = E
(
x(t)−m(t))xT(t)|F Y

t

)
,

the last equation is representable as

dP (t) =
(
E

(
(x(t)−m(t))fT(x, t)|F Y

t

)
+ E

(
f(x, t)(x(t) −m(t))T

)
|F Y

t

)

+ E
(
g(x, t)gT(x, t)|F Y

t

)
− P (t)AT(t)

(
B(t)BT(t)

)−1
A(t)P (t)dt

+E
(
(x(t)−m(t))(x(t) −m(t))(x(t) −m(t))T|F Y

t

)
(3.2)

×AT(t)
(
B(t)BT(t)

)−1
(dy(t)− (A0(t) +A(t)m(t))dt).

Equation (3.2) is completed by the initial condition

P (t0) = E
[
(x(t0)−m(t0))(x(t0)−m(t0))

T|F Y
t0

]

which also is calculated as the result of processing the measurement at the initial time instant.
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Equations (3.1) and (3.2) for the optimal estimate m(t) and the covariance error matrix P (t)
make up an open system of filtering equations for the nonlinear state vector (2.1) from the linear
observations (2.2). Openness implies that (3.1) and (3.2) includes the expectations of the nonlinear
functions of x such as E(f(x, t)|F Y

t ), E((x(t)−m(t))fT(x, t)|F Y
t ) and E(g(x, t)gT(x, t)|F Y

t ) which
are still not expressed as the functions of the variables m(t) and P (t).

As was shown in [7–9], the closed system of filtering equations for the state vector of the poly-
nomial system with multiplicative noise (2.1) can be established from the linear observations if the
observation matrix A(t) is invertible for all t ≥ t0. Since in (2.2) this requirement is removed for
the observation matrix A(t), the following transformations are done first.

We begin by noticing that it is always possible to assume that the matrix A is that of full
rank l which is equal to the dimension of the independent linear observations. Otherwise, the
dependent linear observation corresponding to the dependent linear rows of the matrix A must
be disregarded. At that, by adding and renumbering the Wiener processes in each observation
Eq. (2.2), the number of Wiener processes in the observation equations can also be reduced to l.
Consequently, B can always be assumed to be an l × l matrix such that B(t)BT(t) is a positive
definite matrix (see Section 2). The matrices A(t) and B(t) are determined as follows. The matrix
A(t) ∈ Rn×n is obtained from the matrix A(t) ∈ Rl×n by adding n− l independent linear rows so as
to make the resulting matrix A(t) invertible. The matrix B(t) ∈ Rn×n is obtained from the matrix
B(t) ∈ Rl×l by placing B(t) at the upper left corner of B(t), equating the remaining n−m diagonal
elements of B(t) to infinity, and zeroing all other elements of B(t) outside the main diagonal or the
submatrix B(t). Stated differently, B(t) = diag[B(t), βI(n−l)×(n−l)], where β = ∞ and I(n−l)×(n−l)

is the identity (n− l)× (n − l) matrix. Therefore, the new observation equation is representable
as

y(t) = (A0(t) +A(t)x(t))dt +B(t)dW2(t), (3.3)

where y(t) ∈ Rn, A0(t) = [AT
0 (t), 0n−l]

T ∈ Rn, and 0n−l is the n− l zero vector.

The key point of the introduced transformation is the fact that the new process of observa-
tion y(t) physically is equivalent to the original process of observation y(t) because the n− l last
dummy components of the process y(t) consist of pure noise because the infinite intensities of
the white Gaussian noise in the corresponding n− l equations and the m first components of the
process y(t) coincide with y(t). Additionally, the entire observation matrix A(t) is invertible and
the matrix (B(t)BT(t))−1 ∈ Rn×n exists and represents the n× n square matrix whose upper left
corner is occupied by the submatrix (B(t)BT(t))−1 ∈ Rl×l and the rest of the elements are zero.

Taking into consideration the new observation Eq. (3.3), the filtering Eqs. (3.1) and (3.2) take
on form

dm(t) = E
(
f(x, t)|F Y

t

)
dt+ P (t)AT(t)

(
B(t)BT(t)

)−1
(3.4)

× (dy(t)− (A0(t) +A(t)m(t))dt),

dP (t) =
(
E

(
(x(t)−m(t))fT(x, t)|F Y

t

)
+ E

(
f(x, t)(x(t)m(t))T

)
|F Y

t

)

+ E
(
g(x, t)gT(x, t)|F Y

t

)
− P (t)A

T
(t)

(
B(t)B

T
(t)

)−1
A(t)P (t)dt

+E
(
(x(t)−m(t))(x(t) −m(t))(x(t) −m(t))T|F Y

t

)
(3.5)

×A
T
(t)

(
B(t)BT(t)

)−1
(dy(t)− (A0(t) +A(t)m(t))dt),

with the initial conditions

m(t0) = E
(
x(t0)|F Y

t0

)
and P (t0) = E

[
(x(t0)−m(t0))(x(t0)−m(t0))

T|F Y
t0

]
.
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Since the new observation matrix A(t) is invertible for any t ≥ t0, the density of distribution of
the random vector x(t)−m(t) may be assumed to be conditionally Gaussian relative to the new
observation process y(t), and, consequently, to the original process of observation y(t) for any t ≥ t0
(see [7–9]). Therefore, the following considerations set forth in [7–9] are applicable to the filtering
Eqs. (3.4) and (3.5).

