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Abstract—In this paper, a time-optimal control problem is considered for plants represented by
chains of integrators. A suboptimal solution obtained by using the implicit Lyapunov function
approach is proposed in the form of continuous finite-time state feedback regulator. An algo-
rithm for optimal tuning the parameters of the controller is formulated as a finite-dimensional
semidefinite program. A robustness-oriented comparison of the optimal and suboptimal solu-
tions in practical implementations of the proposed controller is performed via the numerical
example of double integrator.
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1. INTRODUCTION

In control practice it is often a challenge to design a controller which guarantees the minimal
transient time. This problem is know as the time-optimal control problem; it typically arises in
robotics, space applications, control of submarine and surface mobile systems. In spite of the long-
standing and prolific history of the optimal control theory, which was formulated as early as in
1950s and 1960s in the works by A.A. Feldbaum [1], L.S. Pontryagin, et al. [2], R. Bellman [3],
optimal control problems are still in the focus of active research [4-7].

The so-called bang-bang control is a classical discontinuous solution of the time-optimal control
problem, which is based on the profound Feldbaum’s n-interval theorem [1]. Traditionally, the
corresponding control law is implemented as open-loop control (i.e., without feedback), except
for low-dimensional cases which admit time-optimal control design by using sliding modes; e.g.,
see [5, 6]. In practice, however, not only time-optimality of a control algorithm is of interest,
but also other performance indices which are associated with the robustness and accuracy of the
algorithm, its energy characteristics, etc. These indices are often conflicting, so that control design
problems are sometimes reformulated in terms of quite hard multi-objective optimization. Finally,
discontinuous time-optimal control laws are often impossible to implement because of physical
peculiarities of the system [8, 9]. In this respect, suboptimal controllers [10, 11] are of great practical
importance. They are usually being designed under additional constraints on the class of admissible
feedbacks (for instance, those leading to robust control laws) and other, not always constructive
practice-driven requirements.

In this paper we consider the time-optimal control problem for a simplest plant represented by
a chain of integrators, which is governed by a linear dynamic state feedback. In spite of the linear
formulation of the problem, control design will be performed with the use of methods which are more
popular in the nonlinear control theory. In particular, the nonlinear implicit control law proposed
in this paper provides the closed-loop system with the property of so-called weighted homogeneity
with negative degree [12-15]. It is this property that guarantees robustness and finite-time stability,
the latter being the ability for an asymptotically stable system to attain its equilibrium in finite
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time. On top of that, the ideas of weighted homogeneity are fundamental to the implicit Lyapunov
function method [16, 17], which is applied in this paper to suboptimal control design. To analyse
stability of a system, this method suggests use of a Lyapunov function which is specified implicitly,
e.g., in the form of an algebraic equation. Generally speaking, neither the stability analysis, nor
the evaluation of the rate of convergence do require finding a solution of such an equation, since,
with the classical implicit function theorem [18], the corresponding conditions of the Lyapunov
theorem can be checked by analyzing only the properties of this algebraic equation and the right-
hand sides of the system. In the Russian-language control literature, similar ideas were proposed
by V.I. Korobov [19] in the construction of the “controllability function,” which is essentially a
finite-time Lyapunov function of the closed-loop system.

The salient feature of the approach that combines the implicit Lyapunov function method with
the theory of homogeneous system is that the algorithm for tuning the parameters of essentially
nonlinear feedbacks [17] can be formalized in terms of linear matrix inequalities (LMIs) [20, 21].
At present, LMIs are considered as the most efficient computational approach to linear control
system design [20]; it allows for a considerable simplification of Hs/Hu-robust control design
procedures [21]. Many other problems in control theory can be reduced to solving semidefinite
programs (SDPs) [20], i.e., to the optimization of a (usually linear) cost subject to LMI constraints.
In a number of works conducted by B.T. Polyak in the recent years, this approach was applied to
the design of robust control for optimal rejection of exogenous disturbances in linear systems [21].
An extension of these ideas to nonlinear control plants can be found in [22]. In this paper, the
nonlinear time-suboptimal design problem also reduces to solving a semidefinite program.

Notation. In the paper, the following notation will be used: Ry = {x e R: 2z >0}, R_ ={z €
R : z < 0}, where R is the field of real numbers; diag{\;}_; is the diagonal matrix with the
entries \; on the main diagonal; the continuous function ¢ : R, — R, belongs to the class K if it
is monotonically increasing and o(s) — 07 as s — 0T if this function is not bounded as s — +o00,
we say that it belongs to the class K; a continuous function §: Ry x Ry — Ry belongs to the
class KL if B(-,t) € K for any fixed t € R, and 5(s,-) is monotonically decreasing for any fixed
s € Ry; for a matrix P € R™ " with real spectrum, its minimal and maximal eigenvalues are de-
noted by Amin(P) and Apax(P), respectively; for a symmetric matrix P € R™*"  the inequality
P>0(P>0,P <0, P<0)is understood as positive definiteness (respectively, positive semidef-
initeness, negative definiteness, negative semidefiniteness); C* is the space of functions having
derivatives up to order k inclusive; L is the space of Lebesgue integrable functions; £ is the space
of measurable, almost everywhere bounded functions.

2. STATEMENT OF THE PROBLEM

In this paper we analyze a single-input control plant represented by a chain of n integrators:
#(t) = Az(t) + bu(t), te€][0,T7], =z(0)=uz9€ R", (1)

where T' € R, is a finite time instant, x € R" is the state vector, u € R is the control input, and

_ 0 In—l
A= 0 O
mechanical and electromechanical applications, see [5, 23, 24].

