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Abstract—Propose a method for solving a mathematical programming problem from the class
of cutting methods. In our method, on each step the epigraph of the objective function is
embedded into a specifically constructed polyhedral set, and on this set an auxiliary linear
function is minimized in order to construct the iteration point. Proposed method does not
require that each approximation set is embedded in the previous ones. This feature lets us
periodically discard additional constraints that form the approximation sets obtained during
the solution process. Prove the method’s convergence and discuss possible implementations.
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1. INTRODUCTION

The class of cutting methods for function minimization is rather wide (see, e.g., [1–11]). How-
ever, investigations dealing with methods from the mentioned class still attract the attention of
researchers in both continuous and discrete optimization.

Cutting methods are characterized by the following. To construct iteration points, such methods
sequentially embed either the set of constraints for the original problem or the objective function’s
epigraph into some sets with a simpler structure. Each of the embedding, or, as they are usually
called, approximating sets is constructed from the previous one by cutting off some subset of it,
usually with hyperplanes.

A major problem that arises in numerical implementation of such methods is as follows. As the
number of iterations grows, the number of cutting planes also increases unboundedly. This means
that there are more and more inequalities that define approximating sets, and so the computational
complexity of solving the problems of finding iteration points also raises from iteration to iteration.

Previously, we have proposed one approach to constructing cutting algorithms with embedding
the admissible set that could periodically discard already used cutting planes [4]. The idea consid-
ered in [4] is extended in this work to cutting algorithms that use the embedding operation not for
the constraint region but for the epigraph of the objective function of the problem. The developed
in this work cutting method is based on the ideas of a known level-set method for conditional
minimization of convex functions [11]. One characteristic feature of the proposed method is that
it can update the sets where the epigraph is embedded by periodically discarding any number of
any previously constructed cutting planes.

2. PROBLEM SETTING

Let D be a convex bounded closed set in the n-dimensional Euclidean space Rn, f(x) be a
function convex in Rn. Solve the problem

min{f(x) : x ∈ D}. (1)
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Let f∗ = min{f(x) : x ∈ D}, X∗ = {x ∈ D : f(x) = f∗}, x∗ ∈ X∗, ∂f(x) be the subdifferen-
tial of function f(x) at point x ∈ Rn. Set K = {0, 1, . . .}, epi (f,D) = {(x, γ) ∈ Rn+1 : x ∈ D,
γ � f(x)}.

3. THE CUTTING METHOD AND DISCUSSION

The proposed method for solving problem (1) construct a sequence of approximations {xi},
i ∈ K, {zk}, k ∈ K, and works as follows.

Choose a convex closed set M0 ⊂ Rn+1 such that epi (f,D) ⊂ M0. Define numbers ε0, α0, β−1

satisfying conditions
ε0 � 0, α0 � f∗ � β−1.

Let δ0 = +∞, i = 0, k = 0.

1. Find a solution (yi, γi), where yi ∈ Rn, γi ∈ R1, of the following problem:

min{γ : (x, γ) ∈ Mi, x ∈ D, γ � αi}. (2)

If

f(yi) = γi, (3)

then yi is a solution of problem (1), and the process is over.

2. Choose a number λi defined by condition

0 < λi � λ < 1, (4)

let

βi = min{βi−1, δi}, (5)

li = (1− λi)γi + λiβi. (6)

Construct the set Ui as follows. The set Ui includes each of the points x ∈ D for which for some
γx � li it holds that (x, γx) ∈ Mi.

3. Choose a point xi ∈ Ui.

4. If the inequality

f(xi)− γi > εk, (7)

then let

Qi = Mi (8)

and go to step 5. Otherwise let ik = i,

zk = xik , σk = γik , (9)

choose a convex closed set Qi ⊂ Rn+1 such that

(x∗, f∗) ∈ Qi, (10)

specify εk+1 � 0, and increment k by one.

5. Let

Mi+1 = Qi

⋂
{(x, γ) ∈ Rn+1 : f(xi) + 〈ai, x− xi〉 � γ}, (11)

where ai ∈ ∂f(xi).
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6. Let

αi+1 = γi, (12)

δi+1 = f(xi). (13)

Increment i by one and go to 1.

