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Abstract—We suggest to apply the Bubnov–Galerkin method to solving control problems for
bilinear systems. We reduce the solution of a control problem to a finite-dimensional system
of linear problem of moments. We show a specific example of applying this procedure and give
its numerical solution.
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1. INTRODUCTION

A number of applied problems, including optimization of structure and topology of designs [1–4],
certain processes in quantum mechanical systems, ecology, medicine, mathematical economics,
engineering and so on [5], can be mathematically modeled by bilinear systems, i.e., systems whose
state equations are linear with respect to both functions in question. Bilinear systems are the
simplest nonlinear systems that describe a number of real world processes in very different fields of
science that would be incorrectly modeled in the framework of linear theory.

The notion of a bilinear system has been introduced to control theory in the 1960s, and since
then numerous works have appeared on this topic. A relatively comprehensive list of references
can be found in the book [5]. Other control problems for bilinear systems described by ordinary
differential equations can be found, e.g., in [6, 7]; partial differential equations, in [8–13].

At present, several exact and approximate methods for solving control problems for bilinear
systems have been developed. To solve control problems for bilinear systems, the work [5] sys-
tematically uses the theory of matrix Lie groups. The same method has been applied in [8] to
prove full controllability by a bilinear control of bending oscillations of plates when the control in
question depends on all independent variables. In [13], the required control function occurs in the
coefficients of the state function of Schrödinger equation, while in [9, 12] it occurs in that of the
first derivative of the state function of the wave equation. An interesting control problem for the
coefficient of a Korteweg–de Vries equation which is nonlinear in the state function but linear in
the control function has been considered in [11]. In [1], classical variational calculus methods are
used to study different problems of the theory of elasticity, when state equations are linear with
respect to the state function and nonlinear with respect to the control function. In the studies
of structural and typological optimization problems, researchers often employ the method of finite
elements together with the Fourier method of separating variables [2–4].

In the present work, we propose a novel approximate method for solving control problems for
bilinear equations which is mathematically founded on the Bubnov–Galerkin procedure [14]. We
demonstrate this approach with an important example where the required control function does
not depend explicitly on one of the independent variables. In such situations we propose to apply
the generalized Butkovsky’s finite control method to find the control in question [15].
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2. THE BUBNOV–GALERKIN PROCEDURE FOR BILINEAR CONTROL SYSTEMS

The control problem for a bilinear partial differential system usually requires one to optimize
a given functional κ[u] by choosing a function u from a given set U of admissible controls under
differential constraints

Du[w] = N (x, t), x ∈ Ω ⊂ R
3, t > 0. (1)

A solution of (1) satisfies given linear boundary conditions

B[w] = w∂(t), x ∈ ∂Ω, t > 0, (2)

and certain initial conditions. Here Du[w] is a differential operator defined in region Ω × R
+ and

containing the product of state function w and control function u or their derivatives, B[·] is a given
linear operator defined in the region ∂Ω × R

+. As usual, ∂Ω denotes the boundary of region Ω,
n is the vector of its external normal. Examples of operator Du[·] can be found, for instance, in
[1, 4, 5, 8–13].

The purpose of a control problem can be to provide for solutions of the boundary problem (1)
and (2) with required final conditions for fixed t = T . Final conditions are often assumed to be
equal to zero.

In the present work, we propose to use the Bubnov–Galerkin procedure [14] to solve this con-
trol problem. If we are able to construct a system of linear independent basis (approximating)
functions {ϕk(x, t)}nk=0 for the boundary value problem (1), (2) then the residue obtained by sub-
stituting approximate solutions

wn(x, t) = ϕ0(x, t) +
n∑

k=1

αkϕk(x, t) (3)

into Eq. (1) will be

Rn(x, t) ≡ Du[wn]−N (x, t), x ∈ Ω, t > 0. (4)

According to the Bubnov–Galerkin method, the coefficients αk are determined from orthogonal-
ity conditions on basis functions {ϕk(x, t)}nk=0 to the residue (4) [14]:

T∫

0

∫

Ω

Rn(x, t)ϕk(x, t)dxdt = 0, k = 1;n. (5)

If for some n0 ∈ N the residue (4) is identically zero, Rn(x, t) ≡ 0, then the corresponding
approximation wn0(x, t) (3) will be an exact solution of the boundary problem (1), (2). Otherwise,
increasing the number n of the terms in (3), we can approximate the solution in question up to a
given accuracy. Then the limit case w∞(x, t) will be an exact solution of problem (1), (2).