,b=1(0,...,0,1)T € R™. The importance of this model is stipulated by numerous

Let us consider the time optimal control problem in the classical formulation:
T — min (2)
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subject to the constraints

u(-) €U = {u(-) € Lo : |ut)| < uo,t €0,T]},

z(-) € Cpoy : { igé)) iii(t);r(%(i)’q te(0,7) (3)

where zg € R™ and ug € R, are given.

By the Feldbaum theorem [1], the optimal solution is provided by the so-called “bang-bang”
control, which is a piece-wise constant function uey(t) € {—ug,uo}, t € (0,7), with n — 1 disconti-
nuities. In this paper we will be interested in solving problem (2), (3), subject to certain additional
constraints. First, admissible input signals are assumed to be smooth, u(-) € (C%”T). This restric-
tion is natural in many problems encountered in practice, [25, 26]; it is often adopted in order to
guarantee that the control law be implementable [27]. Linear control laws can be designed to be
close to the optimal ones [11]; hence, we additionally limit ourselves to the class of smooth, linear
dynamical state controllers:

u() =w'(Ja() €U, w=(wi,wy,...,wa) ",  wi-) € CH - (4)

“Robustification” of optimal controllers is equally important, [5—7]. This requirement unavoid-
ably leads to feedback control algorithms. In this paper we are interested in nonlinear continuous
robust state feedback control laws (u(t) = uy(x(t)), t > 0, uy : R™ — R) such that they globally
stabilize system (1) at the origin for all ¢ > 0 and, moreover, provide feasible solutions to the
optimization problem (2)—(4). It is this class of feedback laws over which we will be searching for
a suboptimal solution of the time-optimal control problem (2)—(4) with given zy € R™.

Yet another limitation (strictly speaking, not an intrinsic one) in the problem analyzed in this
paper is the necessity of using the apparatus of linear matrix inequalities. Actually, this requirement
may be thought of as the most important one, since control practice is always targeted at finding
simplest and most efficient design solutions. Moreover, with this technique, the infinite-dimensional
optimization problem (2)—(4) will be reduced to a finite-dimensional problem.

Finally, note that the time optimal control problem with terminal state z(7T) =z :=
(€,0,...,0)T € R™, € # 0, can be easily reduced to problem (2)-(4) by change of variables & = z—x1.

3. AUXILIARY CONCEPTS AND RESULTS
3.1. Finite-Time Stability

Control design problems under constraints (3) are usually referred to as finite-time control design.
Problems of such type are traditionally considered over finite time horizon, while the issues of
stability and robustness are kept aside, since the solution is usually turns out to be a certain open-
loop (feedforward) control law. Instead, in this paper we are interested in finite-time regulators,
which specify a stabilizing feedback control and, on top of asymptotic stability of the closed-loop
system, guarantee attainment of the equilibrium in finite time [28-32].

Let us consider a Cauchy problem for the ordinary differential equation
‘T(t) = f(t,a:(t)), t R, ‘T(tO) = To, (5)

where tg is a number, x € R" is the state vector, f : R x R™ — R" is a nonlinear, continuous
vector-valued function, which is locally Lipschitz in & everywhere except for the origin.

Let the origin be an equilibrium point of system (5), i.e., f(¢,0) = 0.
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Definition 1. The zero solution of system (5) is said to be finite-time stable if it is Lyapunov
stable and there exists a function 7' : R x R" — Ry such that lim, ¢, 7(,2) (£, to, 70) = 0 for all
xg € V C R"™, where x(t,tg, xg) is the solution of the Cauchy problem (5), and V is a neighborhood
of the origin, which, generally speaking, depends on tg.

The definition of stability formulated above almost coincides with the definition of asymptotic
stability, with the only difference that the limit is considered as ¢ tends to a certain finite number.
Importantly, the Lyapunov stability requirement in Definition 1 obviously ensures x(¢,%g,z¢) = 0
for all t > to + T'(tg, zo). In other words, any finite-time stable system is asymptotically stable.

The function 7" in Definition 1 is referred to as settling-time function of system (5). If the set V
coincides with R™, the zero solution of system (5) becomes finite-time stable in the large, or globally
finite-time stable.

Following the ideas of the stability theory, a natural definition of the uniform finite-time stability
can be formulated. It is important to note that uniformity is to be considered with respect to both
time and the space R", since inherent to the finite-time stability is the dependence of the settling-
time function on both the initial time instant and the initial state. In particular, if the function
of (“uniform”) settling time 7T'(-) = supy,cg T'(to, ) is locally bounded in a certain to-independent
neighborhood V of the origin, the finite-time stable system is said to be wniformly finite-time
stable [30, 32]. As of today, the most comprehensive survey of the results in finite-time stability
can be found in [32].

A simple example of a uniformly finite-time stable system is given by a scalar control plant
embraced by the negative relay state feedback: @(t) = —sgn[z(t)], z(to) = zo € R. In this case, the
settling-time function has the form 7'(x¢) = |zg].

3.2. Weighted Homogenous Systems

Homogeneity is a property of an object (say, a vector field) to retain its characteristics under
certain stretcing/shrinkage. This property turns out to be extremely useful in many areas such as
analysis of nonlinear ordinary differential equations [12, 33—-35] and finite-time stability [14, 30, 36],
robustness of nonlinear control systems [37-39], etc.