First, since it was assumed that the random vector x(t)−m(t) has conditionally Gaussian
distribution density in the above sense, in the last addend of Eq. (3.5) the conditional central
moment with respect to the observations E((x(t) −m(t))(x(t) −m(t))(x(t)−m(t))T|F Y

t ) is zero.
Therefore, the last addend in Eq. (3.5) is zero and the equation of the covariance matrix is given
by

dP (t) =

(
E

(
(x(t)−m(t))fT(x, t)|F Y

t

)
+ E

(
f(x, t)(x(t)m(t))T|F Y

t

)

+ E
(
g(x, t)gT(x, t)F Y

t

)
− P (t)A

T
(t)

(
B(t)BT(t)

)−1
A(t)P (t)

)
dt, (3.6)

with the initial condition P (t0) = E[(x(t0)−m(t0))(x(t0)−m(t0))
T|F Y

t0 ].

Second, since f(x, t) and g(x, t) are polynomial functions of x with time-dependent coeffi-
cients, expressions comprising the terms E(f(x, t)|F Y

t ) in (3.4) and E((x(t) −m(t))fT(x, t)|F Y
t ),

E(g(x, t)gT(x, t)|F Y
t ) in (3.6) also will comprise only the polynomial functions of x. Using the fol-

lowing characteristic of the scalar Gaussian centered random variable x(t)−m(t) which states that
all of its odd conditional moments m1 = E[(x(t) −m(t))|Y (t)], m3 = E[(x(t) −m(t))3|Y (t)], m5 =
E[(x(t) −m(t))5|Y (t)], . . . are zero and the even conditional moments m2 = E[(x(t) −m(t))2|Y (t)],
m4 = E[(x(t) −m(t))4|Y (t)], . . . are representable as the functions P (t), these polynomial terms can
be then represented as the functions m(t) and P (t). For example, m2 = P , m4 = 3P 2, m6 = 15P 3,
. . . and so on. We notice that, as was shown in Section 2 [20], in the case of a random vector vari-
able these equalities must be established for each component of the corresponding tensor by repre-
senting the operation as a sum. By expressing in this way all polynomial terms in (3.4) and (3.6)
that result after representing E(f(x, t)|F Y

t ), E((x(t) −m(t))fT(x, t)|F Y
t ) and E(g(x, t)gT(x, t)|F Y

t )
as functions of m(t) and P (t), we arrive to the closed form of the approximate filtering equa-
tions. The corresponding representations for E(f(x, t)|F Y

t ), E((x(t)−m(t))(f(x, t))T|F Y
t ) and

E(g(x, t)gT(x, t)|F Y
t ) were established in [7–9] for some polynomial functions f(x, t) and g(x, t).

Finally, by taking into account the definitions of the matrices A(t) and B(t) and the observation
process y(t), the filtering Eqs. (3.4) and (3.6) can be again represented in terms of the original
observation Eq. (2.2) by using y(t), A(t), and B(t)

dm(t) = E
(
f(x, t)|F Y

t

)
dt+ P (t)AT(t)

(
B(t)BT(t)

)−1

×(dy(t)− (A0(t) +A(t)m(t))dt), (3.7)

dP (t) =
(
E

(
(x(t)−m(t))fT(x, t)|F Y

t

)
+ E

(
f(x, t)(x(t) −m(t))T

)
|F Y

t

)

+ E
(
g(x, t)gT(x, t)|F Y

t

)
− P (t)AT(t)

(
B(t)BT(t)

)−1
A(t)P (t))dt, (3.8)

with the initial conditions

m(t0) = E
(
x(t0)|F Y

t0

)
and P (t0) = E

[
(x(t0)−m(t0))(x(t0)−m(t0))

T|F Y
t0

]
.

