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Abstract—A stabilization problem in a networked control system with packet dropouts is stud-
ied and dynamic output-feedback control is constructed. Predictive control approach is em-
ployed for obtaining plant state estimates at each step k. This eliminates the need for consid-
ering explicitly plant state switching when a packet dropout occurs.
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1. BASIC PRINCIPLES OF PREDICTIVE CONTROL

Predictive control belongs to a class of control design algorithms which involve prediction mod-
els for future responses of a system. Initially, the approach was intended for satisfying specific
control requirements at power plants and petroleum refineries. Nowadays, predictive control finds
applications in different fields such as food, automotive and aerospace industries.

The whole essence of predictive control consists in the following. At each control interval, the
algorithm tries to optimize the future behavior of a system through constructing a sequence of
future control actions. The control sequence is calculated in order to optimize the future behavior
of a system within a time interval called prediction horizon. The first control action from the
obtained sequence is supplied to the plant and at the next step the control problem is solved all
over again using updated measurements.

Predictive control principles date back to the 1960s, see [12]. However, researchers demonstrated
a rapidly growing interest in such methods only in the 1980s after the appearance of first publi-
cations on predictive control: identification and command (IDCOM) [19], dynamic matrix control
(DMC) [9, 10] and the pioneering comprehensive treatment of generalized predictive control (GPC)
[6, 7]. Despite that, in the initial form, the underlying ideas of DMC and GPC were similar, DMC
serves for multi-dimensional constrained control, whereas GPC mostly fits one-dimensional prob-
lems and adaptive control problems.

The term “predictive control” is associated with an explicit model of a plant used for predicting
the future behavior of system output. This prediction allows solving optimal control problems
in real time, where tracking errors (the deviations between predicted and desired outputs) are
minimized during the prediction horizon under input/output constraints. In the case of a linear
model, the optimization problem is quadratic (linear) if the performance criterion employs the L2

norm (the L1/L∞ norm, respectively). According to the major principle of predictive control, at
step t only the first term from the predicted optimal control sequence is applied to the plant. And
then the control problem is solved for step t+ 1.

Figure 1 illustrates the basic principle of predictive control [17]. Our discussion gets confined
to single-input single-output systems with discrete time. The current state corresponds to step t.
In Fig. 1 readers can observe two trajectories, viz., an ideal trajectory (dashed line) and a predicted
trajectory (points). The predicted trajectory begins at step t and defines a trajectory to-be-followed
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Fig. 1. Predictive control.

by a plant for getting back to the ideal trajectory. A predictive controller has its own model used for
predicting system behavior within a prediction horizon. In the elementary case, we can endeavor to
choose the predicted trajectory so as to combine it with the ideal one at the end of the prediction
horizon.

The issues of real-time optimization, stability and performance are well studied for systems
described by linear models (e.g., see the books [3–5, 8, 16, 20]). An appreciable advancement
in predictive control application for hybrid systems, discrete-time systems, logical systems and
heuristic analysis was achieved in [2].

Now, we outline several results on predictive control of networked systems. The paper [15]
suggested stabilizing control for a networked system with packet dropouts between a sensor and
controller. The authors [11] developed a predictive control method in the case of two-way packet
losses; a Lyapunov function dependent on data packet losses was involved to stabilize the closed-loop
system. In [13] a networked control system was designed, where predictions serve for compensating
signal delays and packet losses during transmission between a plant and a control system. To
analyze the properties of the system, the authors introduced the notion of a sequence of predictions
which allows defining the properties of a network required for closed-loop system stability.

In the preceding works [1], we treated packet dropouts as a structural state of a networked
control system. However, as dropouts occur, a plant does not pass to a new state and continues
normal functioning. Switching of a designed control system to a new structural state affects not
the plant controlled via closed loop, but information about it.

From this viewpoint, predictive control seems fruitful exactly in the sense of system stay in a
same structural state with available information about the system. Yet, one should keep in mind
that such information can be predicted, not true.

Let us formulate the key ideas employed in the previous work to design control algorithms for
networked control systems. First, we accepted the well-known separation principle allowing to
decompose a control system into a plant and an observer. And the gain matrices for the observer
and controller were calculated independently. Second, possible packet dropouts were considered
for the observer and controller, with construction of either different gain matrices for different
structural states or a common gain matrix for all structural states.

