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Abstract—The portion of energy of a finite-duration signal hitting the given frequency interval
was shown to be suitable as a basis for construction of the optimal methods of their analysis and
synthesis. The relations obtained define directly these portions of energy in the signal space and
enable one to formulate the variational conditions for their optimal processing. The problems
of optimal detection (filtration) of the additive signal components and synthesis of signals
featuring the maximal/minimal concentration of energy within the given frequency ranges were
formulated and solved.
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1. INTRODUCTION

The notion of signal as the function of an argument—most frequently, time—is widely used
in cybernetics at control of various processes, information transmission, processing of the location
information, and so on. Two main aspects of their processing can be singled out such as (i) analysis
of signals with the aim of identifying some distinctions that are essential in terms of the applied
problem at hand and (ii) signal synthesis on the basis of some criteria for optimal operation of
technical systems, for example, at actions upon the control plants, transmission and processing of
information in radio engineering and communication, testing in diverse measurement systems, and
so on.

The signal processing procedures rely on various models among which the most commonly
encountered are the frequency representations [1, 2] enabling one to use the Fourier transforms
for description of the distribution of energy within the frequency domain which is often used at
handling the aforementioned problems because it has an important physical sense. For example,
high concentration of energy within some frequency interval is usually indicative of the presence
of quasi-periodic components in the signal, and at signal synthesis the level of the concentration
attained is often used as an optimality criterion, especially in radio engineering and communication
(narrow-band and wide-band signals).

Therefore, at signal processing it is advisable to act from the standpoint of certain decomposition
of the frequency axis into a totality of frequency intervals (bands) of which some have limited size.
In the publications on signal and image processing, such methods are traditionally referred to as
the “sub-band” ones [3–5].

It is possible to indicate a wide range of the applied problems of signal processing where the
sub-band representations are adequate. It is namely these circumstances that stimulated studies in
the sub-band modeling which gave and still are giving rise to the methods of sub-band analysis and
synthesis corresponding to one or another conception of the quality of signal processing problems.

Presently, the most important tools of sub-band analysis are represented by various modifications
of the discrete Fourier transform (DFT) realizable by fast algorithms and the FIR-filtration which
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590 ZHILYAKOV

also underlies the methods of wavelet analysis that became popular in the recent years [6] as is
testified by the fact that the libraries of mathematical packets of applied programs include the
corresponding program modules [7].

Without going into details, we just note that the current sub-band methods for signal processing
are far from being optimal in terms of the criteria reflecting the sense of the problems under
consideration. For example, most frequently the pulse characteristics of filters are calculated from
the criteria of accuracy of approximation of the rectangular frequency characteristics. At the same
time, the criterion for accuracy of approximation of the segments of the Fourier transform of the
original signal within the given frequency intervals seems to be more natural.

In its turn, DFT represents in essence the coefficients of decomposition with respect to the
orthogonal system of basic vectors whose sense, generally speaking, is not quite clear. The same
conclusion is valid for the coefficients of decompositions at realization of the wavelet analysis [6, 7],

The present paper established some results on the construction of the optimal methods of sub-
band analysis and synthesis of the finite-duration signals on the basis of the energy criteria that
are measures of the error of processing. At that, the continuous signals are considered first with
the aim of reaching theoretical generality.

2. OPTIMAL METHOD FOR ANALYSIS OF THE SIGNAL ENERGY
DISTRIBUTION IN FREQUENCY INTERVALS

Let x(t), t ∈ [0, T ], be a continuous signal with limited energy

||x||2 =

T∫

0

x2(t)dt < ∞, (2.1)

because there exists a Fourier transform

X(ω) =

T∫

0

x(t) exp(−jωt)dt, j =
√−1, (2.2)

and the Parceval equality is valid [7] which from the point of view of the sub-band analysis/synthesis
is representable as

||x||2 =

∞∫

−∞
|X(ω)|2dω/2π =

∞∑
r=0

Sr(x), (2.3)

where Sr(x) the portions of energy

Sr(x) =

∫

ω∈Ωr

|X(ω)|2dω/2π, (2.4)

hitting the frequency intervals like

Ωr = [−Ω2r, − Ω1r) ∪ [Ω1r,Ω2r). (2.5)

