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Abstract—We consider the optimal control problem for a linear discrete stochastic system. The
optimality criterion is the probability for the first coordinate of the system to fall into a given
neighborhood of zero in time not exceeding a predefined value. The problem reduces to an
equivalent stochastic optimal control problem with probabilistic terminal criterion. The latter
can be solved analytically with dynamical programming. We give sufficient conditions for which
the resulting optimal control turns out to be also optimal with respect to the quantile criterion.
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1. INTRODUCTION

Optimal control problems with probabilistic quality criteria comprise the subject of study for
a special section of stochastic optimal control theory. Probabilistic criteria include the probability
functional and the quantile functional. The probability functional is the probability that a certain
precision functional does not exceed a certain admissible level. Here the precision functional itself
characterizes the accuracy of this control system but depends on the trajectory of the stochastic
system. One example of such a precision functional is the terminal miss of a homing system. In
the optimal control problem setting with quality criterion in the form of a probability functional
one usually has to maximize this functional.

The quantile functional is, in a sense, a characteristic inverse to the probability functional.
The physical meaning of the quantile functional is that it serves as an upper confidence bound
for a precision functional and basically characterizes the control system’s accuracy guaranteed in
probability. Optimal control problems with criteria in the form of a quantile functional are usually
set as minimization problems.

Optimal control problems with probabilistic criteria have been studied in [1–4]. The case of
discrete time has been considered in [1], which contains a comprehensive study of optimal control
problems for discrete stochastic systems with probabilistic criteria and terminal precision functional.
Note also the work [5] that studies the problem of equivalence between optimal control problems
with probability and quantile functionals.

In this work, we consider an optimal control problem with a probability functional with unknown
but bounded from above end moment. This lets us interpret the control problem as a homing
problem. The setting considered below is similar to a continuous control problem for a material
point [3], but in [3] there are no restrictions on the time when the control process ends.
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1744 AZANOV

2. PROBLEM SETTING

Consider a control problem with regard to random influences in discrete time k = 0, N + 1. We
describe the system’s dynamics with the following system of recurrent equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1k+1 = x1k + x2kh

x2k+1 = x2k + x3kh

. . . . . . . . . . . . . . . .

xnk+1 = xnk + ukh+ ξk.

(1)

Here xk = (x1k, . . . , x
n
k)

T is the state vector; xk ∈ Rn, uk ∈ R1 , the control; h, a parameter arising in
discretizing a continuous system that represents the discrete time step size; ξk, continuous random
values whose distribution densities are even functions. Here ξk are not necessarily identically
distributed. n � 2, N � n− 1. Initial conditions x10, . . . , x

n
0 for system (1) are known exactly.

Note that structure (1) arises after discretizing a linear continuous system written in canonical
controllability form, where a random obstacle models errors in the control channel.

We introduce the probability functional

Pϕ(u(·)) = P

(

min
k∈{0,...,N+1}

|x1k| � ϕ

)

, (2)

where P is the probability, ϕ ∈ R1 is a scalar parameter, and u(·) = (u0, . . . , uN ) is the control.
The control strategy on the kth step is represented by a function uk(x0, . . . , xk).

We pose the problem of finding optimal control that maximizes the probabilistic optimality
criterion

Pϕ(u(·)) → max
u(·)

. (3)

As we have already noted in the introduction, this problem can be interpreted as a homing
problem for an object into a given neighborhood of zero in time not exceeding a predefined value.
Below we will show that optimal control in problem (3) exists in a class of functions uk(xk) that
depend only on the current state xk. To do so, we reduce the problem at hand to an equivalent
problem with a fixed end moment.

3. AN EQUIVALENT PROBLEM WITH TERMINAL PRECISION FUNCTIONAL

To use the methods of [1], we extend the phase vector xk = (x1k, . . . , x
n
k)

T and reduce the problem
to an equivalent optimal control problem in a space of higher dimension. To do so, we introduce a
new coordinate yk whose dynamics will be given by relation

yk+1 = min
{
yk, |x1k + x2kh|

}
, (4)

y0 = |x10|, k = 0, N + 1. Note that system (1), (4) is nonlinear.