After we find coefficients αk from the system of linear algebraic Eqs. (5) and substitute them into
the approximate solution (3), we take into account that at time moment T given final conditions
must hold, for finding the function in question we get a system of constraints of the form

T∫

0

∫

Ω
uKk(x, t)dxdt = Mk, k = 1;n, (6)

where kernels Kk(x, t) and constants Mk depend on the parameters of system (1), (2).
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System (6) lets us find the function in question with different methods, including an approach
proposed in [16] where such systems are considered as problem of moments [16, 17]. The convenience
of this approach is that we not only are able to construct an explicit form of the control function
but also establish conditions for its existence [15–19].

Solving control problems for bilinear systems can be thus reduced to a problem of moments,
which in this case, unlike [15], is finite-dimensional.

3. DAMPING A BEAM UNDER MOVING INFLUENCE

Elastic beams subject to moving loads represent the simplest models of railroad bridges on
which trains are moving. Thus, damping bending oscillations in such beams over a finite period
time has immediate and useful applications. The works [20–25] consider numerous applied prob-
lems of damping the oscillations of a system subject to moving loads with dynamic dampers of
oscillations. Dampers are considered in either viscous or viscoelastic model, and the main param-
eter for optimization is the shift of dampers for a given configuration and location of dampers
under the beam [20–23]. A viscous model of dampers lets us replace their influence on the beam
with a force proportional to some degree of the velocity of the beam’s points, while the influence
of viscoelastic dampers on the beam is replaced by a force proportional to a combination of the
velocity and movement of the beam’s points. Lately, in order to improve the seismic resistance
of constructions researchers have also studied optimal placements and the number of viscoelastic
dampers of oscillations [24, 25]. The main technique for solving these problems is the method
of separating the variables since for a given location of dampers the problem is mathematically
formulated as differential equations with constant coefficients.

As an example of applying the above procedure consider the optimal distribution problem for
viscous dampers of oscillations under an elastic homogeneous beam of finite length 2l which is
simply supported at the ends x∗ = −l and x∗ = l. Suppose that the beam is bended under the
influence of a constant load P∗ which uniformly moves along the beam with velocity v∗ (see figure).

 
P

 

α

 

2

Illustration of a beam with viscous damper.

We assume a linear–viscous model of dampers, i.e., we assume that the influence of dampers on
the beam is proportional to the first degree of the velocity with which points of the beam move.
Assuming that the load separates from a beam at a given time moment τ∗ > 0, we need to damp the
oscillations of a beam at a fixed (given) time moment T > τ∗. The problem can be mathematically
formulated as the following bilinear differential equation with respect to a dimensionless deflection
of the beam [21]:

∂4w

∂x4
+ β2∂

2w

∂t2
+ α2u(x)

∂w

∂t
(7)

= Pδ(x+ 1− v(t+ π))[θ(t+ π)− θ(t+ π − τ)], x ∈ (−1, 1), t ∈ (−π, π),
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whose solution satisfies boundary conditions of simple support:

w(±1, t) =
∂2w(x, t)

∂x2

∣∣∣∣
x=±1

= 0, t ∈ (−π, π). (8)

Here u(x) is the dimensionless control function that characterizes the distribution of dampers under
the beam, θ(t) is the unit Heaviside step function, δ(x) is the impulse Dirac function [26],

w =
w∗
l
, x =

x∗
l
, t =

2t∗ − T

T
π, τ =

2π

T
τ∗, P =

P∗l2

EJ
,

α2 =
2π

T

α2∗l4

EJ
, β2 =

4π2

T 2

ρSl4

EJ
, v =

T

2π

v∗
l

=
T

πτ∗
,

EJ is beam’s bending stiffness, and α2∗ is the viscosity coefficient of the dampers. A characteristic
feature of this example is that the control function does not depend explicitly on the independent
variable t.

The main goal of our study is to dampen the oscillations of the beam by choosing an admissible
control function uo ∈ U that minimizes the functional [16]

κ[u] =

1∫

−1

u(x)dx, u ∈ U . (9)

Already at this point we could use the procedure outlined above, but due to the characteristic
features of this specific example we can do it slightly differently. First we write Eq. (7) and
conditions (8) for all real t. Introducing the operator [10, 18, 19] Aπ[f ] = [θ(t+π)−θ(t−π)]f(t) ≡
f1(t) defined on the entire real axis, we write problem (7), (8) in generalized functions [26]:

∂4w1

∂x4
+ β2 ∂

2w1

∂t2
+ α2u(x)

∂w1

∂t
= Pδ(x+ 1− v(t+ π))[θ(t+ π)− θ(t+ π − τ)]

+α2u(x)w0(x)δ(t + π) + β2 [w0(x)δ
′(t+ π) + ẇ0(x)δ(t+ π)

]
, x ∈ (−1, 1), t ∈ R,

(10)

w1(±1, t) =
∂2w1(x, t)

∂x2

∣∣∣∣
x=±1

= 0, t ∈ R, (11)

w0(x) and ẇ0(x) are initial functions, and the derivative of the delta function, δ′(t), is understood
in the generalized sense [26]. Note that the function ẇ0(x) is only a symbolic notation and does
not represent a derivative.

