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Abstract—The dynamics of the establishment and spatial structure of f lows of a continuously stratified f luid
around a fixed and slow-moving horizontal wedge are studied using direct numerical simulation based on the
fundamental system of inhomogeneous f luid mechanics equations. Large-scale components (eddies, internal
waves, and the wake) and fine-structure components are isolated in the f low patterns in near and away from
the obstacle. The mechanism of formation of the propulsive force generating the self-motion of a free body
at a neutral-buoyancy horizon is determined. The dependence of the f low parameters on the shape of the
obstacle is shown. The transformation of the medium perturbation field at the beginning of the induced slow
movement of the wedge at the neutral-buoyancy horizon is traced. The complex structures of fields of differ-
ent physical quantities and their gradients are visualized. The intrinsic temporal and spatial scales of the f low
components are identified.
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INTRODUCTION
In the Earth’s hydrosphere and atmosphere, sta-

bly stratified layers are often observed, which occur
under the action of directed heat and salinity f luxes
(heating from above and f lowing of denser layers
from below) and gravitational stratification of media
with different densities. In the hydrosphere, the
stratification parameters  are determined by the
corresponding distributions of temperature  and
salinity , since the effect of pressure can be
ignored when studying small-scale f lows due to the
low compressibility of water.

Since a nonequilibrium medium can be at rest only
when the density gradient is parallel to the line of grav-
ity [6], any perturbing factors—both dynamic factors
due to external forces and geometric factors related to
the effect of the boundary conditions on the value and
direction of f lows—violate the conditions of hydro-
static equilibrium and result in the formation of f lows.
In particular, the no-flow condition for matter on an
inclined solid wall results in horizontal inhomogeneity
of the background molecular f low of the stratifying
component. Deviations of isopycnals from the equi-
librium level in the near-boundary regions form hori-
zontal pressure gradients, which accelerate the f luid.

The first model of diffusion-induced steady flows on
an infinite inclined plane was proposed by L. Prandtl to

explain the formation mechanisms for mountain (val-
ley) breezes, i.e., thin near-boundary jets in a stably
stratified atmosphere [8]. As applied to the hydro-
sphere, the idea was later developed by O. Phillips, who
showed the possibility of observing near-boundary
flows in a resting stratified fluid in the laboratory [21],
and by a number of other scientists, who studied the
properties of flows of this type in both stratified and
rotating fluids [15]. The influence of boundary effects
on the general ocean dynamics is discussed in [14].

The first models of diffusion-induced flows on a
topography were developed in a simplified statement:
the f low was assumed to be steady, and the bounding
surface was assumed to be planar and infinite [8, 21].
In this case, the profiles of velocity and salinity pertur-
bations proved similar and of the same scale. The
applicability conditions for the asymptotic method
used do not allow flows to be calculated for small
boundary inclinations.

Taking into account the variable nature of stratifica-
tion in real conditions, scientists began to study estab-
lishment problems in addition to stationary problems.
First, asymptotic solutions to the problem of flow for-
mation on an inclined infinite plane and in a wedge-
shaped depression were constructed [17]; then, exact
solutions were obtained [4, 5]. In nonstationary flows,
the scales of variability of the velocity and salinity pro-
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files, which are determined by the kinematic viscosity
and diffusion coefficients, considerably differ.

Interest in studying diffusion effects is due to the
prevalence of stratified boundary f lows that form in
lakes, reservoirs, seas, and oceans even in the absence
of external force factors [3]. Particular attention is paid
to studying slope f lows in the atmosphere, where the
wind velocity can attain large values on glaciers [19]
and in deep mountain valleys [16]. Integrated analyti-
cal-numerical models were used to evaluate the effect
of sites with distinct properties on the general pattern
of valley breezes [22].