Let us consider a positive vector of weights r = (r1,. .. ,rn)T € Rl and a so-called dilation ma-
triz D, (\) = diag{\"*}?_,, where A € R,. Clearly, for x = (x1,...,2,)" € R" we have D,(\)x =
(NMizy, ..., ANz, . N mr,) T € R,

Definition 2 [12]. A function g: R” — R (respectively, a vector field f: R™ — R™ ) is said to be
r-homogeneous with degree m € R, if the equality g(D,(\)z) = A" g(x) (respectively, f(D,(\)z) =
A" Dy (A) f(x)) holds for any A € Ry and any = € R”.

Functions that fall under Definition 2 will be also referred to as weighted homogeneous.

Homogeneous and weighted homogeneous system are often encountered in control theory. First
of all note that linear systems are obviously homogeneous of degree zero with D,.(\) = AI,,. Design
of nonlinear algorithms for control and state identification which are based on the homogeneity
property is discussed in [14, 17, 30, 36].

Following Definition 2, homogeneity can be detected by checking just the right-hand sides of
ordinary differential equations. By knowing the degree of homogeneity, finite-time stability of the
system can be established via the theorem below.

Theorem 1 [40, Theorem 5.8 and Property 5.4]. If the vector field f: R™ — R™ defined in R™
s continuous and r-homogeneous with negative degree m € R_, then the asymptotically stable zero
solution of the system &(t) = f(x(t)), t € R, is globally finite-time stable.
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This result remains valid for homogeneous differential inclusions and generalized evolutionary
equations in Banach spaces, [15, 30, 36].

It is important to note that, on top of detecting finite-time stability, the homogeneity method
facilitates qualitative analysis of robustness. By robustness of a control system we usually mean
its stability (in one or another sense) against exogenous disturbances and inaccuracies in the pa-
rameters of the model. In this paper, robustness is considered in the sense of input-to-state stabil-
ity [41, 42].

Consider a disturbed system

#(t) = f(z(t),d(t), t>0, z(0)=xecR", (6)

where z(t) € R" is the state vector, d(t) = (di(t),...,dy(t))" € RP, d;(-) € Lo, is the vector of
exogenous disturbances, and f: R™ x RP — R" is a (generally speaking discontinuous [15]) vector
field.

Definition 3 [41]. System (6) is said to be input-to-state stable (ISS), if, for all xy € R™ and all
d € £, the inequality ||x(t, x0)| < B(||zoll,t) + (ess SupT€[07t)||d(7')||) is valid for all ¢t € Ry over
any solution z(t,z() of the Cauchy problem (6), where 8 € KL and v € K.

A weaker notion of robustness is introduced as follows.

Definition 4 [41]. System (6) is said to be integral inpul-to-state stable (iISS), if for all zy € R™
and all d € £ the inequality a(||z(t,20)|]) < B(||xoll,t) + Ji v(||d(7)||)dr holds for all ¢ > 0 over
any solution x(t, o) of system (6) for some a € K, € KL, and v € K.

The theorem below establishes a link between robust stability and homogeneity.

Theorem 2 [39]. Let the following conditions be satisfied:
(1) the zero solution of the disturbance-free (d = 0) system (6) is asymptotically stable;

2) the disturbance-free vector field f(-,0): R™ — R™ is r-homogeneous with degree m > — min r;;
1<
<i<n

(3) there exists T = (F1,...,7p) € RP, 7 >0, such that f(D,.(\)z, Di(\)d) = XD, (\) f(z,d) for
allz € R", d € RP, and A € R,..

Then system (6) is input-to-state stable if Tmin > 0, and it is integral input-to-state stable if

Tmin = 0 and m < 0, where it is denoted Tmin = min 7;.
1<j<p

From these results it is seen that robust and finite-time stability of homogeneous systems can
be expressed in terms of a simple function of the degree of homogeneity and the vector of weights.
These properties can be easily checked via elementary algebraic manipulations.

3.8. Implicit Lyapunov Functions

The implicit Lyapunov function method assumes an implicit specification of a function, for
instance, in the form of an algebraic equation Q(V,z) = 0. The theorem below is an extension of
the known result [16] to the analysis of finite-time stability.

Theorem 3 [17]. Assume there exists a continuous function

Q:Ry xR" SR
(Viz) = Q(V,z)

with the following properties:
(C1) @ is continuously differentiable for all V € Ry and all x € R™\{0};
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(C2) for every x € R™\{0} there exists V € Ry such that Q(V,z) = 0;
(C3) lim V' = 0F, lim [z|[=0, lim V = +oo, where Q= {(V,z) € R"": Q(V,z) = 0};
P Sot ]| o0
(Viz)eQ (xV/,x)OeQ (V,x)eQ
(C4) the inequality —oo < an“j’z) < 0 holds for all V € Ry and all x € R™\{0};
(C5) forall t € Ry and all (V,z) € Q, the following inequality holds: aQé;/’x)f(t, x) < ch_“aQa(“;’x),
where ¢ >0 and 0 < p < 1 are some numbers.
Then the zero solution of system (5) is globally finite-time stable and the following estimate is
u
valid for the settling-time function: T(xy) < Z‘L, where Vy € Ry : Q(Vp, z9) = 0.
Conditions (C1)-(C4) of Theorem 3 guarantee the uniqueness, positive-definiteness, smooth-
ness (outside the origin), and radial unboundedness of the solution of Q(V,z) = 0 with respect
to V. By the classical implicit function theorem (e.g., see [18]), the partial derivative of the

-1
function V: R™ — R can be computed via the formula %‘; =— {g‘% %2. Hence, the condition

8Qé¥7x) f(t,x) < 0 ensures the negative definiteness of the total derivative of V', and condition (C5)
guarantees the finite-time stability of system (5) due to the inequality V (z(t)) < —cV17#(x(t)).
Introduce now the implicit Lyapunov function as

Q(V,z) =z D, (V" HPD,(V Yz —1, (7)

where D,.()\) is the dilation matrix of the form D, (\) = diag{\"}?" 1, r = (r1,...,7,) | € R”, and
P € R™ " is a symmetric positive definite matrix.