We note that decomposition of the frequency axis can be arbitrary, but the conditions for internal
boundaries must be satisfied:

Ω2r = Ω1,r+1; r � 0; Ω10 = 0. (2.6)
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It seems only natural to regard the energy portions

Pr(x) = Sr(x)/||x||2 (2.7)

as the basic sub-band energy characteristic of the signal. It will be shown below that it can be used
to construct optimal methods for signal analysis and synthesis.

It is required to represent first of all integrals (2.4) in the form of explicit dependence on the
processed signals as time functions, including the sought ones. Only then it becomes possible to
formulate the variational optimization conditions.

The desired representation is obtained by substituting definition (2.2) into (2.4) and performing
simple transformations

Sr(x) =

T∫

0

T∫

0

Ar(t1 − t2)x(t1)x(t2)dt1dt2, (2.8)

where Ar(t) is the sub-band kernel given by

Ar(t) =

∫

ω∈Ωr

exp(−jtω)dω/2π = 2cos(ωrt) sin(Δrt/2)/πt. (2.9)

Here and in what follows,

ωr = (Ω2r +Ω1r)/2; Δr = Ω2r − Ω1r. (2.10)

One can readily see that the relation (2.8) allows one to calculate with arbitrary precision
integrals like (2.4) without calculating the Fourier transforms with application of the quadrature
formulas. It is of interest to generalize this result to some totality R of frequency intervals

ΩR =
⋃
r∈R

Ωr, (2.11)

to which gets the total part of the signal energy

SR(x) =
∑
r∈R

Sr(x). (2.12)

One can easily see that in this case (2.8) is generalized and goes over to

SR(x) =

T∫

0

T∫

0

AR(t1 − t2)x(t1)x(t2)dt1dt2, (2.13)

where

AR(·) =
∑
r∈R

Ar(·), (2.14)

identical arguments being put in the parentheses.

Relations (2.8) and (2.13) define, obviously, the precision-optimal method for solution of the
problem of calculation of the portions of signal energy getting into the given frequency intervals or
in their not necessarily solid totality.
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3. SUB-BAND SIGNAL OPTIMIZATION

We notice that the sub-band kernel (2.9) generalizes the kernel given by

Ar0(t) = sin(Δrt/2)/πt (3.1)

and considered in the works on the eigenfunctions of the Fourier transform (see, for example, [1, 2]).
In the present paper, this generalization was established on the basis of definitions (2.4) (or (2.12))
and (2.2), which allows one to make use of its properties not only for construction of bases that
are full in the sense of the basis space L2, but also to solve other problems.

First of all, we notice that the positive definiteness of the kernel (2.9) follows directly from
definition (2.4) and representation (2.8). It also satisfies conditions for expansion into a uniformly
converging series [8]

Ar(t1 − t2) =
∞∑
k=1

λr
kg

r
k(t1)g

r
k(t2), (3.2)

where λr
k and grk(t) are, respectively, the eigenvalues and functions of the kernel (integral operator)

such that the following conditions are satisfied:

λr
kg

r
k(t1) =

T∫

0

Ar(t1 − t2)g
r
k(t2)dt2; (3.3)

(grk, g
r
i ) =

T∫

0

grk(t)g
r
i (t)dt = δik, (3.4)

where δik is the Kronecker symbol, and

λr
k > 0. (3.5)

It is assumed below without loss of generality that the eigenvalues are arranged in the descending
order

λr
k > λr

k+1. (3.6)

Obviously, the conditions for existence of the Fourier transform of the eigenfunctions

Gr
k(z) =

T∫

0

grk(t) exp(−jzt)dt

are met. According to the property of orthonormality of (3.4), it follows at that from the Parseval
equality that the relations

∞∫

−∞
|Gr

k(z)|2dz/2π = 1

are valid.