In the following sections, the closed forms of the approximate filtering equation will be obtained
from Eqs. (3.7) and (3.8) for the linear and quadratic functions f(x, t) and g(x, t) in Eq. (2.1). One
can prove that the same procedure leads to a closed system of approximate filtering equations for
any polynomial functions f(x, t) and g(x, t) in (2.1).
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3.1. Root-Mean-Square Filtering for Stochastic Systems with Linear Drift and Diffusion

In a special case of f(x, t) = a0(t)+ a1(t)x(t) and g(x, t) = b0(t)+ b1(t)x(t), the linear functions
where b1 is understood as a 3D n× n× p tensor, E(f(x, t)|F Y

t ), E((x(t)−m(t))fT(x, t)|F Y
t ), and

E(g(x, t)gT(x, t)|F Y
t ) are represented as the following functions m(t) and P (t):

E
(
f(x, t)|F Y

t

)
= a0(t) + a1(t)m(t), (3.9)

E
((
f(x, t)(x(t)−m(t))T

)
|F Y

t

)
+E

(
(x(t)−m(t))(f(x, t))T|F Y

t

)
= a1(t)P (t)+P (t)a

T
1 (t), (3.10)

E
(
g(x, t)gT(x, t)|F Y

t

)
= b0(t)b

T
0 (t) + b0(t)(b1(t)m(t))T

+ (b1(t)m(t))bT0 (t) + b1(t)P (t)b
T
1 (t) + b1(t)m(t)mT(t)bT1 (t), (3.11)

where bT1 (t) denotes the tensor obtained from b1(t) by transposing two of its extreme right indices.

Substitution of (3.9) into (3.7) and (3.10), (3.11) into (3.8) provides the following filtering
equations for the rms estimate m(t) and the covariance error matrix P (t):

dm(t) = (a0(t) + a1(t)m(t))dt+ P (t)AT(t)
(
B(t)BT(t)

)−1
[dy(t)− (A0(t) +A(t)m(t))dt], (3.12)

m(t0) = E
(
x(t0)|F Y

t0

)
,

dP (t) =
(
a1(t)P (t) + P (t)aT1 (t) + b0(t)b

T
0 (t) + b0(t)(b1(t)m(t))T + (b1(t)m(t))bT0 (t) (3.13)

+ b1(t)P (t)b
T
1 (t) +b1(t)m(t)mT(t)bT1 (t)

)
dt− P (t)AT(t)

(
B(t)BT(t)

)−1
A(t)P (t)dt,

P (t0) = E
[
(x(t0)−m(t0))(x(t0)−m(t0))

T|F Y
t0

]
.

We note that to determine the filtering Eqs. (3.12) and (3.13) the observation matrix A(t) even
needs not to be invertible. Indeed, the only used polynomial equality E(x(t)xT(t)|F Y

t ) = P (t)+
m(t)mT(t) is valid for any random vector with, not necessarily Gaussian, finite second moment.

3.2. Root-Mean-Square Filtering for the Stochastic Systems with Quadratic Drift and Diffusion

Let

f(x, t) = a0(t) + a1(t)x+ a2(t)xx
T (3.14)

and

g(x, t) = b0(t) + b1(t)x+ b2(t)xx
T, (3.15)

where x and a0(t) are vectors of size n, a1(t) and b0(t) are, respectively, n× n and n× p matrices,
a2(t) and b1(t) are 3D n× n× n and n× n× p tensors, and b2(t) is a 4D n× n× n× p tensor. In
this case, E(f(x, t)|F Y

t ), E((x(t)−m(t))fT(x, t)|F Y
t ), and E(g(x, t)gT(x, t)|F Y

t ) are representable
as the functions m(t) and P (t) (see [8, 9]):

E
(
f(x, t)|F Y

t

)
= a0(t) + a1(t)m(t) + a2(t)m(t)mT(t) + a2(t)P (t), (3.16)

E
((
f(x, t)(x(t)−m(t))T

)
|F Y

t

)
+ E

(
(x(t)−m(t))fT(x, t)|F Y

t

)
(3.17)

= a1(t)P (t) + P (t)aT1 (t) + 2a2(t)m(t)P (t) + 2(a2(t)m(t)P (t))T,

E
(
g(x, t)gT(x, t)|F Y

t

)
= b0(t)b

T
0 (t)+ b0(t)(b1(t)m(t))T+(b1(t)m(t))bT0 (t) + b1(t)P (t)b

T
1 (t) (3.18)

+ b1(t)m(t)mT(t)bT1 (t)+ b0(t)
(
P (t)+m(t)mT(t)

)
bT2 (t)+ b2(t)

(
P (t)+m(t)mT(t)

)
bT0 (t)

+ b1(t)
(
3m(t)P (t) +m(t)

(
m(t)mT(t)

))
bT2 (t) + b2(t)

(
3P (t)mT(t) +

(
m(t)mT(t)

)
mT(t)

)
bT1 (t)

+ 3b2(t)P
2(t)bT2 (t) + 3b2(t)

(
P (t)m(t)mT(t) +m(t)mT(t)P (t)

)
bT2 (t) + b2(t)

(
m(t)mT(t)

)2
bT2 (t).
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Substitution of (3.16) into (3.7) and (3.17) and (3.18) into (3.8) leads to the following approximate—
in virtue of the assumption that the random vector x(t)−m(t) has a conditionally Gaussian distri-
bution density—filtering equations for the rms estimate m(t) and the covariance error matrix P (t):

dm(t) =
(
a0(t) + a1(t)m(t) + a2(t)m(t)mT(t) + a2(t)P (t)