Advances in computer technology and program-
ming have made it possible to extend this class of prob-
lems, which include diffusion-induced flows around
finite-size obstacles placed deep in a stratified
medium. Calculations of f low patterns around an
immersed sphere and horizontal and inclined finite-
length plates based on fundamental f luid mechanics
equations agree satisfactorily with the shadow visual-
ization data in laboratory units [1, 23]. Flows of this
type around symmetric bodies do not form propulsive
forces and moments.

Meanwhile, it was established experimentally that
inhomogeneous pressure gradients in diffusion flows
acting on obstacles asymmetric with respect to the line
of gravity are quite large and can generate self-motion
of free bodies at neutral-buoyancy horizons. The self-
motion of a wedge-shaped body (diffusion fish) was
observed in both single-component stratification [9]
and a layered medium with temperature gradients
under the action of convection [18]. A diffusion-
induced stationary f low around a wedge in a homoge-
neously stratified medium was calculated in [20].

The steadily increasing interest in studying diffu-
sion-induced flows in recent years is due to the expan-
sion of biohydrodynamic research, in particular,
searching for the biolocomotion mechanisms of min-
ute organisms that ensure the collective behavior of
large aggregations [13]. In simulating bioprocesses, it
is necessary to study the patterns of the fields of phys-
ical quantities of objects either at rest with respect to
the environment or slowly moving. As experiments
show, when an obstacle starts moving, the pattern of
the stratified f low changes radically: nonstationary
leading and attached internal waves occur, some
amount of f luid is blocked ahead of the obstacle, and
a trailing wake characterized by a pronounced fine
structure forms [11]. The geometry and modes of the
flow significantly depend on the properties of the
medium and the shape and velocity of the obstacle. It
is particularly interesting to study the establishment
processes in a unified formulation of the problem with
a wide range of parameters without involving addi-
tional hypotheses, relationships, and parameters.

The aim of this study is to calculate the dynamics of
the establishment of a fine structure of stratified f lows
around fixed and slow-moving asymmetric obstacles
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using direct numerical simulation based on the funda-
mental system of inhomogeneous f luid mechanics
equations with allowance for diffusion effects.

1. FORMULATION OF THE PROBLEM 
AND METHOD OF SOLUTION

We consider the 2D nonstationary problem of
establishment of a f low around an immersed obstacle
based on the fundamental system of equations includ-
ing the continuity equation and the momentum and
matter transfer equations [6] in the Boussinesq
approximation; the effects of compressibility are
neglected due to small f luid velocities when compared
to the sound velocity. As an equation of state, we take
the unperturbed density profile , which is
specified by the salinity profile  (the  axis is
directed upward):

(1)

where  is the total salinity including the
salt compression coefficient and  is its per-
turbed component;  is the density at the zero level
(at the neutral-buoyancy horizon);  is the f luid
velocity vector; P is pressure minus hydrostatic pres-
sure;  and  are the kinematic viscosity and salt dif-
fusion coefficients, respectively, which are assumed to
be constant; t is time; g is gravitational acceleration;

and  are the Hamilton and Laplace operators,
respectively; and  is the scale,

 is the frequency, and  is the
period of buoyancy.

At the initial time moment , an impermeable
obstacle is placed in a continuously stratified f luid at
rest. On the surface of the obstacle, we have the no-
slip condition for velocity and the no-flow condition
for matter:

(2)

where  is the external normal to the body surface .
At a long distance from the obstacle, we prescribe the
attenuation conditions for all perturbations [10].

The solution to problem (1) with boundary condi-
tions (2) describes diffusion-induced flows around a
fixed obstacle [23]. The calculated fields of physical
quantities are taken as the initial data in the problem of
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Table 1. Values of input parameters

Notation Description Value

Density at zero level, kg/m3 1020

Kinematic viscosity coefficient, m2/s

Salt diffusion coefficient, m2/s

Buoyancy frequency, s–1 1

Acceleration of gravity, m/s2 9.8

Incoming flow velocity, m/s

Wedge length, m 0.1
Height of the wedge base, m 0.02

00ρ

ν 610−

sκ 91.41 10−×
N

g

U 510−

L
h

a homogeneous f low of a continuously stratified f luid
around an obstacle with velocity U:

(3)

Along with the fundamental equations, the theories of
turbulence, boundary-layer approximation, and sta-
tionarity are widely used in practice [6, 14, 20].
Group-theoretical analysis has shown that system of
equations (1) is consistent with the basic physical
principles from which the governing equations are
derived, unlike many common constitutive or reduced
systems [2]. The introduction of semiempirical hypoth-
eses and relationships restricts the possibility of using
models whose continuous symmetries differ from the
symmetries of the fundamental equations [2]. Using
Reynolds averaging for physical variables results in
smoothing of the fine structure of f lows. The patterns
of steady [8, 14, 21] and nonstationary [4, 17] diffu-
sion-induced flows on an inclined plane distinctly dif-
fer even for large times.

System (1), the dimensional parameters of which are
given in Table 1, is characterized by a set of time scales
including the buoyancy period  and the intrinsic time
determined by the length and velocity of the body:

. The linear scales characterize the unper-

turbed stratification  (  in a
laboratory experiment) according to the size of the
obstacle ( ) and the length of the attached
internal wave  [11].

Microscales with a dissipative nature (the viscous
scale  and the diffusion scale

) characterize the trans-
verse sizes of the fine-structure components. With a
source velocity of U = 0.001 cm/s, the length of the
attached internal wave  is
within the range of microscales. The components of
structures with the Prandtl scale  are
outside the range of scales under consideration. The

, ,, 0.x zx z x zU→∞ →∞= =v v

bT

pt L U=
1lnd dz −Λ = ρ 9.8 mΛ =

0.1 mL =
i bUTλ =

310 mN Nν −δ = ν =
53.8 10 mS

N S Nκ −δ = κ = ×

56.3 10 mi bUT −λ = = ×

10 mU Uνδ = ν =
Peclet scale  cm can be
expressed in terms of dimensions of the elements of
wake structures.

The wide range of values of the linear scales of the
problem (six orders of magnitude) indicates the com-
plexity of the internal structure of a stratified flow,
which should be taken into account when developing
programs. Analysis of solutions to the linearized funda-
mental equations and the results of laboratory simula-
tion have shown that large-scale elements of flows
(waves and eddies) are characterized by uniformly per-
turbed components of the complete solution with scales

 and  [11]. The geometry of the fine-structure ele-
ments of flows, which occur in the entire range of the
parameters of the processes under consideration, is
described by the elements of a wide family of singularly
perturbed components with scales . The
fine-structure components affect matter transfer, the
processes of separation of matter, and even the
increase in the local concentrations in certain regions
of the f low [12]. Due to the nonlinearity, individual
components actively interact with each other. Interac-
tions of different-scale components for high velocities
of the obstacle transform the f low into a nonstationary
one [7].

In the nonlinear formulation, system (1)–(3)
makes it possible to simultaneously study all elements
of f lows within a unified description using natural
physical variables without additional constants and
relationships. Due to the existence of many scales,
numerical simulation is one of the main tools to ana-
lyze evolving processes.

In the complete nonlinear formulation, a solution
to system (1) was constructed numerically by the finite
volume method using the freeware OpenFOAM
(Open Field Operation and Manipulation). At the
heart of its source code is a collection of libraries offer-
ing tools to solve a number of applied problems, as well
as to perform parallel calculations in supercomputer
systems. Numerical simulation of stratified f lows
around fixed and uniformly moving bodies using the
OpenFOAM package showed good performance [23].

However, the standard toolkit of the package
includes no program for constructing solutions to
system of fundamental inhomogeneous f luid equa-
tions (1), which made it necessary to develop an
extended numerical model. To take the effects of strat-
ification and diffusion into account, the standard ico-
Foam solver, which simulates nonstationary f lows of a
homogeneous f luid, was supplemented with new vari-
ables (  and ) and the corresponding equations, as
well as new auxiliary parameters ( , , , and ).