Therefore, with regard for (2.9) the important inequality

λr
k =

∫

ω∈Ωr

|Gr
k(ω)|2dω/2π � 1 (3.7)

is obtained directly from definition (3.3).
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The eigenvalues are, thus, equal numerically to the portions of energy of the corresponding
eigenfunctions hitting the frequency interval and do not exceed 1, although can be close to it,
which is important for getting the highest concentration of the frequency energy.

By assuming that

αr
k = (grk, x) =

T∫

0

grk(t)x(t)dt (3.8)

and substituting (3.2) into (2.8), one can readily reduce (2.8) to

Sr(x) =
∞∑
k=1

λr
k(α

r
k)

2, (3.9)

the representation

x(t) =
∞∑
k=1

αr
kg

r
k(t) (3.10)

being valid for any limited-energy signal.

By assuming that t1 = t2 = t in (3.2) and integrating with respect to time and due regard for
definition (2.9), we get an equality for the sum of eigenvalues

∞∑
k=1

λr
k = 2TΔr, (3.11)

from which it follows that only their minor portion will be other than zero. Therefore, in (3.9) one
can leave a finite number of terms

Sr(x) =
Jr∑
k=1

λr
k(α

r
k)

2, (3.12)

and, as the computer experiments demonstrated, assume that

Jr = 2[TΔr/2π] + 4, (3.13)

because the equalities

λr
k = 0, k > Jr (3.14)

are satisfied with high degree of precision.

It is easy to understand that all the considered properties of the sub-band kernels including (3.7)
and representation (3.12) are valid also for the generalization defined by (2.12), (2.13), and (2.14),
that is,

SR(x) =

JRr∑
k=1

λR
k (α

R
k )

2, (3.15)

the number of terms in (3.15) obeying the equality

JR =
∑
r∈R

Jr.

This allows one to formulate the following assertion.
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Assertion 1. Solution of the variational problem of seeking the optimal signal y(t), t ∈ [0, T ]
satisfying the condition

SR(y) = maxSR(x) ∀||x||2 = c2, (3.16)

is given by

y(t) = cgR1 (t), t ∈ [0, T ], (3.17)

the portion of energy getting in the united frequency interval (2.11) being equal to the corresponding
eigenvalue of the sub-band kernel.

Validity of Assertion 1 follows from representation (3.15) and the conditions for descending
orderliness of the eigenvalues and orthonormality of the eigenfunctions of the total kernels.

In some cases such as solution of the electromagnetic compatibility problems, the result opposite
in a sense, namely Assertion 2, is of interest.

Assertion 2. A signal like

z(t) = cgRk (t), t ∈ [0, T ] (3.18)

have close to zero portion of energy in the united frequency interval (2.11) if the condition λr
k ≈ 0

is satisfied.

4. OPTIMAL SUB-BAND SEPARATION OF THE ADDITIVE COMPONENTS
(FREQUENCY FILTRATION)

We consider the problem of dividing the signal into components

x(t) = yR(t) + uR(t), t ∈ [0, T ], (4.1)

extraction of a component whose Fourier transform satisfies the condition

YR(ω) =

T∫

0

yR(t) exp(−jωt)dt = X(ω), ω ∈ ΩR,

YR(ω) ≡ 0, ω /∈ ΩR

(4.2)

being regarded as an ideal.

It is clear that this “ideal” condition cannot be satisfied under finite duration of the signal.
Therefore, it is possible to use only a certain approximation whose precision can be naturally
represented as the functional

FR(x, yR, w) = w

∫

ω∈ΩR

|X(ω) − YR(ω)|2dω/2π

+(1− w)

∫

ω/∈ΩR

|YR(ω)|2dω/2π,
(4.3)

where the parameter w satisfying the inequality

0 < w < 1 (4.4)

defines the weights of the contributions of the components of the error of execution of (4.2).
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Obviously, optimization lies in minimizing the error functional (4.3) which can be rearranged in

FR(x, yR, w) = wSR(x− yR) + (1− w)(||yR||2 − SR(yR))

using a representation like (2.13).