This function can be thought of as a counterpart of a quadratic Lyapunov function for r-homo-
geneous functions. Indeed, for any fixed V' = const, the set {x € R" : Q(V,x) = 0} is the surface of
an ellipsoid in R™. For r = (1/2,...,1/2)T, the equation Q(V,z) = 0 possesses the unique solution
V =z'Pz.

Corollary 1. Let a vector field f: R™ — R™ be r-homogeneous of degree m, with the weight vector

r=(ri,ra,...,rn) € R . If there exists a matriz P € R™"™ which satisfies the inequalities
diag(r)P + Pdiag(r) >0, P >0, (8)
2'Pf(2)+ fT(2)Pz2 <0 for zeR": 2z Pz=1, 9)

then the zero solution of system x(t) = f(x(t)), t > 0, is asymptotically stable, and the function Q
defined by (7) is an implicit Lyapunov function for the system. Moreover, for m < 0 the system is
finite-time stable.

Proof. (I) The function Q(V,z) defined by inequality (7) satisfies conditions (C1)—(C4) of The-
orem 3. Indeed, it is continuously differentiable for all V' € Ry and all z € R". Since P > 0,

)‘min(P)”zllz )‘maX(P)”x”2
mas (VL (- D 1) <QV,z)+1< min{V L+ (i~ . Buarantees that for any

x € R™\{0} there exist V~ € Ry and V' € Ry such that Q(V—,z) < 0 < Q(V™*,z), while the
continuity of the function @ implies the existence of V' € R such that Q(V,z) = 0.

the chain of inequalities

. . . o i 1+(n—1)
Moreover, for Q(V,x) = 0, this same chain of inequalities ensures mm{‘;\max( P)M’V} < lzf? <
I4+(n—1) o .
max{‘; (P) “V}. hence, condition (C3) of Theorem 3 is also fulfilled.

Since gg = —V 12" D, (V1) (diag(r)P + Pdiag(r))D,(V ')z, inequality (8) implies gg <0
for all V € R, and all x € R™\{0}.
By the implicit function theorem, there exists a unique positive definite, smooth (outside the

origin), and radially unbounded solution V': R™ — R of the equation Q(V,z) = 0, which can be
continued to the origin as V(0) =0 and Q(V(x),z) = 0 for z € R™\{0}.
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(IT) Let us compute the total derivative of the function V' along the trajectories of the system:

-1 -1
V== [o0] Yorw==[52] PP @ + @)D Pe)

where € R™\{0} and z = D, (V~1)z. The vector field f is homogeneous with degree m € R, i.e.,
A" DN f(D.(N)z) = f(x) for all A € Ry and all x € R”. We then have

oQ

Via) =~ [av]_l V(T Py oy Py —yiom # PIG) () b

2T (diag(r)P + Pdiag(r))z’

Since Q(V,z) = 0, relations 2" Pz = 1 and (9) imply V(z) < 0 for z # 0.

4. CONTROL DESIGN
4.1. Design of Homogenous Finite-Time Controllers

Design of finite-time controllers will be accomplished by using the concept of r-homogeneity
of the closed-loop system. In that case, for some » € R and p € Ry, the equality AD,(\)x +
bu(D,(N)x) = A*D,.(A)(Az+bu(z)) is to be satisfied for all A € Ry and = € R™. Hence, keeping in
mind the structure of the matrix A and vector b, we obtain explicit bounds on both the components
of the weight vector r € R"': r; = r;y1 +p, i = 1,2,...,n — 1, and the degree of homogeneity of
the control function: u(D,(\)x) = A" Hu(x).

By taking 7, = 1, we obtain r = (14 (n— Du, 1+ (n—2)pu,...,1)" € R", where p € (0,1].
The theorem below is a simple extension of the results in [43] and [17].

Theorem 4. Assume that X € R™" and y € R'" satisfy the linear matriz inequalities

AX + XAT +by+y'b" + diag(r)X + Xdiag(r) = 0 (10)
Xdiag(r) + diag(r)X >0, X >0,
for some fized p € (0,1].
Then system (1) embraced by the feedback
uw(V,z) = VIHED(V )z (11)

with k =yX 1, VeRy, and Q(V,z) =0, where Q(V,z) is of the form (7) with P = X1, is
globally uniformly finite-time stable with the settling-time function

Vﬂ
To(zo) = °, (12)
1
where Vy € Ry : Q(Vo, z9) = 0.

Proof. The fulfillment of conditions (C1)-(C4) of Theorem 3 for the implicit function () specified
by (7) was established in the proof of Corollary 1. It now remains to check the satisfaction of
condition (C5). Since

‘Zg (Az + bu(z)) = 22" D.(V " HPD, (V1) (Az + bu(z)),
equalities D,.(V"YAD Y (V1) = V"#A and D, (V Ybu(z) = VHbkD,(V 1)z imply the relations
oQ

o (Az +bu(x) =V e DV (P(A+bk) + (A +bk)"P) D (V)2
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and

-1
Viz)=— [gg] ?)Cj (Az + bu)
( (A+Dbk) + (A+Dbk) TP)DT(V 8
TD (V L)(diag(r) P + Pdiag(r)) D, (V1)

The last equality guarantees the finite-time stability of the closed-loop system (1), (11), and rep-
resentation (12) of the settling-time function.