The calculation domain is a rectangle in which a
symmetric wedge of length L = 10 cm and base height
h = 2 cm is placed horizontally. The lateral sides of the
body are arcs of circles; Table 2 gives their radii and
positions of centers in the Cartesian coordinate system

21.3 10s
U s Uκ −δ = κ = ×

L iλ

, , ,S S
N N U U
ν κ ν κδ δ δ δ

ρ s
N Λ sκ g
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Fig. 1. Perturbation fields in diffusion-induced flow around fixed wedge with right faces (L = 10 cm, h = 2 cm, ,
) of (а) the longitudinal   and (b) vertical  velocity components, (c) vorticity, (d) pressure P, and (e) the hori-

zontal   and (f) vertical  gradient components.
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with the origin at the tip of the wedge. With allowance
for the shape of the body, a block-structured hexahe-
dral grid is constructed with lines superposed at the
boundaries of the blocks. The algorithm for partition-
ing the calculation domain involves clustering of cells
toward the obstacle to resolve thin f low components in
regions with large gradient values.

The problems were calculated in parallel using the
resources of the UniHUB virtual computing labora-
OCEANOLOGY  Vol. 58  No. 3  2018

Table 2. Geometry of wedge

Coordinates 
of center, cm

Radius 
of curvature, cm

Deviation 
of chord from face 

, cm

1 (–7.6; 126.7) 126.9 –0.1
2 (17.6; 125.7) 125.7 0.1
3 (9.2; 41.4) 43.2 0.3
4 (5.8; 126.7) 10.0 1.4

RΔ
tory (www.unihub.ru) and the Lomonosov supercom-
puter of the Scientific Research Computing Center,
Moscow State University (www.parallel.ru).

2. RESULTS OF CALCULATIONS
The calculated patterns of the fields of physical

variables illustrate the complex spatial structure of
even slow diffusion-induced flows around a wedge,
including the thin main jets along the inclined sides,
adjacent compensation counterflows, and small-scale
perturbations near the sharp edges. The field of the
horizontal velocity component is symmetric with
respect to the central horizontal plane; see Fig. 1a,
where positive and negative values   of the visualized
quantity are marked, respectively, by light and dark
gray. The difference of the values between the isolines
is the same.

A more complex f low structure occurs in the field
of the vertical velocity component, which illustrates
ascending and descending f lows (Fig. 1b). The main
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Fig. 2. Effect of body shape on pattern of field of horizontal component of salinity gradient perturbation  around fixed

wedge (L = 10 cm, h = 2 cm, , ) with (а) concave sides, DR = –0.1 cm; (b) right sides,  ;

and convex sides for (c)  and (d) DR = 1.4 cm.
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jets are detached from the surface at the corner points
of the base of the wedge and form a system of dissipa-
tive gravity waves. A lengthy unperturbed region
adjoins the middle part of the base of the wedge, since
the vertical surface does not disturb the homogeneity
of background diffusion impurity transfer.

The complexity of the multilevel system of circula-
tion cells adjacent to the sharp edges of an impermeable
obstacle immersed in a fixed stably stratified fluid is
illustrated by the vorticity field (Fig. 1c). A thin fluid
layer with cyclonic (counterclockwise) vorticity directly
adjoins the lower face of the wedge. It is followed by a
set of alternating compensation areas with different
directions of fluid rotation. The vorticity value
decreases with distance from the obstacle; conversely,
the layer thickness increases. The vorticity distribution
in the upper and lower half-planes is antisymmetric
with respect to the neutral-buoyancy horizon.

In the pressure field, there is a deficit at the sharp
tip of the wedge-shaped obstacle, as well as in the thin
layer along the lateral sides (Fig. 1d), where its magni-
tude decreases monotonically from the sharp tip to the
base. The fine structure of stratified f lows is pro-
nounced; the pressure values change abruptly here.
Near the corner points of the wedge, additional fine-
structure components form: dissipative gravity waves.