Before we discuss the properties of sequences constructed with this algorithm, we begin with
some remarks.

First of all we note that we will justify that the admissible set (2) and set Ui are nonempty, and
justify the stopping criterion used in step 1 of the method, at a later point.

The figure illustrates the ways to construct auxiliary set Ui ⊂ D and the set Mi+1 based on Mi

on the ith step (i > 0).

If D is a polyhedral set and M0, Qi, i ∈ K, are chosen to be such that Mi+1, i ∈ K, of the
form (11), are also polyhedral, then (2) for all i ∈ K is a linear programming problem. Let us
discuss the ways to define the sets M0, Qi.

Remark 1. There are a lot of possibilities for the choice of M0. We first note that we can let

M0 = Rn+1.

In this case the pair (y0, γ0), where y0 is any point of D and γ0 = α0, can be taken as a solution of
problem (2) for i = 0. We can define the set M0 with one linear inequality

〈c, x〉 − γ � 〈c, u〉 − f(u), (14)

where u ∈ Rn, c ∈ ∂f(u), or with a group of such inequalities. If

f(x) = max
j∈J

fj(x), (15)

where J is a finite set of indices, fj(x), j ∈ J , is a function convex in Rn, then we can let

M0 = epi (fj0 , Rn), (16)

where j0 ∈ J , or similar to (14) we can define M0 with an inequality 〈aj0 , x〉 − γ � 〈aj0 , u〉 − fj0(u),
where aj0 ∈ ∂fj0(u). If the function fj0(x) is linear than choice (16) is convenient from the practical
point of view.
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Remark 2. If we have no information on the value of f∗, we can choose the number α0 as, for
instance, a solution of the minimization problem for variable γ under constraint (14), where u ∈ D,
and according to condition x ∈ D. We can also take α0 as the minimal value of function fj0(x),
j0 ∈ J on the set D if f(x) has form (15). It is easy to find such a value if D is a polyhedron and
the function fj0(x) is linear.

It is natural to call the sets Mi approximating for the objective function’s epigraph, and planes
f(xi) + 〈ai, x− xi〉 = γ or 〈ai, x〉 − γ = 〈ai, xi〉 − f(xi) that construct on the ith iteration the next
approximating set Mi+1 by (11), cutting planes.

The approximation quality for the epigraph of the function with the sets Mi is defined in the
neighborhood of points xi by the value f(xi) − γi. On iterations when xi satisfies inequality (7),
approximation quality is considered to be insufficient to fix the point zk. On such iterations, the
sets Qi are chosen as (8), and then according to (11) in the construction of the set Mi+1 cutting
planes are accumulated. At some step i = ik, as we show below, the difference f(xi)− γi satisfies
an inequality opposite to (7). In this case, approximation quality becomes satisfactory, the point zk
becomes fixed in form (9), and due to the virtually arbitrary choice of the set Qi = Qik we can
update the set Mik+1.

Let us now proceed to discussing how to specify the sets Qi in such a way that would let us
update the approximating sets. The sets Qi, due to condition (10) and inclusion

(x∗, f∗) ∈ Mi, (17)

which is proven in Lemma 1 (see Appendix), can be specified for all i ∈ K as (8), regardless of
whether inequalities (7) hold. But in this case the number of cutting planes that define approximat-
ing sets unboundedly from step to step, and auxiliary problems (2) become computationally very
hard. We now give the main conceptual remark regarding the definition of sets Qi based on which
there appears a possibility to periodically update approximating sets by discarding any number of
cutting planes.

Remark 3. For those pairs of indices i, k for which inequalities

f(xi)− γi � εk (18)

hold, condition (10) allows for a lot of possibilities in the choice of the sets Qi = Qik , and therefore
in the choice of the sets Mi+1. In case of (18) we can let, for instance,

Qi = Qik = Rn+1. (19)

Then Mi+1 is only defined by inequality f(xi) + 〈ai, x− xi〉 � γ, i.e., in case of (19) all cutting
planes obtained by step i = ik are not used in the construction of Mi+1. Further, if condition (18)
holds then the sets Qi = Qik can also be specified as

Qi = Mri , (20)

where 0 � ri � i = ik, since for all ri = 0, . . . , i due to (17) inclusion (10) holds. According to (19),
(20), for every i = ik we can discard in the construction of Mik+1 any number of any cutting planes
accumulated by step ik.