It is clear that the introduced function w1(x, t) is concentrated in the region [−1, 1]×[−π, π], i.e.,
supp w1 ⊆ [−1, 1]× [−π, π], where supp f = {x ∈ R : f(x) �= 0} denotes the support of function f .
Judging by physical consideration, we assume that the set U of admissible controls consists of real
nonnegative functions u(x) for which supp u ⊆ [−1, 1].

We now apply to system (10), (11) a real generalized integral Fourier transform with respect to
variable t [26]:

d4w1

dx4
− σ2

[
β2 + i

α2

σ
u(x)

]
w1 =

P

v
[θ(x+ 1)− θ(x+ 1− vτ)]eiσ(

x+1
v

−π)

+α2e−iσπu(x)w0(x) + β2e−iσπ [ẇ0(x)− iσw0(x)] , x ∈ (−1, 1), σ ∈ R,

(12)

w1(±1, σ) =
d2w1(x, σ)

dx2

∣∣∣∣
x=±1

= 0, σ ∈ R, (13)
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where

F [f ] ≡ f(σ) =

∞∫

−∞
f(t)eiσtdt, σ ∈ R,

is the Fourier image of function f(t), σ is the spectral parameter of the Fourier transform. In
the derivation of (12) we have used well-known relations F [δ(t − t0)] = eiσt0 , |λ|δ(t) = δ(|λ|t),
θ(|λ|t) = θ(t), λ �= 0 [26].

It is characteristic for ordinary differential Eq. (12) that the control function occurs not only
in its coefficients but also in the right-hand side. However, introducing the auxiliary function
w(x, σ) = iσeiσπw1(x, σ) + w0(x), the control function can be excluded from the right-hand side:

d4w

dx4
− σ2

[
β2 + i

α2

σ
u(x)

]
w = Π(x, σ), x ∈ (−1, 1), σ ∈ R,

w(±1, σ) =
d2w(x, σ)

dx2

∣∣∣∣
x=±1

= 0, σ ∈ R, (14)

Π(x, σ) = iσ

⎡

⎣Peiσ(
x+1
v

−π)

v
[θ(x+ 1)− θ(x+ 1− vτ)] + β2ẇ0(x)

⎤

⎦ +wIV
0 (x).

In the derivation of boundary conditions (14) we have used conjugation conditions for the boundary
conditions with initial and final conditions.

We now apply the Bubnov–Galerkin procedure. As approximating functions we take the or-
thonormal (in [−1, 1]) system {sin(πkx)}nk=1 and get

n∑

k=1

Λkm(σ)αk(σ) = Ωm(σ), m = 1;n, (15)

where Λkm(σ) =
[
(πk)4 − β2σ2

]
δmk − iσα2Jkm[u],

δmk = δkm =

1∫

−1

sin(πkx) sin(πmx)dx =

{
1, k = m

0, k �= m,

is the Kroneker symbol,

Jkm[u] =

1∫

−1

u(x) sin(πkx) sin(πmx)dx, Ωm(σ) =

1∫

−1

Π(x, σ) sin(πmx)dx.

Representing the solution of the system of linear algebraic Eqs. (15) as

αk(σ) =
Δk(σ)

Δ(σ)
, k = 1;n, (16)

where Δ is the main and Δk is the auxiliary determinant of system (15), and taking into account
that supp w1 ⊆ [−1, 1] × [−π, π], to find the function in question we can use a method that has
already become traditional [15]. Namely, according to the well-known Wiener–Paley–Schwartz
theorem [15, p. 198; 26, p. 125] function w(x, z) = izeizπw1(x, z) + w0(x), z ∈ C, is a entire function
of exponential type, and, consequently, at points where the denominator of (16) continued to the
entire complex plane is zero

Δ(z) = 0 (17)
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for all k = 1;n, the numerators of the fraction (16) extended to the entire complex plane must also
turn to zero:

Δk(z) = 0, k = 1;n. (18)

It is easy to show that Eqs. (18) under (17) hold for all k = 1;n simultaneously [15], i.e., to find
the function in question we only have to consider one of them.

The form of the main determinant Δ(σ) implies that Eq. (17) holds only at a finite number
of points because decomposing this determinant with respect to σ we get a polynomial of finite
degree 2n. Moreover, together with z = σ + iς Eq. (17) will also satisfy z = −σ + iς.