)
dt (3.19)

+ P (t)AT(t)
(
B(t)BT(t)

)−1
[dy(t)− (A0(t) +A(t)m(t))dt],

m(t0) = E
(
x(t0)|F Y

t0

)
,

dP (t) =
(
a1(t)P (t) + P (t)aT1 (t) + 2a2(t)m(t)P (t) + 2(a2(t)m(t)P (t))T + b0(t)b

T
0 (t) (3.20)

+ b0(t)(b1(t)m(t))T + (b1(t)m(t))bT0 (t) + b1(t)P (t)b
T
1 (t) + b1(t)m(t)mT(t)bT1 (t)

+ b0(t)
(
P (t) +m(t)mT(t)

)
bT2 (t) + b2(t)

(
P (t) +m(t)mT(t)

)
bT0 (t)

+ b1(t)
(
3m(t)P (t)m(t)

(
m(t)mT(t)

))
bT2 (t) + b2(t)

(
3P (t)mT(t) +

(
m(t)mT(t)

)
mT(t)

)
bT1 (t)

+ 3b2(t)P
2(t)bT2 (t) + 3b2(t)

(
P (t)m(t)mT(t) +m(t)mT(t)P (t)

)
bT2 (t)

+ b2(t)
(
m(t)mT(t)

)2
bT2 (t)

)
dt− P (t)AT(t)

(
B(t)BT(t)

)−1
A(t)P (t)dt,

P (t0) = E
[
(x(t0)−m(t0))(x(t0)−m(t0))

T|F Y
t0

]
.

The above reasoning gives rise to the statement that the rms finite-dimensional filter for the stochas-
tic system with the equation of state (2.1), where the polynomials f(x, t) and g(x, t) are defined
in (3.14) and (3.15), is determined from the linear observations (2.2) by the approximate Eq. (3.19)
for the rms estimate m(t) = E(x(t)|F Y

t ) and approximate Eq. (3.20) for the covariance error matrix
P (t) = E[(x(t) −m(t))(x(t) −m(t))T|F Y

t ].

Therefore, on the basis of the general open system of filtering Eqs. (3.7) and (3.8) a procedure is
proposed for determining the closed system of approximate filtering equations for any polynomial
state (2.1) from the linear observations (2.2). Additionally, obtained was a particular form of the
closed system of approximate filtering Eqs. (3.19) and (3.20) for the state vector with quadratic
drift and diffusion.

4. EXAMPLE OF SOLUTION OF THE FILTERING PROBLEM
WITH QUADRATIC DRIFT AND DIFFUSION

In this section we consider an example of constructing an rms filter for the state vector with
quadratic drift and diffusion from linear observations which is compared with the rms filter for the
quadratic state vector with state-independent noise and one of the generalized linear Kalman–Bucy
filters.

Let the two-dimensional state vector x(t) satisfy the quadratic equation system (state x(t), time
and the system coefficients are assumed to be dimensionless)

ẋ1(t) = x2(t) + 0.1x21(t)ψ1(t), x1(0) = x10,

ẋ2(t) = 0.1x22(t), x2(0) = x20, (4.1)

and the scalar process of observation be defined by the linear equation

y1(t) = x1(t) + ψ2(t), (4.2)

where ψ1(t) and ψ2(t) are white Gaussian noise of unit intensity which are weak rms derivatives of
the standard Wiener processes (see [21]). Equations (4.1) and (4.2) represent an alternative form of
Eqs. (2.1) and (2.2) which is used usually in practice [22] and where dy(t)/dt is redenoted as y1(t).
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The problem of filtering lies in determining the rms estimate of the state vector (4.1) from the
linear observations (4.2) with independent and identically distributed perturbations in the form of
white Gaussian noise. The solution duration is assumed to be T = 0.92.

The filtering Eqs. (3.19) and (3.20) take on the following form for system (4.1) and (4.2):

ṁ1(t) = m2(t) + P11(t)[y(t)−m1(t)], (4.3)

ṁ2(t) = 0.1m2
2 + 0.1P22(t) + P12(t)[y(t) −m1(t)]

with the initial condition

m(0) = E(x(0)|y(0)) = m0

and

Ṗ11(t) = 2P12(t)− 0.97P 2
11(t) + 0.03P 2

12(t) + 0.06P12(t)m1(t)m2(t) + 0.01m4
1 + 0.01m2

1m
2
2, (4.4)

Ṗ12(t) = P22(t) + 0.2m2(t)P12(t)− P11(t)P12(t),

Ṗ22(t) = 0.4m2(t)P22(t)− P 2
12(t)

with the initial condition

P (0) = E
(
(x(0) −m(0))(x(0) −m(0))T|y(0)

)
= P0.