As we show in Theorem 3 (see below), for every k ∈ K, if numbers εk are chosen to be positive
there exists a point (xi, γi) satisfying (18), and, consequently, there is a possibility to define Qi as
(19) or (20).

Let us discuss the relation of our method with previously known approaches of Kelley [7, 9] and
the level-set method [7, 11]. Suppose that on the preliminary step of the method the set M0 is
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chosen to be different from Rn+1 and is defined by only one inequality of form (14). Let, moreover,
that in the method we set ε0 = 0, i.e., in step 4 for all i ∈ K we define Qi = Mi, points zk are
not constructed, and numbers εk, k � 1, are not chosen. If for this choice of M0 and ε0 we choose
approximation xi for all i � 1 as the projection of point xi−1 to the set Ui, then the method will
coincide with the level-set method. Note that if M0 �= Rn+1 and Qik �= Rn+1, k ∈ K, then there is
no need in the numbers αi and constraint γ � αi in (2).

If under our assumptions for all i ∈ K we let in the method xi = yi, the algorithm will coincide
with Kelley’s method. Note that such a choice of points xi on step 3 of the method is possible since
Lemma 5 shows inclusions yi ∈ Ui for all i ∈ K. (All lemmas are given in the Appendix.)

Since the proposed method has a possibility for periodic updates of approximating sets, we have
thus justified the technique of including discard procedures for accumulated cutting planes both in
Kelley’s method and in the method of levels.

Lemma 2 proves a conceptual property of the sequence {αi}, i ∈ K, constructed by the method,
and based on this property and Lemma 1 we prove in Lemma 3 that auxiliary problems (2) are
feasible for all i ∈ K.

Lemma 3 easily implies Lemma 4, which shows a property of sequence {γi}, i ∈ K, constructed
with our method. With Lemma 4 we can also justify the following optimality criterion for point yi.

Theorem 1. Suppose that for some i ∈ K equality (3) holds. Then yi ∈ X∗.

(See the proof in the Appendix.)

4. CONVERGENCE OF THE PROPOSED METHOD

We begin by stating a result that deals with the case when in the construction of {xi}, i ∈ K,
starting from some index, the sets Qi are chosen as (8).

Theorem 2. Suppose that sequences {xi}, {γi}, i ∈ K, have been constructed by the method with
the condition that starting from some index ĩ > 0 the sets Qi are chosen by (8). Then it holds that

lim
i∈K

f(xi) = f∗, lim
i∈K

γi = f∗.

Note that by Theorem 2 and a known theorem [12, p. 74] the sequence {xi}, i ∈ K, converges
to the set X∗.

Statements of Theorem 2 have been proven under the assumption that in the method for all
i ∈ K

Mi+1 = Mi

⋂
{(x, γ) ∈ Rn+1 : f(xi) + 〈ai, x− xi〉 � γ}. (21)

In this case, in the construction of sequences {xi}, {γi}, i ∈ K, the number of cutting planes
increases unboundedly, and there are no updates of approximating sets. Note also that if we let
ε0 = 0 in the method then sets Qi andMi+1 for all i ∈ K will have the form (8) and (21) respectively,
and none of the points zk = xik will be fixed.

Considering these remarks we will pass to research the sequences {xi}, {γi}, i ∈ K, in the
construction of which we applied (9) and updated the sets Mi+1 with a corresponding choice of
the sets Qi infinitely often. In other words, we investigate the properties of sequences {zk}, {σk},
k ∈ K.

The existence of sequences {zk}, {σk}, k ∈ K, under the additional condition on the choice of
the numbers εk is justified by the following statement.
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Theorem 3. Suppose that sequences {xi}, {γi}, i ∈ K, are constructed by the method under the
assumption that

εk > 0 ∀k ∈ K. (22)

Then for each k ∈ K there exists an index i = ik for which equalities (9) hold.

The fact that {f(zk)}, {σk}, k ∈ K, converge to the solution is justified under one more addi-
tional assumption on the sequence {εk}, k ∈ K, by the following.