Using a decomposition in kernel eigenfunctions like (2.14)

x(t) =
∞∑
k=1

αR
k g

R
k (t),

yR(t) =
∞∑
k=1

βR
k g

R
k (t), (4.5)

after tedious but evident transformations we get the necessary and sufficient conditions for minimum
of the error functional (4.3)

w
∞∑
k=1

λR
k α

R
k g

R
k (t) ≡

∞∑
k=1

(
1− w + (2w − 1)λR

k

)
βR
k g

R
k (t), t ∈ [0, T ].

Relations for the coefficients of the series to the right and left of the equality sign are established
from the uniform convergence of these series:

wλR
k α

R
k =

(
1− w + (2w − 1)λR

k

)
βR
k , k = 1, 2, . . . . (4.6)

We first notice that if equal weights are used for the components of the error functional (4.4)
where

w = 0.5, (4.7)

then the equalities

λR
k α

R
k = βR

k , 1 � k (4.8)

follow from (4.6).

Additionally, it is advisable to use these equalities for the totality 1 � k � K of all eigenfunctions
corresponding to the eigenvalues that are very close to one where

λR
k = 1− ε, ε/λR

k 	 1, 1 � k � K. (4.9)

In the general case, therefore, validity of Assertion 3 follows from (4.6).

Assertion 3. The desired signal component which is optimal in the sense of the minimum of
functional (4.3) is given by

yR(t) = w
∞∑
k=1

λR
k α

R
k /(1− w + (2w − 1)λR

k ) • gKk (t).

With regard for the property of (3.15), one can suggest a sufficiently precise approximation

yR(t) = w
JR∑
k=1

λR
k α

R
k /

(
1−w + (2w − 1)λR

k

)
• gRk (t) (4.10)
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which is used in what follows. Here,

αR
k =

T∫

0

gRk (t)x(t)dt.

In the special case of (39), we obtain with allowance for (40) that

y(t) =
JR∑
k=1

λR
k α

R
k • gRk (t), (4.11)

or correspondingly

yR(t1) =

T∫

0

AR(t1 − t2)x(t2)dt2, (4.11′)

which does without calculating the eigenvalues and eigenfunctions.

By substituting (2.14), we obtain with regard for definition (2.9) that

yR(t1) =
∑
r∈R

∫

ω∈Ωr

exp(jωt1)X(ω)dω/2π.

Therefore, the component defined by (4.11′) depends only on the segments of the Fourier trans-
form of the original signal from the totality of the frequency intervals as (2.11). This property
seems to be especially essential for extraction of sub-band low-energy components in the presence
of components with exceeding energy within the adjacent frequency intervals because other filters
exert influence on the results of filtration owing to the transient bands.

Of interest is also the relation defining the minimum of the functional like (4.3) which can be
obtained using representation (4.10)

minF (x, yR, w) = w(1 − w)
JR∑
k=1

λR
k (1− λR

k )(α
R
k )

2/(1− w + (2w − 1)λR
k ). (4.12)

It is evident that here the minimal value of the right side is reached if either w = 0 (in the
absence of eigenvalues satisfying (4.9)) or w = 1. Both cases are senseless because in the former
case (4.5) gives zero (degenerate case) and the latter one corresponds to filtration (x1(t) ≡ x(t),
t ∈ [0, T ]). That is why they are disregarded (see (4.4)).