The estimates satisfying Eqs. (4.3) and (4.4) are first compared with the estimates satisfying the
rms filtering equations for the polynomial system with state-independent diffusion [7]:

ṁI1(t) = mI2(t) + PI11(t)[y(t) −mI1(t)], (4.5)

ṁI2(t) = 0.1m2
I2 + 0.1PI22(t) + PI12(t)[y(t)−mI1(t)]

with the initial condition

mI(0) = E(x(0)|y(0)) = m0

and

ṖI11(t) = 2PI12(t) + 0.01 − P 2
I11(t), (4.6)

ṖI12(t) = PI22(t) + 0.2mI2(t)PI12(t)− PI11(t)PI12(t),

ṖI22(t) = 0.4mI2(t)PI22(t)− P 2
I12(t)

with the initial condition

PI(0) = E
(
(x(0)−m(0))(x(0) −m(0))T|y(0)

)
= P0.

The estimates satisfying Eqs. (4.3) and (4.4) are also compared with the estimates satisfying the
equations of the generalized Kalman–Bucy filter where the matrix PK(t) satisfies the Riccati equa-
tion:

ṁK1(t) = mK2(t) + PK11(t)[y(t)−mK1(t)], (4.7)

ṁK2(t) = 0.1m2
K2 + 0.1PK22(t) + PK12(t)[y(t)−mK1(t)]

with the initial condition

mK(0) = E(x(0)|y(0)) = m0

and

ṖK11(t) = 2PK12(t) + 0.01− P 2
K11(t), (4.8)

ṖK12(t) = PK22(t) + 0.2PK12(t)− PK11(t)PK12(t),

ṖK22(t) = 0.4PK22(t)− P 2
K12(t)
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Fig. 1. Errors of estimation of the state variables x1(t) and x2(t) satisfying Eqs. (4.1) by the estimates m1(t)
and m2(t) satisfying Eqs. (4.3) over the interval [0; 0.92].

Fig. 2. Errors of estimation of the state variables x1(t) and x2(t) satisfying Eqs. (4.1), by the estimates m1(t)
and m2(t) and satisfying Eqs. (4.3) over interval [0.80; 0.92].

with the initial condition

PK(0) = E
(
(x(0) −m(0))(x(0) −m(0))T|y(0)

)
= P0.

The numerical results of modeling were obtained as the result of solving the equation systems (4.3)
and (4.4), (4.5) and (4.6), (4.7) and (4.8). The values of estimates m1(t), m2(t), mI1(t), mI2(t),
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Fig. 3. Errors of estimation of the state variables x1(t) and x2(t) satisfying Eqs. (4.1) by the estimates mI1(t)
and mI2(t) satisfying Eqs. (4.5) over the interval [0; 0.92].

Fig. 4. Errors of estimation of the state variables x1(t) and x2(t) satisfying Eqs. (4.1) by the estimates mI1(t)
and mI2(t) satisfying Eqs. (4.5) over the interval [0.80; 0.92].

mK1(t), and mK2(t), satisfying Eqs. (4.3), (4.5), and (4.7), respectively, are compared with the
actual values of the state variables x1(t) and x2(t) in (4.1).

The initial conditions x10=10.1, x20=10.1, m10=1.1, m20=1.1, P110=10, P120=1, P220=10
are used for each of the three filters (4.3) and (4.4), (4.5) and (4.6), (4.7) and (4.8) and the original
system (4.1) and (4.2). The Gaussian noise ψ1(t) in (24) and ψ2(t) in (4.2) are realized using the
built-in MatLab function.
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Fig. 5. Errors of estimation of the state variables x1(t) and x2(t) satisfying Eqs. (4.1) by the estimates mK1(t)
and mK2(t) satisfying (4.7) over the interval [0; 0.92].

Fig. 6. Errors of estimation of the state variables x1(t) and x2(t) satisfying Eqs. (4.1) by the estimates mK1(t)
and mK2(t) satisfying Eqs. (4.7) over the interval [0.80; 0.92].

Figures 1, 3, and 5 depict the graphs of the estimate errors of the state variables x1(t) and x2(t)
obtained using Eqs. (4.3) (Fig. 1), Eqs. (4.5) (Fig. 3), and Eqs. (4.7) (Fig. 5). All graphs correspond
to the interval from t0 = 0 to T = 0.92. Detailed elaboration of the aforementioned graphs over
the interval from t = 0.80 to T = 0.92 is shown in Figs. 2, 4, and 6, respectively. As can be seen
from them, the estimation error corresponding to the filter (4.3) reach rapidly the neighborhood
of zero and then maintain the zero men even in the immediate vicinity of the asymptotic time
moment T = 0.99 where the component x1(t) of the state vector (4.1) directs towards the infinity.
Nevertheless, for the unmeasurable component x2(t) there exists a short transient period during
which the estimation error deviates appreciably from zero. The errors corresponding to other
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considered filters reach zero much slower, if reach at all, deviate systematically from zero and,
obviously, go to infinity in the neighborhood of the asymptotic time instant. We note that the
approximate covariance matrix of the estimation error P (t) does not remain near zero in the
neighborhood of the asymptotic time instant in virtue of the available fourth-order terms in the
right side of Eq. (4.4), which suggests that the exact variances of the estimation error components
have good quality.