Theorem 4. Suppose that in the method, the numbers εk, k ∈ K, are chosen by (22), and, more-
over,

εk → 0, k → ∞. (23)

Then sequences {zk}, {σk}, k ∈ K, satisfy

lim
k∈K

f(zk) = f∗, lim
k∈K

σk = f∗. (24)

Let us briefly describe how one can choose the sequence {εk}, k ∈ K. Note that numbers εk,
k � 1, just like the number ε0, can be specified at the preliminary step of the method. However,
in this case {εk}, k ∈ K, will not be adapted to the minimization process. Therefore, the method
allows to choose εk, k � 1, in the process of constructing the approximations zk. For instance,
letting ε0 be arbitrarily large, we can choose on step 4

εk+1 = τk(f(zk)− σk), k � 0, (25)

where τk ∈ (0, 1). For such a sequence {εk}, k ∈ K, both (22) and condition (23) hold if τk → 0,
k ∈ K.

In conclusion we represent the estimates dealing with the accuracy of our solutions for the prob-
lem. According to (A.3), for all i ∈ K, including i = ik, it holds that γi � f∗ � f(xi). Consequently,
due to (9)

0 � f(zk)− f∗ � f(zk)− σk � εk, k ∈ K. (26)

Under the additional assumption that function f(x) is strongly convex with strong convexity
constant μ for all k ∈ K it holds that

||zk − x∗|| �
√

εk
μ
,

which follows from the well-known inequality μ||zk − x∗||2 � f(zk)− f(x∗) (see, e.g., [12, p. 182])
and estimate (26).

To verify that the method works, we have conducted a number of numerical experiments on
test examples with the number of variables ranging from 2 to 50. Objective functions in these
examples were convex quadratic, and constraints is defined by parallelepipeds. Each example was
solved without procedures for discarding cutting planes if we let ε0 = 0, and with discarding if we
chose εk in the form (25). A part of the test problems was solved by choosing approximations xi
as xi = yi and as projections of points xi−1 on the sets Ui.

Iterations with indices i = ik have employed different methods for updating approximating sets.
In particular, the choice of Qik = M0 (i.e., full update of the approximating sets) has proven to
be not very efficient. The best method appears to be discarding all additional constraints that are
“inactive” at point xik . Under this method of discarding, we achieved a given accuracy of solutions
2–3 times faster as compared to choosing the sets Qi in the form (8) for all i. The higher was the
problem dimension, the greater was the difference in time.
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5. CONCLUSION

To solve convex programming problems, we have presented a cutting method with epigraph
approximation that admits periodic updates of approximating sets by discarding cutting planes.
We have described several properties of the method, proposed implementations for it, compared our
approach with known cutting methods. On test examples, we have compared several algorithms
for the proposed approach. Experimental results have proven that the procedures for updating
approximating sets that we have developed and included in the method are of practical importance.
Namely, a given accuracy of solutions in all test problems was achieved significantly faster if the
update procedures were used.

APPENDIX

Lemma 1. Inclusion (17) holds for all i ∈ K.

Proof of Lemma 1. For i = 0 inclusion (17) holds by the choice of M0. Suppose now that
(17) holds for every fixed i = l � 0. Let us show that (17) holds for i = l + 1, then the statement
of the Lemma will be proven. Indeed, due to (8), (10) and the induction hypothesis the following
inclusion holds:

(x∗, f∗) ∈ Ql. (A.1)

Besides, f(x∗)− f(xl) � 〈al, x∗ − xl〉. Therefore, f(xl) + 〈al, x∗ − xl〉 � f∗, and by (11), (A.1)
(x∗, f∗) ∈ Ml+1. This completes the proof of the lemma.

Lemma 2. Sequence {αi}, i ∈ K, constructed by the proposed method satisfies

αi � f∗ (A.2)

for all i ∈ K.

Proof of Lemma 2. Inequality (A.2) follows from the form of constraints in problem (2) and
equality (12) together with inclusions (17).

Lemma 3. The point (x∗, f∗) satisfies constraints of problem (2) for all i ∈ K.

Proof of Lemma 3 follows from Lemmas 1, 2.

Lemma 4. The sequence {γi}, i ∈ K, constructed by the method satisfies the following inequali-
ties:

γi � f∗ ∀i ∈ K. (A.3)

Proof of Lemma 4 follows from Lemma 3.