It is also clear that it is difficult to determine the weight if the right side of (4.12) reaches the
maximal value (maximin) because it depends on the projections of the signal on the eigenfunctions
of the total kernel. At the same time, it deserves noting that the coefficient before the sum in the
right side of (4.11) reaches maximum in the case of equal weight of (4.7). At that we get a relation
for the values of the error functional which are close to the maximum

minF (x, yR, 0.5) = 0.5
JR∑
k=1

λR
k (1− λR

k )(α
R
k )

2. (4.13)

It also deserves noting that the weight of squared projections on the eigenfunctions in the sum
of (4.13) does not exceed 0.25 and reaches maximum for λR

k = 0.5.
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5. SUB-BAND PROCESSING OF DISCRETE SIGNALS

All previous relations are readily reproduced for the discrete finite-duration signals (finite-
dimension vectors) 	x = (x1, . . . , xN )′ where the prime stands for transposition. It is assumed here
for simplicity that the vector components represent the equidistant readings of some continuous
signal. Therefore, in what follows we imply the so-called normalized frequencies. One can easily
prove [9] that the Fourier transform of the discrete signal

X(v) =
N∑
k=1

xk exp(−jv(k − 1)) (5.1)

is a periodic function with the period 2π of the circular frequency v normalized to the discretization
frequency. That is why the sub-band analysis and synthesis of signals is realizable only within the
basic segment of the frequency axis −π � v < π and having in mind the frequency intervals like

Vr = [−V2r, − V1r) ∪ [V1r, V2r), 0 � V1r < V2r � π. (5.2)

It is also clear that if nonoverlapping intervals are used, then the number of intervals covering
the entire segment is finite.

In what follows, some of the above notation are retained wherever this does not give rise to
contradictions. We assume that

SR(	x) =

∫

ω∈VR

|X(ω)|2dω/2π, (5.3)

where as in (2.11) consideration is given to the union of a finite number of nonoverlapping frequency
intervals

VR =
⋃
r∈R

Vr (5.4)

of the total width

ΔR(x) =
∑
r∈R

Δr =
∑
r∈R

(V2r − V1r).

Then, the part of the energy of signal (5.3) that hits this union of frequency intervals obeys the
quadratic form

SR(	x) =
∑
r∈R

Sr(	x) = 	x′AR	x, (5.5)

where AR is the square matrix of obvious dimension

AR =
∑
r∈R

Ar; (5.6)

Ar = {arik}, arik =

∫

v∈Vr

exp(−jv(i − k))dv/2π, i, k = 1, . . . , N. (5.7)

It is only natural to call the addends in the right side of (5.6) the sub-band matrices.

It is clear that the quadratic form (5.5) can be calculated with arbitrary accuracy.
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In view of its positive definiteness and symmetricity, matrix (5.6) has the full system of or-
thonormalized eigenvectors [10] corresponding to the positive eigenvalues of which only

JR = 2[NΔR/2π] + 4 (5.8)

can be regarded as other than zero, whereas for the rest of them the equalities

λR
k = 0, k > JR (5.9)

are satisfied with high precision, bearing in mind that the eigenvalues are arranged in the descending
order.

From the definitions of the eigenvalues and eigenvectors, one can easily determine with regard
for (5.7) an analogue of inequality (3.7) and the above Assertions 1 and 2 formulated for the discrete
signals.

Assertion 3 can be reformulated in turn in a form doing without the eigenvalues.

Assertion 4. In the decomposition
	x = 	yR + 	uR,

the vector

	yR = w((1 −w)I + (2w − 1)AR)
−1AR	x. (5.10)

is optimal in the sense of minimal error functional

FR(	x, 	yR, w) = wSR(	x− 	yR) + (1− w)(||	yR||2 − SR(	yR)). (5.11)

Here I is the identity matrix of the corresponding dimension and || · || denotes the Euclidean norm
of the corresponding vector.

We note that for a changeless combination of the frequency intervals like (5.4) the matrices in
(5.10) can be generated in advance, which allows one to reduce the computational overhead arising
at repeated use of filtration.

Obviously, the relation for the desired component

	yR = AR	x (5.12)

can be obtained by satisfying condition (4.7).

Then, with regard for definition (5.7) one can establish an analog of (4.13) suggesting that the
obtained vector is defined completely by the segments of the Fourier transform of the original signal
from the totality of the frequency intervals like (5.4).