The area of the pressure deficit extends far forward
along the neutral-buoyancy horizon. The difference in
pressures acting on the lateral surfaces and base of the
body forms an integral force pushing the horizontal
wedge toward the tip, which is consistent with obser-
vations [17, 19]. The pressure deficit is due to the fact
that the f luid is drawn into the ascending structured
compensation flow on the upper side and the analo-
gous descending f low on the lower side with stagna-
tion at the bottom of the wake.

The areas with relatively slow parameter changes are
separated by thin boundaries with high gradients of the
governing physical quantities, in particular, pressure
(Figs. 1e and 1f). The maxima of the longitudinal and
vertical components of the pressure perturbation gradi-
ent near the wedge were about 0.2 Pa/m; the pressure

perturbation values were on the order of 10–4 Pa. With
distance from the obstacle, the pressure perturbation

gradient drops abruptly to values of 

and  at a distance from the vertices of

the wedge of 5 cm along the horizontal and 0.25 cm
along the vertical.

The complex multiscale structure of diffusion-
induced flows is also illustrated by the field of the hor-
izontal component of the salinity perturbation gradi-
ent (Fig. 2). Near the vertex points of the wedge, addi-
tional fine-structure components, dissipative gravity
waves, form; in these, the salinity perturbations s were

on the order of  and the maxima of the longitudi-
nal component of the salinity perturbation gradient

were 

The pattern of the field of the horizontal compo-
nent of the salinity perturbation gradient depends on
the sign of the curvature of the lateral surface: the

5
10 Pap x −∂ ∂ ∼

4
10 Pap z −∂ ∂ ∼

5
10

−

2

max
4 10 1 m .s x −∂ ∂ = ×
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Fig. 3. Evolution of field of horizontal component of salinity perturbation gradient at beginning of movement of right wedge

( , L = 10 cm, h = 2 cm, U = 0.001 cm/s) for (а)–(d)  = 0.5; 2; 10; 50.
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sharper the vertices of the base the wedge, the more
pronounced the alternating strips (Fig. 2a). At the

same time, the maximum values  weakly

depend on the curvature of the faces of the wedge. For
a convex wedge (Fig. 2c) such that the angle between
the base and the lateral face approaches 90°, the beam
of fine-structure elements widens. When the vertical
of the maximum wedge height does not coincide with
the base, the pattern of the f low demonstrates addi-
tional fine structures near the poles (Fig. 1d), like
those around a sphere [1].

The resulting f low fields around a fixed obstacle
were used as an initial condition in the problem of f low
establishment when the wedge starts moving at a con-
stant velocity U of 0.001 cm/s, which somewhat
exceeds the velocity of wedge self-motion in a strati-

fied medium (U = 2.83 × 10–4 cm/s) [9].

When the wedge starts moving, the f low pattern
completely transforms and new structural components
occur: leading perturbations, rosettes of nonstationary
internal waves, fields of attached internal waves, and a
lengthy wake behind the body (Fig. 3). However, at
small Reynolds numbers, when the source velocity U
is comparable to the typical velocity of diffusion-

induced flows , specified nonzero initial condi-
tions manifest themselves in a sufficiently long f low

max
s x∂ ∂

S
NU κ
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structure (about ). The main changes occur near
the tip and vertex points of the base of the wedge,
where nonstationary internal waves begin to form. The
phase surfaces (the boundaries of the radial strips in
Fig. 3a) are somewhat asymmetric even at the initial
stage: the beams directed along the movement of the
wedge are brighter than the reversed ones. With time,
the minimum slope of the beams of nonstationary
waves decreases and the length increases. Extended
beams become a dominant element of the f low pattern
in Fig. 3b.

Simultaneously with the long waves, a group of
shorter high-amplitude waves forms at the trailing
edge, including both direct waves facing the move-
ment of the wedge and backward waves oriented to the
start point (backward waves are not recorded when the
body moves at higher velocities [11]). With increasing
amplitude, the wave pattern at the edges of the body
becomes more pronounced and the beams become
longer (Fig. 3c). The wave component of the f lows
becomes dominant and perturbs the f low structure at
the lateral surfaces of the wedge.