The control law (11) represents an implicitly defined nonlinear controller whose properties are
formulated in the corollary below.

Corollary 2. The implicitly defined nonlinear state feedback controller u(x) = u(V (x),x) with
V :R™ = R such that Q(V(z),z) =0 for all x € R"\{0}, has the following properties:

(1) continuity in R™ for u € (0,1);
(2) discontinuity only at the origin and global boundedness in R™ for y = 1;

(3) r-homogeneity with degree 1 — u for p € [0,1], i.e., a(D,(N)z) = A"Fa(z) for all x € R™
and A € R;.

Proof. (1) The function V : R™ — R explicitly specified by the equation Q(V,x) = 0 is continu-
ously differentiable for all z € R™\{0}. Moreover, V(z) — 0 as ||z|| — 0. Hence, the only possible
point of discontinuity of the function @ is the origin. For Q(V (z),z) = 0 we obtain

@?(z) = V> (2)2 ' TD, (V" (2))k kD, (V! (2))x
< V22 () Amax (k" k)z " D (VY (2)) D, (V" (z))a
< V2 2(2) Aax (kE D)2 T D (V= (2))PD,. (VY () _ V2_2M($))\max(ka)'
)\min(P) )\min(P)

Obviously, we have @2(z) — 0 as ||z| — 0 and p € (0,1), i.e., @ is a continuous function.

(2) For g = 1 we have @?(z) < )“)\“zi]z”;)k ) for all 2 € R". To prove the discontinuity of the

control input in this situation, it suffices to consider = (0,...,0, mn)T € R™. In this case we have
V(%) = VbT Pblz,| and u(i) = \/kabesgn[a:n].

(3) From Q(V, D,(\)z)=Q(A"1V, z) we obtain V (D, (\)x)=AV (x) and @(D,(\)z)=\""au(x) by
the equality V1=#(D,.(\)x)kD,(V YD, (\)x))D,(N)z=A"#V=#(2)kD, A"V L (2)) D, (\)z.

Note that the r-homogeneity property of the controller @ directly implies the r-homogeneity
of the closed-loop system. Theorem 2 ensures the robustness of the system against various dis-
turbances, e.g., such as measurement noises. Indeed, if & = f(z) is weighted homogeneous, then
& = f(x + d) satisfies Theorem 2.

One of the attractive properties of the finite-time control design scheme described above is its
simplicity in tuning the parameters on the basis of linear matrix inequalities; these can be solved
by using various available software, e.g., MATLAB.

Proposition. Inequalities (10) are feasible for all p > 0.

AUTOMATION AND REMOTE CONTROL Vol. 76 No. 5 2015



TIME-SUBOPTIMAL FEEDBACK DESIGN VIA LINEAR MATRIX INEQUALITIES 855

Proof. Consider the following component-wise representation of the matrix X and vector y:

T11 12 ... Tln-1 Tin
T12 Z22 T2n—1 T2n—1
X = , IEijER, 1,5 =1,2,...,n;
Tin—-1 T2n—1 --- Tp—1n—-1 Tpn-1n
Tin Tin-1 --- In—1n Inn
y:(yl Y2 ... Yn-—1 yn), weER, 1=1,2,...,n.

The algebraic equation in system (10) can be written down in the following form:

ZL‘Z'+1j—|-:L‘Z'j+1—|—[2+u(2n—’i—j)]l‘ij:0, 7>1=1,2,...,n—1, (14)
2T n + 2y, = 0. (16)
Let X(j,:iy: ji:jo) denote the block of the matrix X composed of the entries x;; satisfying i =

2'lail + 17 7’5.2 andj :jbjl + 17 7j2 for 2.1 < 2.2 and jl < j2-

Denote next H; = diag{1+pu(n—1),14+u(n—2),...,1+pu(n—1i)} and Z = Xdiag(r)+diag(r)X.
Let Z(;,.iy; j,:5,) be the block of the matrix Z composed similarly to the block X;,.;,. j,.j,). Clearly,
we have

Z 1ii—1;1:0—1 X 1ii—1;4: HZ
Za;1) =201+ plk = )] X (11, 120), Ly 1.0y = < ( : ( )

X(Tl:z‘—l;z‘;z')Hi 21 + p(k —i)]w;

Let us construct a solution of (13)—(16) such that the conditions X > 0 and Z > 0 be satisfied. To
this end, we use the method of mathematical induction.

Basis. Let w11 = aq, where ay > 0 is an arbitrary positive number. From Eq. (13) we ob-
tain x12 = —ai[l + p(n — 1)Jr11. Noting that x11 = X(1.1;1.1) > 0 and Z1.q;1.1) > 0, and taking
T2 = ag, we can guarantee X(i.9;1.0) > 0 and Zy.9.1.9) > 0 for sufficiently large az > 0.

Inductive step. Assume that for some k < n, the matrices X(”;,_l:,;) > 0 and Z(l:lé~1:l?:) > (0 are
composed in such a way that z;; = o; € Ry. From Eq. (13) we then have z; ;. = —a,;[l—k,u(n—l;:)],

and using Eq. (14) we find z, 7, = —(z, 7 + [2+p(2n —i - l::)]a:”;), i=12...,k—1

Noting that X(l:l%;l:lé) > (0 and Z(1:1};1:I}) >0, take x5, = aj,, to obtain X(l:l%+1;1:12+1) >0
and Z(”;H; Lit1) > 0 for sufficiently large o | > 0.