Of interest is the following property of the extracted components which is somewhat unique for
the frequency filtration.

Let the conditions
V1r = V2,r−1, V10 = 0, V2M = π.

be satisfied for the frequency intervals (5.2). Then, it is easy to establish on the basis of defi-
nition (5.7) that the sum of the sub-band matrices is equal to the identity matrix (property of
additivity of the sub-band matrices)

M∑
r=0

Ar = I,

whence it follows that the equality

	x =
M∑
r=0

	yr =
M∑
r=0

Ar	x

defining a simple method of restoring the original vector from the extracted components is valid.
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6. COMPUTER EXPERIMENTS

Figures 1–4 demonstrate the dependencies of the optimal components like (5.12) only on the
segments of the Fourier transform from the corresponding frequency interval acquired as the result
of the computer experiments. At that, processed were the model data, the results of the band FIR
filtration within the same frequency intervals were used for comparison.

Fig. 1. Modules of the Fourier transforms (axis of ordinates) of the original signal (broken line) and output
sequences of the FIR filter (line marked by “point”) and optimal filter (line marked by “circle”) vs. the
normalized frequency (abscissa) within the frequency range v1 = 0.105π; v2 = 0.115π (vertical broken lines).

Fig. 2. Original signal (broken line, axis of ordinates) and the output sequences (solid line) of (a) FIR filter
and (b) optimal filter vs. the numbers of readings (abscissa) within the frequency interval v1 = 0.105π;
v2 = 0.115π.
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Fig. 3. Modules of the Fourier transform (axis of ordinates) of the original signal (broken line) and output
sequences of the FIR filter (line marked by “point”) and optimal filter (line marked by “circle”) vs. the
normalized frequency (abscissa) within the frequency interval v1 = 0.11π; v2 = 0.125π (vertical broken lines).

Fig. 4. Original signal (broken line, axis of ordinates) and the output sequences (solid line) of (a) FIR filter
and (b) optimal filter vs. the numbers of readings (abscissa) writhing the frequency interval v1 = 0.105π;
v2 = 0.115π.
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The values of the model signal were generated using the relation

x(k) = 0.8 sin(ω1k) + sin(ω2k) + 0.5 sin(ω3k),

where ω1 = 0.3461; ω2 = 0.3682; ω3 = 0.4418.

These values of frequencies enabled one to study various aspects of filtration and, first of all,
the impact of the energy of the original signal on the results of filtration beyond the frequency
interval. Dimensions (durations) of the segments of the filtered 	x and resulting 	y vectors are the
same and equal to N = 512. Durations of the pulse characteristic of the FIR filters were selected
as 1024 values, which enabled one to reach a very high degree of approximation to the rectangular
frequency characteristic. Some of the most descriptive results are depicted in Figs. 1–4.

In the case at hand, the impact of the additional energy (right boundary of the frequency
interval) on the result of FIR filtration (Fig. 1) manifests itself in beats (Fig. 2).

In this case, the impact of energy from the neighbor band (left boundary of the frequency
interval) on the result of FIR filtration (Fig. 3) also manifests itself in a somewhat greater beats
than those of the output sequence of the optimal filter (Fig. 4).

If there are no powerful components in the adjacent frequency intervals, the differences in the
results of filtration are negligible.

7. CONCLUSIONS

The present paper demonstrated that the portion of the finite-duration signal energy hitting the
given totality of the frequency intervals can be used as an optimization criterion for development
of the processing methods. Representations of this characteristic were obtained directly in the
signal definition domain, which enables one to formulate and solve the corresponding variational
problems. Formulated and solved were the problem of optimal signal processing such as calculation
of the precise values of the energy portions hitting the given totality of the frequency intervals,
design of signals with maximal or minimal concentration of energies in the totality of frequency
intervals and determination of the additive components with the Fourier transforms having a mini-
mal quadratic deviation from the Fourier transforms of the original signals within the given totality
of the frequency intervals and from zero beyond the frequency totality.
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