For long times, the almost steady pattern of the
flow includes a group of relatively large leading inter-
nal waves (the system of sloping strips in Fig. 3d),
which are forward-oriented perturbations at the lead-
ing edge of the body, and a system of waves near the

20 bT
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Fig. 4. Perturbation fields around moving wedge (L = 10 cm, h = 2 cm, , U = 0.001 cm/s, ) of (а) pres-

sure P, (b) salinity s, (c) longitudinal  and (d) vertical  components of salinity gradient, and (e) longitudinal 

and (f) vertical  components of pressure gradient.

z, cm

x, cm–5 0 5 10

(a)

2

0

–2

z, cm

x, cm–5 0 5 10

(c)

2

0

–2

z, cm

x, cm–5 0 5 10

(e)

2

0

–2

z, cm

x, cm–5 0 5 10

(f)

2

0

–2

z, cm

x, cm–5 0 5 10

(d)

2

0

–2

z, cm

x, cm–5 0 5 10

(b)

2

0

–2

6.28 sbT = 100bt Tτ = =
s x∂ ∂ s z∂ ∂ P x∂ ∂
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vertices of the base, which are oriented forward and
backward along the wedge movement. The density
distribution remains unperturbed in the central part of
the trailing wake, which the reversed wave beams do
not enter. The number of observed waves that do not
enter the wake behind the body increases with time.

The waves noticeably deform the layered f low at
the lateral sides of the wedge. The f low continues to
evolve slowly with time: the perturbation amplitudes
increase, and the slopes of the main wave strips
decrease. Their extensions intersect the x axis at the
starting point of the body.

The flow patterns around the wedge agree with the
results of independent calculations [7] and with the
visualization patterns of the distribution of the gradi-
ent of the refractive index in a laboratory tank for bod-
ies with other geometric shapes [11] (the color-shadow
method with a horizontal slit and grating).

The pattern of the perturbation fields for a strati-
fied f luid with a wedge slowly moving at a velocity of
U = 0.001 cm/s is specific for each physical parameter.
The field of pressure perturbations has the simplest
geometry: there is an excess in a layer in the entire

half-space ahead of the obstacle and outside the wake

behind the obstacle, as well as a deficit in the rectan-

gular wake (underpressure according to the terminol-

ogy of P. du Buat). Areas of perturbations with other

signs adjoin the main strips in the entire f low from the

outside. The height of the wake is slightly less than the

size of the base of the wedge. Near the vertices of the

base, there are weakly pronounced short internal

waves whose phase surfaces are oriented opposite to

the direction of movement (Fig. 4a).

The salinity perturbation field also has a global

striped structure; its isolines tend to approach the lat-

eral surface of the wedge along the normal (Fig. 4b).

However, the smooth nature of the curves is violated

in a thin near-surface f low. Small-scale perturbations

oriented toward and opposite the f low and are pro-

nounced at the vertices of the base. Behind the body,

short waves enter the density wake. In general, the pat-

tern of the salinity field is antisymmetric with respect

to the central horizontal plane, in contrast to the pres-

sure field.
OCEANOLOGY  Vol. 58  No. 3  2018
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Fig. 5. Perturbation fields around moving wedge (L = 10 cm, h = 2 cm, , U = 0.001 cm/s, ) of (а) lon-

gitudinal   and (b) vertical  velocity components, (c) vorticity, and (d) dissipation rate of mechanical energy.

z, cm

x, cm–5 0 5 10

(a)

2

0

–2

z, cm

x, cm–5 0 5 10

(c)

2

0

–2

z, cm

x, cm–5 0 5 10

(d)

2

0

–2

z, cm

x, cm–5 0 5 10

(b)