We write the equivalent problem with the newly introduced notation:

P (yN+1 � ϕ) → max
u(·)

. (5)

Problem (5) belongs to the class of problems with a fixed end moment, so there exists a solution
of the original problem [1] in the class of Markov strategies uk = uk(xk). It has also been shown
in [1] that to solve the equivalent problem (5) one can use dynamical programming.
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According to the dynamical programming algorithm we define the payoff function

Wϕ
k (x, y) = sup

uk(·),...,uN (·)
P (yN+1 � ϕ|xk = x, yk = y).

For k = N + 1 we have

Wϕ
N+1(xN+1, yN+1) =

{
1 for yN+1 � ϕ

0 for yN+1 > ϕ.
(6)

Then for k = N the payoff function is determined by solving a finite-dimensional problem

Wϕ
N (xN , yN ) = max

uN
M
[
Wϕ

N+1(xN+1, yN+1)|xN , yN
]
.

Here M [·] denotes expectation. In the right-hand side of the last expression, arguments of function
Wϕ

N+1(xN+1, yN+1) are transformed according to (1), xN , yN are fixed. Taking into account (6),
we get

Wϕ
N (xN , yN ) = max

uN
P
(
min{yN , |x1N + x2Nh|} � ϕ

)
.

The function being maximized in the right-hand side of this expression does not depend on the
control uN . Therefore,

Wϕ
N (xN , yN ) =

{
1 for min{yN , |x1N + x2Nh|} � ϕ

0 for min{yN , |x1N + x2Nh|} > ϕ.
(7)

Control at this step can be arbitrary. We now move on to step k = N − 1. Similar to step k = N ,
we get

Wϕ
N−1(xN−1, yN−1) = max

uN−1
M [Wϕ

N (xN , yN )|xN−1, yN−1]

= max
uN−1

P
(
min

{
min{yN−1, |x1N−1+x2N−1h|}, |x1N−1+2x2N−1h+x3N−1h

2|
}
�ϕ

)

=

⎧
⎨

⎩

1 for min
{
min

{
yN−1, |x1N−1+x2N−1h|

}
, |x1N−1+2x2N−1h+x3N−1h

2|
}
�ϕ

0 for min
{
min

{
yN−1, |x1N−1+x2N−1h|

}
, |x1N−1+2x2N−1h+x3N−1h

2|
}
>ϕ

=

⎧
⎨

⎩

1 for min
{
yN−1, |x1N−1+x2N−1h|, |x1N−1+2x2N−1h+x3N−1h

2|
}
�ϕ

0 for min
{
yN−1, |x1N−1+x2N−1h|, |x1N−1+2x2N−1h+x3N−1h

2|
}
>ϕ.

Since the control together with the random error only occur in the relation for the nth coordinate
of the phase vector, the control will be arbitrary on the last n − 1 steps. We proceed in this way
until the control together with the random error come up in the expression for the payoff function.
This happens at step k = N − n+ 1. Let us write the payoff function on this step.

Wϕ
N−n+1(xN−n+1, yN−n+1)

= max
uN−n+1

M
[
Wϕ

N−n+2 (xN−n+2, yN−n+2) |xN−n+1, yN−n+1

]

= max
uN−n+1

P

(

min

{

yN−n+1,
∣
∣x1N−n+1 + x2N−n+1h

∣
∣,

∣
∣x1N−n+1 + 2x2N−n+1h+ x3N−n+1h

2
∣
∣, . . . ,

∣
∣
∣
∣
∣

n−1∑

i=0

Ci
n−1h

ixi+1
N−n+1

∣
∣
∣
∣
∣
,

∣
∣
∣
∣
∣

n−1∑

i=0

Ci
nh

ixi+1
N−n+1 + hnuN−n+1 + hn−1ξN−n+1

∣
∣
∣
∣
∣

}

� ϕ

)

,

(8)

and the derivation of (8) is given in the Appendix.
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We denote

Uk(xk, yk) = min

{

yk,
∣
∣x1k + hx2k

∣
∣, . . . ,

∣
∣
∣
∣
∣

n−1∑

i=0

Ci
n−1h

ixi+1
k

∣
∣
∣
∣
∣

}

,

Vk(xk, uk) =
n−1∑

i=0

Ci
nh

ixi+1
k + hnuk.