With the algorithm proposed above, a matrix X > 0 can be computed such that Z > 0 and
Eqgs. (13) and (14) are satisfied. By specifying yp = xpnn and y; = —(xi016 + [2 + p(n — 0)]zik),
1=1,2,...,n—1, at the final step (/;: =mn), we arrive at X > 0 and Y satisfying equalities (13)—(16)
and the inequality Xdiag(r) + diag(r)X > 0.

The control law (11) proposed above admits a simple implementation provided that the initial
condition z(0) = z¢p € R"™ is known. Indeed, if a function @) satisfies the conditions of Theorem 3,
the equation Q(Vp, z¢) = 0 possesses a unique positive solution Vj € R, for an arbitrarily specified
xo € R™. This solution can be found numerically, for example, by using the simplest dichotomy.
On the other hand, for the closed-loop system (1), (11), the function V' considered as function of
time can be found as the solution of the Cauchy problem V() = —=V1=#(t), t > 0, V(0) = V; (see
proof of Theorem 4), hence, it admits the following closed-form representation:

V()= (Vg — )™, te [0, Ve /ul. (17)
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Clearly, the linear dynamic feedback u(-) =w'(-)z(-) obtained in such a way (here, w(-) =
VI=r()kD,(V~L())), satisfies constraints (3) and (4).

In the sections to follow we propose an alternative scheme of implementation of the proposed
control algorithm; it is motivated by robustness considerations.

4.2. Suboptimal Finite-Time Controllers

In order to solve the time-optimal control problem in the class of finite-time regulators, one has
to minimize the quantity 7" = V{'/u subject to the constraint u(-) € U, where the control u is
defined by (11).

Corollary 3. Assume that the set of LMIs (10) together with

1 2T
< zo D, ((,uT)l/“) )O(Du ((uT)l/“) ) = 0, (18)

where X € R™™ and y € RY™¥" is feasible for some p € (0,1], xg € R"\{0}, and T € R,.

Then the settling-time function of the closed-loop system (1), (11), satisfies the inequality
To(zo) < T, where xg € R™ is given.

Proof. Denote Vp € Ry : Q(Vp,zo) = 0. Inequality (18) guarantees the fulfillment of the fol-

lowing relation: Q((uT)'*,x0) = 2{ D, ((uTl)l/M) XD, ((uT]jl/y,) zo —1<0=Q(V, ). Since
8%“;@) <0 for all z € R™\ {0}, we have Vy < (uT')/#, and by Theorem 4 we obtain Ty(zo) = ‘j‘f <T.

The minimization of the parameter T' € R, subject to constraints (10) and (18) yields the
minimal settling time of the closed-loop system (1) and (11), with initial condition x(0) = wo.
Without any constraints on the magnitude of the control input, the settling time Tj(xg) can be
made arbitrarily small. Indeed, let the pair (yp, Xo) satisfy the matrix inequalities (10); then
y = ayp, X = aXg satisfy the same inequalities for any a € R;. Since Xy > 0, for any 7" > 0 and
any zo € R"\{0} there exists o € Ry such that inequality (18) is satisfied.

Corollary 4. Assume that the matriz inequalities (10) and (18) together with

X y '
u2
A PR EY 19

(wT) *»

are feasible for some p € (0,1], T € Ry, g € R", and up € Ry, where X € R™*" and y € R*",

Then the magnitude of the control input in the closed-loop system (1), (11) is bounded from
above: |u(V (x(t)),x(t))] < uo for all t € [0, To(zo)].
2—2p

Proof. Using the Schur complement, inequality (19) writes (e TL(Q) " yTy < X. Taking X = P!

and y = kP~! into account, we obtain (uT) o kTk < u3 P, so that the inequality
W) " 2T DLV YT kD, (V™ Y)x < u2aT D, (VY PD,(V )z
is valid for all z € R"\{0} and V' € Ry. On the one hand we have
u?(t) = VIR () D (V) kT RDu(V () (t)
V2T () Du(V O RD, (VA (0)a(t) < (uT) # 2T Du(V A Ok ED, (VA (1),
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since V(x(t)) < Vp for ¢t € [0,T(xg)] (see (17)) and T'(zp) < T. On the other hand, the equality
Q(V,z) = 0 ensures

udr' D,(VHYPD,(V )z = ul.

Therefore, u?(V (t), z(t)) < ud for t € [0, T (z0)].

With the corollary above, a finite-time controller with a pre-specified upper bound on the mag-
nitude of the control input can be designed. For p = 1, inequality (19) no longer depends on 7', so
that the control input is globally bounded.

To summarize, the following finite-dimensional optimization scheme can be exploited to design
a suboptimal finite-time regulator:

T— ' biect to (10), (18), (19).

Note that in the scalar case n = 1, the controller design procedure proposed above leads to the
optimal solution of problem (2) and (3). Indeed, with g =1 and n = 1, we have V(z) = v/P|z|,
PeR™ 2 e R and ugp(z) = —ugsgn[z].

For any fixed numbers p € (0,1] and 7' € R, the matrix inequalities (10), (18), and (19) become
linear and can be easily solved using standard software.