Proof of Theorem 1. Due to (3), (A.3) f(yi) � f∗. On the other hand, f(yi) � f∗ since yi ∈ D.
Thus, f(yi) = f∗, and the statement is proven.

Lemma 5. For every i ∈ K, the set Ui is nonempty.

Proof of Lemma 5. Fix an arbitrary index i = r ∈ K. To prove the statement it suffices to
respresent that there exists a point x and a number γ such that

x ∈ D, γ � lr, (x, γ) ∈ Mr. (A.4)

According to (5), (13), βr � f∗. Therefore, due to (A.3), (6), (4) it holds that

lr � γr. (A.5)
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Further, due to (2) inclusions yr ∈ D and (yr, γr) ∈ Mr hold. Thus, letting x = yr, γ = γr, we
obtain from this together with (A.5) relations (A.4). This completes the proof of the lemma.

Proof of Theorem 2. We begin by showing that

lim
i∈K

(βi − γi) = 0. (A.6)

Note that due to conditions (5), (13) our choice of numbers βi, and inequalities (A.3), βi − γi � 0
for all i ∈ K. Suppose that equality (A.6) does not hold. Then there exist an infinite subset of
indices K1 ⊂ K and number ε > 0 such that for all i ∈ K1, i � ĩ, satisfies inequality

βi − γi � ε. (A.7)

We choose from sequence {xi}, i ∈ K1 ⊂ K, a converging subsequence {xi}, i ∈ K2 ⊂ K1, and
assume that x is its limit point.

Fix the indices i′, i′′ ∈ K2 such that

i′′ > i′ � ĩ. (A.8)

Since due to (5), (13) it holds that βi′+1 � δi′+1 = f(xi′), and the sequence {βi}, i ∈ K, is monotone
decreasing, we get that

f(xi′) � βi′′ . (A.9)

Following [11] and taking into account (A.9), (6), we get the following relations:

f(xi′)− (1− λi′′)(βi′′ − γi′′) � βi′′ − (1− λi′′)(βi′′ − γi′′) = li′′ . (A.10)

Since by step 3 of the method xi′′ ∈ Ui′′ , there exists a number γ′′ such that the following inequality
holds

γ′′ � li′′ (A.11)

together with inclusion (xi′′ , γ
′′) ∈ Mi′′ . But due to (8), (11), (A.8) Mi′′ ⊂ Ti′ = {(x, γ) ∈ Rn+1 :

f(xi′) + 〈ai′ , x− xi′〉 � γ}, so (xi′′ , γ
′′) ∈ Ti′ . This together with (A.11) implies that

f(xi′) + 〈ai′ , xi′′ − xi′〉 � li′′ . (A.12)

Then, taking into account inequalities (A.10), we have that

f(xi′)− (1− λi′′)(βi′′ − γi′′) � f(xi′) + 〈ai′ , xi′′ − xi′〉. (A.13)

Since xi ∈ D, i ∈ K, and the set D is bounded, there exists (see, e.g., [9, p. 121]) θ < +∞ such
that

||a|| � θ ∀a ∈ ∂f(xi), i ∈ K. (A.14)

Then (A.13), (A.14) imply that (1−λi′′)(βi′′ −γi′′)� θ||xi′′ −xi′ ||, and since βi′′ −γi′′ � ε by (A.7),
in view of (4) we have that

ε � θ
||xi′′ − xi′ ||

1− λ
. (A.15)

Let us now choose for every i ∈ K2 an index pi ∈ K2 such that pi � i+ 1. Then due to (A.15)

ε � θ
||xpi

−xi||
1−λ

, i ∈ K2. The last inequality contradicts our choice of ε since xi → x, xpi → x over

i ∈ K2. Thus, Eq. (A.6) is proven.
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Further, we prove that the following equality holds:

lim
i∈K

(f(xi)− γi) = 0. (A.16)

Note that by (A.3) and inclusion xi ∈ D it holds for all i ∈ K that f(xi)− γi � 0. Suppose that
equality (A.16) does not hold. Then there exist subsequences {xi}, {γi}, i ∈ K ′ ⊂ K, sequences
{xi}, {γi}, i ∈ K, respectively, and a number ε′ > 0 such that

f(xi)− γi � ε′

for all i ∈ K ′, i � ĩ.