Using predictive control principles, we suggest the following modification of the networked con-
trol algorithm. Introduce a prediction horizon coinciding with the maximum possible number of
lost data packets. This quantity characterizes a network data communication channel and can be
chosen with some margin. Next, design two buffers for storing predicted measurements and control
actions. In the sequel, we demonstrate a state vector estimation procedure based on a Kalman filter
taking into account predictive control. Using predictions of the current and future states of the
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plant, a sequence of control actions is constructed and supplied to the plant. Here we emphasize
an important feature: in contrast to [18], a common output-feedback gain matrix serves for the
current and future steps. This is done owing to the assumption that a common output-feedback
gain matrix can be found for the system and packet dropouts do not affect its structure.

2. THE PRINCIPLE OF SYSTEM FUNCTIONING

Consider a networked control system illustrated by Fig. 2. It runs in the following way:

1) the plant conducts measurements in the form of current and predicted measurements for several
steps ahead (an event horizon);

2) the plant sends a formed packet to the control system;

3) if a packet dropout takes no place, the received packet is stored in a buffer; otherwise, predicted
measurements for an appropriate step are taken from a buffer;

4) an observer is constructed;

5) a packet is formed from the state estimate for the current step and the predicted states for
several steps ahead;

6) the packet is sent to the plant;

7) if this packet successfully reaches the plant (no dropouts occur), it is stored in the buffer;

8) the control action for the current step or the predictions for the preceding steps are applied.

Fig. 2. A networked control system.

3. SYSTEM EQUATIONS

Consider a linear system governed by the difference equation

xk+1 = Axk +Buk,

yk = Cxk,
(1)

where xk+1 denotes the n-dimensional transition state vector; xk means the n-dimensional initial
state vector; uk stands for the m-dimensional control vector; yk is the l-dimensional measurement
(output) vector; k specifies discrete time expressed by the number of discretization intervals of
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length Δt; and finally, A ∈ R
n×n and B ∈ R

n×m are the state transition matrix and the control
gain matrix, respectively.

Similarly to [1], let us accept the separation principle for independent control search and state
vector estimation. A valuable property of predictive control is that system switching does not affect
stabilizing control design uk = −Gx̂k: even in the case of a packet dropout, one can use information
from previous steps stored in the buffer. In what follows, we employ the method of Lyapunov
functions and linear matrix inequalities for calculating the output-feedback gain matrix G. In the
absence of switching, the formulas become trivial and are omitted here.

Remark 1. As opposed to the earlier paper [1], where the system changes its structural states,
applicability of the separation principle can be easily argued. For this, consider the system (1) and
the associated observer:

xk+1 = Axk −BGx̂k,

x̂k+1 = Axk −BGx̂k +K(yk − Cx̂k).
(2)

By passing from the estimation vector to the error vector x̃ = x− x̂ in the second equation above,
we rewrite the system (2) as

xk+1 = (A−BG)xk +BGx̃k,

x̃k+1 = (A−KC)x̃k.
(3)

Its equivalent matrix representation is

[
xk+1

x̃k+1

]
=

[
A−BG BG

0 A−KC

] [
xk

x̃k

]
. (4)

Obviously, the system (4) possesses a block upper triangular matrix whose eigenvalues equal the
eigenvalues of the corresponding block diagonal matrix (or the eigenvalues of the separated system).

Therefore, now the major problem is to estimate the state vector for any step k, regardless
of possible dropouts in the network data communication channel. For this, take advantage of
predictive control principles and compile the extended state vector

xk+1 = Axk +Buk,

xk+2 −Axk+1 = Buk+1,

xk+N+1 −Axk+N = Buk+N ;

(5)

yk = Cxk,

yk+1 = Cxk+1,

yk+2 = Cxk+2,

...

yk+N = Cxk+N .

(6)

Here N is the size of the buffer (the event horizon).
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Reexpress the system (5) in the form

⎡
⎢⎢⎢⎢⎣

I 0 . . . 0 0
−A I 0 . . . 0
...

...
...

...
...

0 0 . . . −A I

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

xk+1

xk+2

xk+3
...

xk+N+1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

A 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

xk
xk+1

xk+2
...

xk+N

⎤
⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎣

B 0 0 . . . 0
0 B 0 . . . 0
0 0 B . . . 0
...

...
...

...
...