In this notation, the payoff function on step k = N − n+ 1 takes the form

Wϕ
N−n+1(xN−n+1, yN−n+1) = max

uN−n+1
P
(
min

{
UN−n+1(xN−n+1, yN−n+1),

∣
∣
∣VN−n+1(xN−n+1, uN−n+1) + ξN−n+1h

n−1
∣
∣
∣

}
� ϕ

)
.

(9)

Lemma. Let ξN−n+1 have a distribution whose density is an even function. Then problem (9)
is equivalent in its solution to the following problem:

|VN−n+1(xN−n+1, uN−n+1)| → min
uN−n+1

. (10)

Proof of lemma is given in the Appendix. Problem (10) is a deterministic equivalent for the
stochastic programming problem (9). Constructions of deterministic equivalents for stochastic
programming problems with probabilistic criteria have been presented in [6, 7]. The optimal control
on the N − n+ 1th step is easy to find from (10):

uN−n+1 = − 1

hn

n−1∑

i=0

Ci
nh

ixi+1
N−n+1, (11)

and the payoff function on this step is

Wϕ
N−n+1(xN−n+1, yN−n+1)

=

{
1 for UN−n+1(xN−n+1, yN−n+1) � ϕ

P (|ξN−n+1h
n−1| � ϕ) for UN−n+1(xN−n+1, yN−n+1) > ϕ.

We denote
pk(ϕ) = P (|ξkhn−1| � ϕ)

and write the payoff function on step N − n with the full expectation formula:

Wϕ
N−n(xN−n, yN−n)

= max
uN−n

[
P
(
min

{
UN−n(xN−n, yN−n),

∣
∣VN−n(xN−n, uN−n) + ξN−nh

n−1
∣
∣
}
� ϕ

)

+ pN−n+1(ϕ)
(
1− P

(
min

{
UN−n(xN−n, yN−n),

∣
∣VN−n(xN−n, uN−n) + ξN−nh

n−1
∣
∣
}
�ϕ

))]

= max
uN−n

[
P
(
min

{
UN−n

(
xN−n, yN−n

)
,
∣
∣VN−n

(
xN−n, uN−n

)

+ξN−nh
n−1

∣
∣
}
� ϕ

)(
1− pN−n+1(ϕ)

)
+ pN−n+1(ϕ)

]
.

We remind that 0 � pN−n+1(ϕ) � 1. Then the optimization problem on step k = N − n takes the
form

P
(
min

{
UN−n(xN−n, yN−n),

∣
∣VN−n(xN−n, uN−n)+ξN−nh

n−1
∣
∣
}
�ϕ
)
→max

uN−n
, (12)
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and similar to the previous step, by lemma we write a deterministic equivalent for (12)

|VN−n(xN−n, uN−n)| → min
uN−n

and optimal control

uN−n = − 1

hn

n−1∑

i=0

Ci
nh

ixi+1
N−n.

The payoff function on step k = N − n is given by

Wϕ
N−n(xN−n, yN−n) =

{
1, UN−n(xN−n, yN−n) � ϕ

pN−n(ϕ) + pN−n+1(ϕ)(1 − pN−n(ϕ)), UN−n(xN−n, yN−n) > ϕ.

Proceeding in this fashion, it is easy to see that on every step k, k = 0, N − n+ 1, we have to
solve the same optimization problem

P
(
min

{
Uk(xk, yk),

∣
∣Vk(xk, uk) + ξkh

n−1
∣
∣
}
� ϕ

)→ max
uk

.