Let {xi}, i ∈ K ′′ ⊂ K ′, be a converging subsequence of sequence {xi}, i ∈ K ′, and let x be
its limit point. Fix the indices i′, i′′ ∈ K ′′ from condition (A.8). Since f(xi′) � γi′ + ε′, (A.12)
implies that li′′ � γi′ + ε′ + 〈ai′ , xi′′ − xi′〉. Then, taking into account (A.14), we get the following
inequality:

li′′ � γi′ + ε′ − θ||xi′′ − xi′ ||.
On the other hand,

li′′ = γi′′ + λi′′(βi′′ − γi′′) � βi′′ + λi′′(βi′′ − γi′′) � βi′ + λi′′(βi′ − γi′′).

Therefore,

ε′ − θ||xi′′ − xi′ || � λi′′(βi′ − γi′′) + βi′ − γi′ . (A.17)

Due to (2) αi+1 � γi+1, and by (12) αi+1 = γi for all i ∈ K, i.e., sequence {γi}, i ∈ K, is monotone
increasing. Consequently, γi′ � γi′′ , and (A.17) together with (4) imply that

ε′ � θ||xi′′ − xi′ ||+ (1 + λ)(βi′ − γi′). (A.18)

Now fix for each i ∈ K ′′ an index pi ∈ K ′′ such that pi � i+ 1. Then by (A.18)

ε′ � θ||xpi − xi||+ (1 + λ)(βi − γi) ∀i ∈ K ′′. (A.19)

Since xi → x and xpi → x for i → ∞, i ∈ K ′′, and due to (A.6) it holds that limi∈K ′′(βi − γi) = 0,
we get from (A.19) inequality ε′ � 0, which contradicts the choice of ε′. This proves equality (A.16).

Now (A.16) and (A.3) imply the statement of the Theorem.

Proof of Theorem 3. 1. Let k = 0. If f(x0)− γ0 � ε0, then by step 4 of the method i0 = 0,
z0 = xi0 = x0, σ0 = γ0, and equalities (9) hold for k = 0. Therefore, we will assume that f(x0)−
γ0 > ε0. Then we show that there exists an index i = i0 > 0 for which the following inequality
holds:

f(xi0)− γi0 � ε0. (A.20)

Assume the opposite, i.e., f(xi)− γi > ε0 for all i ∈ K, i > 0. Then the sets Qi, i ∈ K, i > 0,
have form (8), i.e., conditions of Theorem 2 hold, and consequently Eq. (A.16) also holds. It
implies inequality ε0 � 0 which contradicts condition (22). Thus, the existence of an index i0 > 0
that satisfies (A.20) has been proven, and equalities (9) hold for k = 0.

2. Suppose now that (9) hold for some fixed k � 0, i.e., there exists an index i = ik satisfying
condition (18) for a given k. Let us show that there exists an index ik+1 > ik such that

f(xik+1
)− γik+1

� εk+1, (A.21)
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then zk+1 = xik+1
, σk+1 = γik+1

, and the Lemma will be proven. If we assume the opposite, i.e.,
assume that for all i ∈ K, i > ik it holds that f(xi)− γi > εk+1, then, similar to the first part of
the proof, together with equality (A.16) we will get a contradiction with the choice of εk+1. Thus,
there does indeed exist an index ik+1 > ik satisfying (A.21), and this completes the proof of the
theorem.

Proof of Theorem 4. Due to (9) f(xik)− γik � εk or

f(zk) � σk + εk ∀k ∈ K. (A.22)

Besides, by Lemma 4 and inclusion zk ∈ D, k ∈ K, it holds that

σk � f∗ � f(zk) ∀k ∈ K. (A.23)

Therefore f∗ � f(zk) � f∗ + εk, k ∈ K. Then due to (23)

f∗ � lim
k∈K

f(zk) � lim
k∈K

f(zk) � f∗,

and the first of equalities (24) is proven.

Further, due to the same inequalities (A.22), (A.23) f∗ − εk � σk � f∗, k ∈ K. This together
with (23) implies the second equality of (24), and this completes the proof of the theorem.
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