0 0 0 . . . B

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

uk
uk+1

uk+2
...

uk+N

⎤
⎥⎥⎥⎥⎥⎥⎦
,

(7)

⎡
⎢⎢⎢⎢⎢⎢⎣

yk
yk+1

yk+2
...

yk+N

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

C 0 0 . . . 0
0 C 0 . . . 0
0 0 C . . . 0
...

...
...

...
...

0 0 0 . . . C

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

xk
xk+1

xk+2
...

xk+N

⎤
⎥⎥⎥⎥⎥⎥⎦
. (8)

Introduce the extended state and measurement vectors X = [xk xk+1 . . . xk+N ], Y =
[yk yk+1 . . . yk+N ]. Then the system (7) takes the form

A+Xk+1 = A0Xk +B0uk,

Yk = C0Xk.
(9)

Note that in the vector Yk only the measurements yk are the real output of the system (1); the
rest components yk+1, . . . , yk+N represent the predicted measurements, e.g., constructed using the
estimates of the extended state vector.

Equations (5)–(9) incorporate no external disturbances, though the system (1) admits their
appearance. This can be explained as follows. While predicting future states and measurements,
we believe that noises in the original system (if any) have zero mean. In this case, such noises are
compensated during state vector estimation by a Kalman filter.

To estimate the state of the system (9), apply the linear Kalman filter

X̂k+1 = A−1
+ A0X̂k +A−1

+ BUk +K(Y − C0X̂k). (10)

The matrix C0 remains invariable if a packet dropout occurs.

Remark 2. It would seem that, in the case of a packet dropout, a reasonable approach is to use
the matrix C0 of the following form:

Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

C 0 0 . . . 0
0 C 0 . . . 0
0 0 C . . . 0
...

...
...

...
...

0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (11)

Here the missed packet is replaced by zeros. However, the numerical experiments have demonstrated
that such approach impairs the convergence characteristics of the Kalman filter, as its original
version is sensitive to structural switching of the system.
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Invariance of the matrix C0 indicates that the last obtained measurements (not zero data) replace
the lost measurements.

And finally, we emphasize that within the prediction horizon the predicted states and mea-
surements are chosen for each system individually. They can depend on such factors as system
dynamics and external disturbances. Once again, recall the basic principle of predictive control:
within the prediction horizon, the behavioral model of the system is selected on the basis of its
desired dynamics and may vary rather widely.

4. EXAMPLE

As an example, consider stabilizing control design for a quadcopter. The linear system charac-
terizing small deviations from an equilibrium in the angle of roll and zero position in the 3D space
was adopted from [14].

In the continuous-time setting, the system takes the form

φ̈ =
1

I
Γ, (12)

ẍ = −gφ+
1

Lm
Γ +

1

m
dt. (13)

Here m is the weight of the quadcopter; I designates the inertia moment of axis X; L gives the
distance between the propeller plane and the engine; dt represents a random disturbance (e.g., wind
force).

Compile the new vector of unknown variables X =
[
φ φ̇ x ẋ

]
and choose φ̇ and x as measur-

able quantities.

To introduce disturbances into the system, apply the function dt of the following form (see
Fig. 3).

Fig. 3. Random disturbance.
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Fig. 4. The trajectories of the stabilized system.

Fig. 5. The number of data packets lost.
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Choose m = 6 kg, L = 200 mm, I = 0.24 kg×m2 as the parameter values of the system (12).

Then the matrices of the discrete-time system are defined by

A =

⎡
⎢⎢⎢⎣
1.0000 0.0200 0 0

0 1.0000 0 0
−0.0020 −0.0000 1.0000 0.0200
−0.1962 −0.0020 0 1.0000

⎤
⎥⎥⎥⎦ ,

B =

⎡
⎢⎢⎢⎣
0.0008
0.0833
0.0002
0.0166

⎤
⎥⎥⎥⎦ .

According to the paper [14], the system (12) is instable under the above parameters.

Set N = 5 as the buffer size for system design. In the general case, the buffer size should be
selected depending on the predicted number of sequentially lost data packets and the capabilities
of the computing system. If the predicted number of lost data packets is exceeded, the system may
leave the stable trajectory.

Figure 4 presents the trajectories of the stabilized system.

In addition, we illustrate the distribution of the number of data packets lost, see Fig. 5.

Clearly, the system is stabilized despite many data packets lost.
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