Equations (18) for (17) yield necessary constraints of equality types (6) on the functionals
Jkm[u], and hence the control function can be found explicitly. It is known [15–19] that the
function in question uo ∈ U satisfying the resulting problem of moments and minimizing the integral
functional (9) is

uo(x) =
N∑

j=1

δ(x − xoj), x ∈ (−1, 1), (19)

corresponding to the pointwise distribution of dampers under the beam, and points in the support
of the function in question −1 < xoj < xoj+1 < 1 correspond to locations of dampers and depend on
parameters α2, β2, v, τ, P,w0, ẇ0, T . Note that since the optimal solution (19) is not unique [16–19],
the number of defining points N from inclusion condition {xoj}Nj=1 ⊂ (−1, 1) cannot be uniquely
determined in the general case. It can be defined in the problem setting.

Table 1. α2 = 0.01

P v τ xo
j

0.5 0.25 2.5 xo
1 = 0.3864, xo

2 = 0.4498

0.5 1 5 xo
1 = −0.8534, xo

2 = −0.2306, xo
3 = 0.2101

1 0.5 5 xo
1 = −0.308, xo

2 = −0.2601, xo
3 = 0.2436

1 1 6 xo
1 = −0.43, xo

2 = −0.125, xo
3 = 0.88

5 0.75 3 xo
1 = −0.5, xo

2 = −0.1853, xo
3 = 0.1879

5 1 6 xo
1 = −0.7203, xo

2 = −0.1684, xo
3 = 0.6869

Table 2. α2 = 0.5

P v τ xo
j

0.5 0.25 3 xo
1 = −0.1301, xo

2 = 0.2885, xo
3 = 0.6523

0.5 1 5 xo
1 = −0.5, xo

2 = 0.4853, xo
3 = 0.6122

1 0.25 3 xo
1 = −0.8143, xo

2 = −0.141

1 1 5 xo
1 = −0.4812, xo

2 = 0.2431

5 0.5 3 xo
1 = −0.8452, xo

2 = −0.54, xo
3 = 0.03

5 1 6 xo
1 = −0.6227, xo

2 = −0.2184, xo
3 = 0.5613, xo

4 = 0.6164

Table 3. α2 = 4

P v τ xo
j

0.5 0.25 3 xo
1 = 0.05

0.5 1 5 xo
1 = −0.6534

1 0.25 5 xo
1 = −0.1941, xo

2 = 0.261

1 1 6 xo
1 = −0.7, xo

2 = −0.0616

5 0.5 3 xo
1 = −0.0644

5 1 6 xo
1 = −0.7815, xo

2 = −0.0412, xo
3 = 0.5984
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The problem of computing points {xoj}Nj=1 can be reduced to a nonlinear programming prob-
lem by substituting (19) into the resulting moment equations. As a results, with respect to the
points {xoj}Nj=1 ∈ (−1, 1) we get a system of nonlinear constraints of equality type to which we add
constraints of inequality type −1 < xoj < xoj+1 < 1. The resulting system can be solved by efficient
numerical methods of nonlinear programming [27].

We have performed computations in the case of n = 3, T = 2π, β2 = π4, w0(x) = sin(πx),
ẇ0(x) = 0, for different values of dimensionless parameters α2, P, v, and τ ; our main results are
shown in Tables 1–3.

These tables show that the number of defining points decreases as the parameter α2∗ that char-
acterizes the dampers’ viscosity increases. We can also note that the number of defining points
increases as parameters P∗ and v∗ that characterize respectively the absolute value and velocity of
the moving impulse increase for the same values of parameter τ∗ that characterizes the moment
when the load is separated.

4. CONCLUSION

In this work, we apply the Bubnov–Galerkin method to a study of bilinear control systems. Using
final conditions, we reduce the problem to solving a finite-dimensional problem of moments (see (6)).
As an application of the proposed approach, we have studied the problem of damping bending
oscillations of a finite beam subject to moving load influence. The damping is done by choosing
an optimal distribution function for viscous dampers under the beam. We have formulated this
problem mathematically as bilinear differential partial differential equations of order four (see (7)).
We have found that the optimal in the sense of a control function integral (see (9)) is a discrete
distribution of dampers (see (19)) which is defined by specifying defining points that characterize
the location of dampers and are computed from nonlinear constraints of equality type (see (18)). We
give a numerical example that has shown that as the viscosity coefficient of the dampers increases
the number of defining points decreases, and it increases as the intensity and speed of the impulses’
motion increases.

The proposed procedure can be applied to solve control problems for bilinear systems of dimen-
sion � 2 and systems that are nonlinear with respect to the control function but linear with respect
to the state function.

The author is sincerely grateful to the anonymous referees for important remarks that have
allowed to significantly improve the paper.
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