Reduction of such optimization problems to their deterministic equivalents

|Vk(xk, uk)| → min
uk

according to lemma lets us find optimal control on step k as

uk = − 1

hn

n−1∑

i=0

Ci
nh

ixi+1
k .

We denote

Pϕ
0 = p0(ϕ) + p1(ϕ)(1 − p0(ϕ)) + . . .+ pN−n+1(ϕ)(1 − pN−n(ϕ)) . . . (1− p0(ϕ)),

and consequently, the payoff function on step k = 0 is written as

Wϕ
0 (x0) =

⎧
⎨

⎩

1, U0(x0) � ϕ

Pϕ
0 , U0(x0) > ϕ.

In what follows we call it the optimal payoff function since according to dynamical programming

Wϕ
0 (x0) = max

u(·)
Pϕ(u(·)).

Note that Wϕ
0 (x0) and U0(x0) do not depend on y0 due to the initial conditions y0 = |x10|.

4. PROBLEMS WITH QUANTILE FUNCTIONALS

We define the quantile criterion as [1]

Φα(u) = min{ϕ|Pϕ(u) � α}, (13)

where α ∈ (0, 1) is a given confidence probability. The quantile functional (13) is a level of the
above-mentioned precision functional guaranteed with a given probability, i.e., an upper confidence
bound for it.
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Consider a minimization problem for the quantile criterion:

Φα(u) → min
u(·)

. (14)

Since there is a probabilistic constraint Pϕ(u) � α, it is hard to apply dynamical programming to
problem (14). The approach used in [1] for discrete stochastic systems only lets us get approximate
(the so-called guaranteeing) solutions for the quantile problem in the class of controls that depend
on all previous system states. The problem of whether there exist optimal controls that depend only
on the current state remains open. In the previous section we have obtained an analytic solution
for the optimal control problem with probabilistic criterion. In [5], a method was proposed to
transform this solution into a solution of problem (14). In order to formulate sufficient conditions
for the applicability of this method, we introduce functions of optimal values of the considered
functionals

F (ϕ) = sup
u(·)

Pϕ(u),

G(α) = inf
u(·)

Φα(u).

Definition [5]. Let f(x) be a nondecreasing function of scalar argument. A point x0 such that

f(x0 − ε) � 0 � f(x0 + ε)

for every ε > 0 is called a generalized root of equation f(x) = 0.

The following theorem [5] establishes an equivalence between probabilistic and quantile opti-
mization problems.

Theorem 1 [5]. Let ϕα be the only generalized root of equation F (ϕ) = α. Then G(α) = ϕα.
Moreover, if for ϕ = ϕα there exists a solution uϕ of problem

Pϕ(u) → max
u(·)

and it holds that F (ϕα) � α, then uϕ is a solution of problem (14).

Let us check that sufficient conditions for the equivalence of probabilistic and quantile opti-
mization problems hold for the problem from the previous section. Note that the definition of the
optimal payoff function implies that

F (ϕ) = Wϕ
0 (x0).

It is easy to check that in case when random values ξk are identically distributed the optimal payoff
function takes the form

F (ϕ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, U0(x0) � ϕ

p(ϕ)
N−n∑

j=0

(1− p(ϕ))j , U0(x0) > ϕ,
(15)

where
p(ϕ) = P (|ξ0hn−1| � ϕ).

In order for the conditions of Theorem 1 to hold it suffices for function p(ϕ) to be strictly increasing
in its argument.

Theorem 2. Let p(ϕ) be strictly increasing in ϕ. Then the optimal control problem with a cri-
terion in the form of probability functional (2) is equivalent to the optimal control problem with
quantile criterion (14), and the control that solves problem (2) is also optimal for problem (14).