The calculations for this realization suggest that filter (4.3) and (4.4) obtained for the quadratic
state vector with quadratic multiplicative noise certainly gives a better estimate as compared with
the filter corresponding to the case of state-independent noise or the generalized Kalman–Bucy
filter.

5. FORMULATION OF THE PROBLEM OF JOINT RMS STATE FILTERING
AND PARAMETER IDENTIFICATION FOR THE LINEAR STOCHASTIC SYSTEMS

WITH UNKNOWN PARAMETERS

Let (Ω, F, P ) be a complete probabilistic space with the increasing right-continuous family
of σ-algebras Ft, t ≥ t0, where independent standard Wiener processes (W1(t), Ft, t ≥ t0) and
(W2(t), Ft, t ≥ t0) are defined. The Ft-measurable random process (x(t), y(t)) obeys a linear differ-
ential equation of state with an unknown vector parameter θ(t)

dx(t) = (a0(θ, t) + a(θ, t)x(t))dt+ b(t)dW1(t), x(t0) = x0, (5.1)

and linear differential equation of the observation process

dy(t) = (A0(t) +A(t)x(t))dt +B(t)dW2(t), (5.2)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rl, l ≤ n, is the vector of linear observations, and
θ(t) ∈ Rp, p ≤ n× n+ n, is the vector of unknown elements of the matrix a(θ, t) and the compo-
nents of the vector a0(θ, t) comprising both unknown components a0i(t) = θk(t), k = 1, . . . , p1 ≤ n,
and aij(t) = θk(t), k = p1 + 1, . . . , p ≤ n× n+ n, and certain components a0i(t) and aij(t) repre-
senting the given time functions. The conditions imposed on Eqs. (2.1) and (2.2) in Section 2 are
satisfied as well.

It is assumed that there is no useful information about the unknown parameters θk(t), k =
1, . . . , p, and this uncertainty increases with time tending to infinity. Stated differently, the unknown
parameters can be described as the Ft-measurable standard Wiener processes

dθ(t) = dW3(t) (5.3)

with unknown initial conditions θ(t0) = θ0 ∈ Rp, where (W3(t), Ft,t ≥ t0) is a Wiener process inde-
pendent of x0, W1(t), and W2(t).

The problem of estimation lies in determining the rms estimate ẑ(t) = [x̂(t), θ̂(t)] of the aug-
mented vector of system state and the unknown parameters z(t) = [x(t), θ(t)] from all observations
since the initial instant to the current one Y (t) = {y(s), t0 ≤ s ≤ t} which minimizes the quadratic
criterion

J = E
[
(z(t)− ẑ(t))T(z(t) − ẑ(t))|F Y

t

]

at each instant t. Here, E[ξ(t)|F Y
t ] denotes the conditional expectation of the random process

ξ(t) = (z(t) − ẑ(t))T(z(t)− ẑ(t)) relative to the σ-algebra F Y
t . Solution of this problem is based

on the rms finite-dimensional filter for the quadratic equation of state from the linear observations
determined in Section 3.
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6. JOINT ROOT-MEAN-SQUARE STATE FILTERING
AND PARAMETER IDENTIFICATION FOR THE LINEAR STOCHASTIC SYSTEMS

WITH UNKNOWN PARAMETERS

The equation of state (5.1) must be presented in a polynomial form to enable application of
the filtering Eqs. (3.19) and (3.20) to the state vector z(t) = [x(t), θ(t)] consistent with Eqs. (5.1)
and (5.3) in the linear observations (5.2). For that, the matrix a1(t) ∈ R(n+p)×(n+p), cubic tensor
a2(t) ∈ R(n+p)×(n+p)×(n+p), and vector c0(t) ∈ R(n+p) in the following Eq. (6.1) are introduced as
follows.

The equation for the ith component of the state vector is given by

dxi(t) =

⎛

⎝a0i(t) +
n∑

j=1

aij(t)xj(t)

⎞

⎠ dt+
n∑

j=1

bij(t)dW1j (t), xi(t0) = x0i .

Then,

1. If a0i(t) is a certain function, then the ith component of the vector c0(t) is assumed to be
equal to this function c0i(t) = a0i(t). Otherwise, if a0i(t) is an unknown function, the (i, n + i)th
element of the matrix a1(t) is assumed to be equal to 1.