To solve this problem for a fixed p, an approach in [44] can be used, and the minimization
with respect to the parameter p can be accomplished via use of any known methods of scalar
gradient-free optimization (for example, with the fminsearch routine in MATLAB).

The gap between the proposed suboptimal solution and the optimal one can hardly be evaluated
analytically in the general case. By (12), the settling time depends on the Lyapunov function,
which is specified implicitly and does not admit a closed-form representation in the majority of the
problems.

5. ROBUST REALIZATION OF SUBOPTIMAL FINITE-TIME CONTROLLERS

As it was noted, the value of the Lyapunov function along the trajectory of the disturbance-free
closed-loop system can be easily computed via the formula

V(t) = (Vf' = ut)™, te[0,V§/ul,

where Vy € Ry : Q(Vo, z9) = 0, and a suboptimal linear dynamic regulator can be specified by (11)
for V.= V(t). However in practice, the original system (1) is subject to parametric uncertainties
and exogenous disturbances; this often leads to considerable degradation of the performance of
optimally designed control systems. Below we formulate two corollaries to Theorem 4 which will
serve as the basis for the development of a practical realization scheme for finite-time regulators.
These regulators will be designed in the form of a linear feedback with coefficients that change at
discrete time instants.

Corollary 5. Let the finite-time regulator u(V,x) be designed according to Theorem 4; then the
control ug(x) = u(Vy, z) represents a stabilizing linear static regulator for system (1) for any fized
Vo € R;.

Proof. Rewrite the matrix inequality AX + XA + by +y'b" + diag(r)P 4 Pdiag(r) = 0 with
X =P 'and k = yX~!in the form PA+ ATP + Pbk 4+ k"b' P + diag(r)P + Pdiag(r) = 0.
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We then have

Do (Vg Y (PA+AT P+Pbk+k"b" P4diag(r)P + Pdiag(r))D,(Vy 1)
= DT(VO_l)PDT(VO_l)Dr_l(VO_I)ADT(VO_I)
+D, (Vg WAT D (Vg D, (Vg Y PD, (V)
+D, (V5 ) PD,(Vy Dy (Vg DokD, (V)
+D, (Vg HE o DN (Ve Y De(Vy Y PD (Ve )
+ diag(T)Dr(Vo_l)PDr(Vo_l) + Dr(‘/b_l)PDT(‘/E)_l)diag(r) =0.

Denoting Py = D,.(Vy ) PD,(Vy ) > 0 and keeping in mind that D (V1) AD,.(Vy ') = VA and
DY (Vy h)b = Vob, we obtain

VI (PyA + AT Py) + PobVokD,(Vy ) + Do (Vg Dk TVob " Py + diag(r) Py + Pydiag(r) = 0,

or, equivalently,

PoA + AT Py + Pobkg + kg b' Py + _, (diag(rr) Py + Pydiag(r)) = 0,

1
!
where Py > 0 and kg = ‘/()1_“kDT(‘/()_1).

Since diag(r)P + Pdiag(r) > 0, we have diag(r)FP + Podiag(r) > 0, which means that ug(z) =
u(Vo, z) = kox is a stabilizing linear static controller for system (1), and V(x) = ' Py is the
corresponding Lyapunov function for the closed-loop system.

Corollary 6. Let {t;}2,, 0 =1ty <ty <ty <..., be an arbitrary strictly increasing sequence of
time instants and let the function u(V,z) be defined according to Theorem 4.

Then the zero solution of system (1) with the piecewise-linear control
wx) = u(Vi,x)  for t € [titip), (21)

where V; > 0: Q(V;,z(t;)) =0, is asymptotically stable.

Proof. (I) We first consider the case lim; ,oot; = +00. Let V() be a positive definite and
radially unbounded Lyapunov function specified implicitly by the equation Q(V,z)=0. We
prove that the sequence {V(z(t;))}32, is monotonically decreasing and tends to zero. Clearly,
this property ensures the convergence of the trajectory of the closed-loop system to the ori-
gin. Let us consider the segment t € [¢;,t,11) and the quadratic function ‘N/Z(az) =z Pz, where
P, =D, (V- Yx(t;)))PD,. (V-1 (2(t;)) > 0. Over this segment, the control u(z) has the form
ui(z) = u(V(z(t;)),x) = kjx (see Corollary 5), where k; = V1=#(xz(t;))kD,(V "1 (x(t;))). We thus
obtain

Vi (x(t))

" = () (PA+ATP + bk + kb D)a(t), € [ty tiy).

Similarly to the proof of Corollary 5 we have

PA+ATP 4+ bk + kb + (diag(r) P; + diag(r)P;) = 0.

Vi(x(t:))
Since diag(r)P; +diag(r)P; > 0, there exists a number a € R such that diag(r)P; +diag(r)P; >

aP;. Then dvigi(t)) < —V(xoéti))‘z(x(t)) for t € [ti,tit1).
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Hence, the function V;(x(t)) exponentially decays along the trajectory of the closed-loop sys-
tem (1) on the time segment [t;, t;11); i.e., V(x(tip)) <e Vi (ti“_ti)f/(a:(ti)). Therefore we have
Q(V(t:),x(t)) = =" () D (V™ (@(:))) PDr (V™ (w(ti))a(t) — 1 = Vi(a(t) — 1
<Vi(z(t:) — 1= Q(Vi(z(t:)), x(t:)) = 0 = Q(V(x(t)), =(t))
for all t € (t;,ti41].