Proof of Theorem 2 is given in the Appendix.
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5. EXAMPLE

As an example, consider a model for a perturbed one-dimensional motion of a material point.
Acceleration plays the role of control, with random errors with a Gaussian distribution acting on it.
Then equations describing this system’s dynamics will have the form

{
xk+1 = xk + vkh

vk+1 = vk + ukh+ ξk,
(16)

xk, vk are respectively the coordinate and velocity of the material point at the kth time moment,
ξk ∼ N(0, σ2), k = 0, N , and the criterion is

Pϕ(u(·)) = P

(

min
k∈{0,...,N+1}

|xk| � ϕ

)

→ max
u(·)

. (17)

Note that the distribution density of random values ξk belongs to the family of densities that
are symmetric and unimodal with respect to the expectation. According to the methodology of
Section 3, we introduce a new coordinate for the phase vector

yk+1 = min{yk, |xk + vkh|},

y0 = |x0| are the initial conditions. An equivalent problem has the form

P (yN+1 � ϕ) → max
u(·)

.

We should note that the control occurs in the second equation that describes system dynamics.
Therefore, on the last step the control will be arbitrary.

Based on the results of Section 3, we define optimal control on steps k = 0, N − 1

uk = −xk
h2

− 2vk
h

and the payoff function

Wϕ
k (xk, vk, yk) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 for min{yk, |xk + vkh|} � ϕ

2Φ0

(
ϕ

σ

)N−(k+2)∑

j=0

(

1− 2Φ0

(
ϕ

σ

))j

for min{yk, |xk + vkh|} > ϕ,

where 2Φ0(
ϕ
σ ) is the probability that random value ξk falls into the interval (−ϕ

σ ,
ϕ
σ ), Φ0(x) is the

Laplace function,

Φ0(x) =
1

σ
√
2π

x∫

0

e−
(t−m)2

2σ2 dt,

m = M [ξk]. Further, we write the optimal payoff function as

F (ϕ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, min{|x0|, |x0 + v0h|} � ϕ

2Φ0

(
ϕ

σ

)N−2∑

j=0

(

1− 2Φ0

(
ϕ

σ

))j

, min{|x0|, |x0 + v0h|} > ϕ.
(18)
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Theorem 2 implies that the maximization problem for the probability function (17) can be
reduced to a minimization problem for the quantile function

Φα(u(·)) → min
u(·)

, (19)

and the optimal control found in problem (17) is also optimal in problem (19). The figure shows a
plot of the optimal payoff function (18).

The function F (ϕ) was plotted with the GNUPLOT environment with a ϕ step of 0.1 and with
parameters σ = 1, N = 3. The plot also shows the level α, which according to Theorem 2 means
that uϕ is a solution of problem (19) for ϕ = ϕα.

6. CONCLUSION

We have considered the optimal control problem for a linear discrete stochastic system with
respect to the probabilistic criterion with free but bounded from above end time. By extending
the phase vector, we have obtained an equivalent optimal control problem of higher dimension but
with a fixed end moment. Solution for the equivalent has been obtained in analytic form with
dynamical programming. We have derived sufficient conditions that let us get from this solution a
solution of an equivalent problem with quantile quality criterion.
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APPENDIX

Proof of Lemma.

P
(
min

{
UN−n+1(xN−n+1, yN−n+1),

∣
∣VN−n+1(xN−n+1, uN−n+1) + ξN−n+1h

n−1
∣
∣
}
� ϕ

)

= 1− P
(
min

{
UN−n+1(xN−n+1, yN−n+1),

∣
∣VN−n+1(xN−n+1, uN−n+1) + ξN−n+1h

n−1
∣
∣
}
> ϕ

)

= 1− P
(
{UN−n+1(xN−n+1, yN−n+1) > ϕ}

{∣
∣VN−n+1(xN−n+1, uN−n+1) + ξN−n+1h

n−1
∣
∣ > ϕ

})
.
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Note that UN−n+1(xN−n+1, yN−n+1) is a deterministic function, so we consider the case when
UN−n+1(xN−n+1, yN−n+1) > ϕ. Then the right-hand side of the latter expression equals

1− P
(∣
∣
∣VN−n+1(xN−n+1, uN−n+1) + ξN−n+1h

n−1
∣
∣
∣ > ϕ

)