2. If aij(t) is a certain function, then the (i, j)th element of the matrix a1(t) is assumed to
be equal to this function, a1ij (t) = aij(t). Otherwise, if aij(t) is an unknown function, then the
(i, n + p1 + k, j)th element of the cubic tensor a2(t) is assumed to be equal to 1, where k is the
number of the unknown current element of the matrix aij(t) on condition that the unknown elements
are counted successively row-by-row from the first to the nth element of each row.

3. The rest of the elements of the matrix a1(t), cubic tensor a2(t), and vector c0(t) that were
not determined earlier are assumed to be zero.

With the notation introduced, the equations of state (5.1), (5.3) for the vector z(t) = [x(t), θ(t)] ∈
Rn+p are representable as

dz(t)
(
c0(t) + a1(t)z(t) + a2(t)z(t)z

T(t)
)
dt+ diag[b(t), Ip×p]d

[
WT

1 (t),WT
3 (t)

]T
,

z(t0) = [x0, θ0],
(6.1)

where the matrix a1(t), cubic tensor a2(t), and vector c0(t) already have been determined, and
Ip×p is the p× p identity matrix. Equation (6.1) is quadratic relative to the extended state vector
z(t) = [x(t), θ(t)].

Therefore, the problem of estimation now lies in determining an rms estimate ẑ(t) = m(t) =
[x̂(t), θ̂(t)] of the extended state vector z(t) = [x(t), θ(t)] meeting Eq. (6.1) in the linear observations
Y (t) = {y(s), 0 ≤ s ≤ t} satisfying Eq. (5.2). This problem is solved using the filtering Eqs. (3.19)
and (3.20) and is given by

dm(t) =
(
c0(t) + a1(t)m(t) + a2(t)m(t)mT(t) + a2(t)P (t)

)
dt (6.2)

+ P (t)[A(t), 0m×p]
T
(
B(t)BT(t)

)−1
[dy(t)−A(t)m(t)dt],

m(t0) =
[
E

(
x(t0)|F Y

t

)
, E

(
θ(t0)|F Y

t0

) ]
,

dP (t) =
(
a1(t)P (t)+P (t)a

T
1 (t)+2a2(t)m(t)P (t)+2(a2(t)m(t)P (t))T (6.3)

+ diag[b(t), Ip]diag[b(t), Ip]
T
)
dt− P (t)[A(t), 0m×p]

T
(
B(t)BT(t)

)−1
[A(t), 0m×p]P (t)dt,

P (t0) = E
(
(z(t0)−m(t0))(z(t0)−m(t0))

T|F Y
t0

)
,

where 0m×p is an m × p zero matrix and P (t) is the covariance matrix of the estimation error
z(t) −m(t) from observations Y (t).
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The following assertion can be proved using the above results. The rms finite-dimensional filter
for the extended state vector [x(t), θ(t)] satisfying Eq. (6.1) in linear observations (5.2) is defined by
the approximate Eq. (6.2) for the rms estimate ẑ(t) = m(t) = [x̂(t), θ̂(t)] = E([x(t), θ(t)]|F Y

t ) and
the approximate Eq. (6.3) of the error covariance matrix P (t) =E[(z(t) −m(t))(z(t) −m(t))T|F Y

t ].
In particular, the generated filter gives an approximate rms estimate of the vector of unknown
parameters θ(t) in Eq. (5.3).

7. EXAMPLE OF JOINT ROOT-MEAN-SQUARE STATE FILTERING
AND PARAMETER IDENTIFICATION

Here we give an example of constructing a joint rms filter and parameter identifier for a linear
system with an unknown multiplicative parameter in the equation of state. Let the two-dimensional
state vector x(t) satisfy the linear system of equations with an unknown parameter θ (state x(t),
time, system coefficients, and the parameter θ are assumed to be dimensionless)

ẋ1(t) = x2(t), x1(0) = x10,

ẋ2(t) = θx2(t) + ψ1(t), x2(0) = x20 (7.1)

and the scalar process of observation be given by the linear equation

y1(t) = x1(t) + ψ2(t), (7.2)

where ψ1(t) and ψ2(t) are white Gaussian noise of unit intensity which are weak rms derivatives
of the standard Wiener processes (see [21]). The parameter θ is modeled as a standard Wiener
process, that is, satisfies the equation

dθ(t) = dW3(t), θ(0) = θ0,

representable also as

θ̇(t) = ψ3(t), θ(0) = θ0, (7.3)

where ψ3(t) is white Gaussian noise of unit intensity. It can be noted that problems of this kind are
encountered at processing the navigation information under imprecisely known system parameters
[23, 24].

The problem of filtering lies in determining the rms estimate m(t)= [m1(t),m2(t),m3(t)] of the
state vector (7.1), (7.3), [x1(t), x2(t), θ] from linear observations (7.2). The solution duration is
taken to be T = 4.