For any given x € R™\{0}, the function Q(V,z) is monotonically decreasing for all V € R (see
property (C4) in Theorem 3). Hence, the inequality

Q(V (x(t:)), x(t)) < QV(x(t),x(t))  Vt e (ti,tis]
implies V(z(t)) < V(z(t;)) for all ¢t € (t;,ti11], i.e., the sequence {V(x(t;))}:2, is monotonically
decreasing. Moreover, the inequality V' (z(t)) < V(2(0)) holds for all ¢ > 0, i.e., the zero solution
of the closed-loop system is Lyapunov stable.

Since the function V() is positive definite, the monotonically decreasing sequence {V (z(¢;))}5°,
tends to a limit. Let us show it is equal to zero. Assuming the converse, lim; ,, V(z(¢;)) = Vi > 0,
we obtain

Ve >0 3IN=N(e): |V(x(t;)) —Vi|<e Vix=N.
Since the control input u(V,z) is a continuous function for all z € R™ and all V' € R4, we have
u(V(2(ti), @) —u(V*,2)| = [V (@ () kD (V™ )z — (Vi) THED, (V| < y(e)||

for all i > N, where v(-) € K.

This means that for ¢ > ¢y, the closed-loop function can be written in the form & = Az +
b(k«x + 6(t)x), where ky = k(Vi)'"#kD,.(V,71) and ||6]] < ~(g). Corollary 5 guarantees that the
matrix A + bk, is Hurwitz; then for a sufficiently small ¢ > 0 the zero solution of this system
is asymptotically stable. In turn, this means that lim; ,o V(2(¢;)) = 0. The Lyapunov stability
shown above implies asymptotic stability of the zero solution of the closed-loop system (1), (21).

(IT) If lim; oo t; = t*, then for all ¢ > ¢* we have u(z) = u(V(t*),z), and Corollary 5 ensures
the desired asymptotic stability.

Corollary 6 guarantees that the discrete-time piecewise-linear realization of the finite-time reg-
ulator retains the stability of the closed-loop system independently of the sampling interval.

For a fixed x; = x(t;), i = 1,2,..., the solution of the scalar equation Q(V,z;) = 0 can be
found numerically; hence, in practice, the regulator thus obtained can be implemented with the
use of a digital computing device (microcontroller) which changes the coefficients of the regulator
at discrete time instants based on the current measurements. Recall that, by property (C4) in
Theorem 3, we have 28 < 0 for all z € R"\{0} and all V' € R; i.e., the equation Q(V,z;) =0
always has a unique solution with respect to V € R. This solution can be found by dichotomy or
by the Newton method as VIF1 = VI — Qv 1)) [aQ(gg]’mi)} ' . k=1,2,..., where VIF e R,
is the scalar variable, z; € R” is a fixed vector, and V¥ — V() as k — oo.

To avoid infinitely large values of the coefficients of the regulator, the quantity V is to be
bounded from below by a certain parameter Vi, € Ry.

6. A NUMERICAL EXAMPLE

Let us consider system (1) for n = 2 under the constraint |u| < 1. Discontinuous time-optimal
regulator is known [5] to have the following form:

Ugpt (X1, T2) = —sgn (acg + \/2|x1|sgn[ac1]) .
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The stabilizing finite-time regulator (11) obtained by solving the finite-dimensional optimization
problem (20) for =1 and z¢ = (1,0), has the following parameters:

49.6139 18.8965
= ( 18.8965  9.4482 ) ,  k=(-5.2511 —3.0000).
Numerical simulation of the closed-loop model was performed by the explicit Euler method with
fixed step, and the computational implementation of the finite-time regulator was performed by
dichotomy.

The results of numerical experiments for the sampling interval h = 0.001 and Vi, = 0.001 are
depicted in Fig. 1.

As expected, the optimal discontinuous regulator demonstrates a better transient time; however
the comparison of the algorithms for a bigger sampling time testifies to a higher robustness of
the suboptimal finite-time regulator. Figure 2 depicts the results of simulations for A = 0.05 and
Vinin = 0.05.

Such a drawback of discontinuous time-optimal regulators is well know as the so-called chat-
tering effect [23]. Chattering emerges in time-optimal systems exploiting sliding mode control [6].
The sampling time h > 0.05 is natural in many control applications, for instance, such as mobile
robots. Indeed, in autonomous mobile systems, the computational resource is largely used for image
processing, positioning, calculation of the trajectories of motion, etc., and it is only a small portion
of it which is spent for producing control inputs.

7. CONCLUSION

In this paper we proposed a robust finite-time control design algorithm for plants described by
chains of integrators; the implicit Lyapunov function method was adopted as the principal tool.
The computational procedure for the minimization of the transient time in the closed-loop system
was formulated as a semidefinite program. An algorithm for practical realization of the implicit
finite-time regulator was also developed. The main drawback of the proposed control scheme is that
it can be implemented only with the use of digital devices. However, keeping in mind the current
level of electronics, this drawback does not seem to be crucial for the successful practical use of
the proposed finite-time controllers. The main advantage of the approach, which is confirmed by
numerical simulations, is a much higher degree of robustness as compared to time-optimal solutions
implemented in the form of static state feedback.

1.0 ..I T T T T T T

08 F \u 1

04 F .
02 .

0_

) 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1
0 05 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 05 1.0 1.520 25 3.0 35 4.0
t t

Fig. 1. Simulation results for A = 0.001: (1) op- Fig. 2. Simulation results for h = 0.05: (1) op-
timal discontinuous regulator, (2) suboptimal timal discontinuous regulator, (2) suboptimal
finite-time regulator. finite-time regulator.
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