= P
(
− ϕ− VN−n+1(xN−n+1, uN−n+1) � ξN−n+1h

n−1

� ϕ− VN−n+1(xN−n+1, uN−n+1)
)

=

ϕ−VN−n+1(xN−n+1,uN−n+1)∫

−ϕ−VN−n+1(xN−n+1,uN−n+1)

fξ(t)dt,

where fξ(t) is the distribution density of random values ξN−n+1h
n−1. Note that the latter proba-

bility functional falls into the so-called class of additive loss functions described in [6]. We write
the deterministic equivalent obtained in [6]:

∣
∣
∣M
[
ξN−n+1h

n−1]+ VN−n+1
(
xN−n+1, uN−n+1

)∣∣
∣→ min

uN−n+1
.

The latter problem is equivalent to problem (9) if the distribution density for random values
ξN−n+1h

n−1 is symmetric and unimodal with respect to M [ξN−n+1h
n−1]. But since, by assumption,

function fξ(t) is even, we have

|VN−n+1(xN−n+1, uN−n+1)| → min
uN−n+1

.

This completes the proof of the lemma.

Deriving Relation (8)

The payoff function on step k = N − 1 has the form

Wϕ
N−1(xN−1, yN−1) =

⎧
⎪⎨

⎪⎩

1, min
{
yN−1, |x1N−1 + x2N−1h|, |x1N−1 + 2x2N−1h+ x3N−1h

2|
}
� ϕ

0, min
{

yN−1, |x1N−1 + x2N−1h|, |x1N−1 + 2x2N−1h+ x3N−1h
2|
}

> ϕ.

We write the payoff function on step k = N − 2:

Wϕ
N−2(xN−2, yN−2) = max

uN−2
M
[
Wϕ

N−1(xN−1, yN−1)|xN−2, yN−2

]

= max
uN−2

P
(
min

{
min

{
min

{
yN−2,

∣
∣
∣x1N−2 + x2N−2h

∣
∣
∣

}
,
∣
∣
∣x1N−2 + 2x2N−2h+ x3N−2h

2
∣
∣
∣

}
,

∣
∣
∣x1N−2 + 3x2N−2h+ 3x3N−2h

2 + x4N−2h
3
∣
∣
∣

}
� ϕ

)

= max
uN−2

P
(
min

{
yN−2,

∣
∣
∣x1N−2 + x2N−2h

∣
∣
∣ ,
∣
∣
∣x1N−2 + 2x2N−2h+ x3N−2h

2
∣
∣
∣ ,

∣
∣
∣x1N−2 + 3x2N−2h+ 3x3N−2h

2 + x4N−2h
3
∣
∣
∣

}
� ϕ

)

= P
(
min

{
yN−2,

∣
∣
∣x1N−2 + x2N−2h

∣
∣
∣ ,
∣
∣
∣x1N−2 + 2x2N−2h+ x3N−2h

2
∣
∣
∣ ,

∣
∣
∣x1N−2 + 3x2N−2h+ 3x3N−2h

2 + x4N−2h
3
∣
∣
∣

}

� ϕ
)

= P

(

min

{

yN−2,

∣
∣
∣
∣
∣

1∑

i=0

Ci
1h

ixi+1
N−2

∣
∣
∣
∣
∣
,

∣
∣
∣
∣
∣

2∑

i=0

Ci
2h

ixi+1
N−2

∣
∣
∣
∣
∣
,

∣
∣
∣
∣
∣

3∑

i=0

Ci
3h

ixi+1
N−2

∣
∣
∣
∣
∣

}

� ϕ

)

,
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where

Ci
n =

n!

i!(n− i)!
.