For the system (7.1)–(7.3), the equations of filtering (6.2) and (6.3) go over to

ṁ1(t) = m2(t) + P11(t)[y(t)−m1(t)], (7.4)

ṁ2(t) = m2(t)m3(t) + P23(t) + P12(t)[y(t)−m1(t)],

ṁ3(t) = P13(t)[y(t) −m1(t)]

with the initial conditions m1(0) = E(x10|y(0)) = m10, m2(0) = E(x20|y(0)) =m20 and m3(0) =
E(θ0|y(0)) = m30,

Ṗ11(t) = 2P12(t)− P 2
11(t), (7.5)

Ṗ12(t) = P22(t) + 2P13(t)m2(t)− P11(t)P12(t),

Ṗ13(t) = P23(t)− P11(t)P13(t),

Ṗ22(t) = 1 + 4P23(t)m2(t)− P 2
12(t),

Ṗ23(t) = 2P33(t)m2(t)− P12(t)P13(t),

Ṗ33(t) = 1− P 2
13(t)
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Fig. 7. State variables x1(t) (solid upper line), x2(t) (solid central line), their estimates m1(t) (thin upper line),
m2(t) (thin central line), and the parameter estimate m3(t) (solid line below) for θ = 0.1 over the interval
[0, 4].

Fig. 8. State variable x2(t) (solid upper line), its estimate m2(t) (thin upper line), and parameter estimate
m3(t) (solid line below) for θ = 0.1 over the interval [0, 4].
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Fig. 9. State variables x1(t) (solid upper line), x2(t) (solid central line), their estimates m1(t) (thin upper
line), m2(t) (thin central line) and the parameter estimate m3(t) (solid line below) for θ = −0.1 over interval
[0, 4].

Fig. 10. State variable x2(t) (solid upper line), its estimate m2(t) (thin upper line), and parameter estimate
m3(t) (solid lower line) for θ = −0.1 over the interval [0, 4].
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with the initial condition

P (0) = E
(
([x10, x20, θ0]−m(0))([x10, x20, θ0]−m(0))T|y(0)

)
= P0.

The numerical results of modeling were established by solving the system of filtering Eqs. (7.4)
and (7.5). The resulting estimates [m1(t),m2(t)] for [x1(t), x2(t)] and m3(t) for θ(t) were compared
with the actual values of the state vector x(t) = [x1(t), x2(t)] and the parameter θ in (7.4), (7.5).

The following initial values were used for filter (7.4), (7.5) and the original system (7.1), (7.2):
x10 = x20 = 1000, m10 = m20 = 0.1, m30 = 0, P110 = P220 = P330 = 100, P120 = 10 and P130 =
P230 = 0. The unknown parameter θ was taken θ = 0.1 in the first modeling and θ = −0.1 in
the second. Thus, consideration was given both to the stable and unstable cases in Eq. (7.1).

Figures 7–10 depict the graphs of the state vector x(t) = [x1(t), x2(t)], state vector estimates
[m1(t),m2(t)], and the estimates of the parameter m3(t) for the negative (θ = −0.1) and positive
(θ = 0.1) values of the parameter. The results of modeling are shown for the positive (Figs. 7 and 8)
and negative (Figs. 9 and 10) cases over the interval from t0 = 0 to T = 4. The full views of the
graphs for estimation of the unknown parameter is shown in Figs. 8 and 10. As can be seen, in both
cases the state estimates [m1(t),m2(t)] converge to the state vector [x1(t), x2(t)] and the estimates
of the parameter m3(t) converge to the actual value (0.1 or −0.1) of the unknown parameter θ(t).
We note that, as it was expected, the diagonal elements of the approximate covariance matrix Pii(t),
i = 1, 2, 3, converge to the finite values that are near 1 when time tends to infinity, which allows
one to conclude that the precise variances of the components of the estimation errors behave well.

Therefore, one can conclude that in both cases the constructed consistent state filter and pa-
rameter identifier (7.4) and (7.5) provide reliable estimates of system state and the unknown value
of the parameter. The results obtained demonstrate that the estimates of state and parameters
as computed using the constructed consistent identifier filter sufficiently rapidly converge to the
actual values of state and parameters less than in four time units. Such behavior can be classified
as very reliable, especially with regard for great departures of the estimation error from zero at the
initial time instant.

8. CONCLUSIONS

Some results of the present author in the field of constructing the approximate finite-dimensional
rms filters for stochastic systems with polynomial equations of state and multiplicative noise from
linear observations are presented. Described are, in particular, a filtering algorithm for stochastic
systems with polynomial equation of state and the methodology of applying it to solve the problem
of joint filtering of state and parametric identification. The results obtained open way to their
further use in the problems of filtering and identification encountered in navigation and trajectory
tracking, in electronic and mechatronic applications, as well as in the chemical industry where the
plant equations are set down or approximated with the use of nonlinear polynomial functions.
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