Then by induction we can write the payoff function on step k = N − n+ 2 as

Wϕ
N−n+2(xN−n+2, yN−n+2)

= max
uN−n+2

P

(

min

{

yN−n+2,

∣
∣
∣
∣
∣

1∑

i=0

Ci
1h

ixi+1
N−n+2

∣
∣
∣
∣
∣
,

∣
∣
∣
∣
∣

2∑

i=0

Ci
2h

ixi+1
N−n+2

∣
∣
∣
∣
∣
, . . . ,

∣
∣
∣
∣
∣

n−1∑

i=0

Ci
n−1h

ixi+1
N−n+2

∣
∣
∣
∣
∣

}

� ϕ

)

= P

(

min

{

yN−n+2, |x1N−n+2 + x2N−n+2h|, |x1N−n+2

+2x2N−n+2h+ x3N−n+2h
2|, . . . ,

∣
∣
∣
∣
∣

n−1∑

i=0

Ci
n−1h

ixi+1
N−n+2

∣
∣
∣
∣
∣

}

� ϕ

)

.

Further, similarly,

Wϕ
N−n+1(xN−n+1, yN−n+1)

= max
uN−n+1

P

(

min

{

yN−n+1,
∣
∣x1N−n+1 + x2N−n+1h

∣
∣,

∣
∣
∣x1N−n+1 + 2x2N−n+1h+ x3N−n+1h

2
∣
∣
∣ , . . . ,

∣
∣
∣
∣
∣

n−1∑

i=0

Ci
n−1h

ixi+1
N−n+1

∣
∣
∣
∣
∣
,

∣
∣
∣
∣
∣

n−1∑

i=0

Ci
nh

ixi+1
N−n+1 + hnuN−n+1 + hn−1ξN−n+1

∣
∣
∣
∣
∣

}

� ϕ
)
.

Proof of Theorem 2. We use Theorem 1. To check that its conditions hold, since α ∈ (0, 1) it
suffices to check that the function in the second branch of (15) is strictly increasing. We have

p(ϕ)
N−n∑

j=0

(1− p(ϕ))j = p(ϕ)
(1 − p(ϕ))N−n − 1

1− p(ϕ)− 1
= 1− (1− p(ϕ))N−n.

The right-hand side of this expression due to p(ϕ) ∈ (0, 1) strictly increases as a function of ϕ since
it is a superposition of strictly increasing functions (p(ϕ) is strictly increasing by the conditions of
the theorem).

This completes the proof of the theorem.

REFERENCES

1. Malyshev, V.V. and Kibzun, A.I., Analiz i sintez vysokotochnogo upravleniya letatel’nymi apparatami
(Analysis and Synthesis of High Accuracy Control for Flying Vehicles), Moscow: Mashinostroenie, 1987.

2. Zubov, V.I., Lektsii po teorii upravleniya (Lectures in Control Theory), Moscow: Nauka, 1975.

3. Afanas’ev, V.N., Kolmanovskii, V.B., and Nosov, V.R., Matematicheskaya teoriya konstruirovaniya
sistem upravleniya (Mathematical Theory of Constructing Control Systems), Moscow: Vysshaya Shkola,
2003.

AUTOMATION AND REMOTE CONTROL Vol. 75 No. 10 2014



OPTIMAL CONTROL FOR LINEAR DISCRETE SYSTEMS 1753

4. Krasovskii, N.N., On Optimal Control under Random Perturbations, Prikl. Mat. Mekh., 1960, vol. 24,
no. 1, pp. 64–79.

5. Kan, Yu.S., Control Optimization by the Quantile Criterion, Autom. Remote Control, 2001, vol. 62,
no. 5, pp. 746–757.

6. Vishnaykov, V.B. and Kibzun, A.I., Deterministic Equivalents for the Problems of Stochastic Program-
ming with Probabilistic Criteria, Autom. Remote Control, 2006, vol. 67, no. 6, pp. 945–961.

7. Kan, Yu.S. and Kibzun, A.I., Zadachi stokhasticheskogo programmirovaniya s veroyatnostnymi kri-
teriyami (Stochastic Programming Problems with Probabilistic Criteria), Moscow: Fizmatlit, 2009.

This paper was recommended for publication by A.I. Kibzun, a member of the Editorial Board

AUTOMATION AND REMOTE CONTROL Vol. 75 No. 10 2014