2

0

–2

6.28 sbT = 100bt Tτ = =
xv zv
The field of the horizontal component of the salinity
gradient, which has an inhomogeneous zero value in
the unperturbed medium, is characterized by the most
complex structure: all components of the complicated
field of internal waves are present (Fig. 4c). A relatively
long-wave component occurs (straight strips with a

wavelength of  and with shorter wave-

lengths of  near the vertices, and of

 near the tip of the wedge). The strips near

the lateral sides of the wedge visualize a complex alter-
nating pattern of perturbations, which is typical of non-
stationary flows near inclined surfaces [5, 8, 17, 21, 23].

The patterns of the fields of the salinity gradient
components show most completely the fine structure
of the fields of internal waves that form for a moving
a wedge (Figs. 4c and 4d). The field of the gradient
horizontal component is antisymmetric with respect
to the central plane of the wedge, which is due to the
nature of the displacement of f luid layers. The field
of the vertical component is symmetric: first, the lay-
ers forced away by the wedge forming the equilibrium
horizons are constricted and the gradient increases;
then, the layers are stretched, and the gradient
decreases. The physical quantity of the gradients
ref lecting the inhomogeneity of molecular and
advective f lows of a stratifying impurity behave non-
monotonically near a streamlined body and attain

large numerical values (

). 

Up to the type of symmetry, the field of the hori-
zontal component of the pressure gradient (Fig. 4e) is

1.3 cmwλ =
0.2 cmwλ =

0.6 cmwλ =

2

max
3 10 1 m ,s x −∂ ∂ = ×

2

max
9 10 1 ms y −∂ ∂ = ×
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reproduced by the structure of the field of internal
waves represented in the salinity field (Fig. 4c); how-
ever, the perturbations near the tip of the wedge are
less pronounced here.

Up to symmetry, the pattern of the field of the ver-
tical component of the pressure gradient (Fig. 4f) is
similar to the field of salinity perturbations (Fig. 4b)
with a clear deviation of the isopleths in the direction
of the normal to the impermeable surface of the body.

In the pattern of the horizontal component of the
velocity field, there is a unidirectional f low toward the
base (Fig. 5a), whose striped structure is determined
by the internal waves, which are more pronounced in
Fig. 5b in the field of the velocity vertical component.
However, thin perturbations near the tip of the wedge
are not visualized here as well.

An even more complex structure is observed in the
vorticity field in which there are leading perturbations,
jet f lows at the lateral faces, and rosettes of internal
waves in the neighborhood of the corner points of the
body (Fig. 5c). The dynamic components of the f low
are most contrasting in the field of the dissipation rate
of mechanical energy, the quadratic nature of which
relieves the image of excessive detail due to the alter-
nating sign of the other physical quantities (Fig. 5e).

On the whole, examination of the images shows
that the inhomogeneity of a f low of a stratifying com-
ponent near an obstacle forms perturbations in a large
region, whose sizes are determined by the efficiency of
generation of the entire family of internal waves, both
long leading waves and short waves near the wedge
vertices. The self-propulsion observed in [9] induces a
field of the pressure gradient whose perturbing action
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exceeds the friction against the faces of the upward
flow from above and of the downward f low from
below. The principal difference between the f low pat-
terns around a wedge in homogeneous and stratified
fluids manifests itself near the extreme points of the
streamlined body. Near acute angles, systems of peri-
odic structures occur, which visualize the field of
internal waves.

The source of internal waves is the edge singularities,
which generate intense vertical fluid displacement,
which leads to displacement of the fluid layers from the
initial neutral-buoyancy position and, as a result, to the
formation of periodic damped oscillations.

CONCLUSIONS

For the first time, a complete numerical solution to
the problem of formation of a diffusion-induced flow
around a fixed wedge in a continuously stratified f luid
and to the problem of establishment of field patterns
when the body starts moving at a small velocity (in the
velocity range for the self-motion of a free body at the
neutral-buoyancy horizon) is constructed. The fields
of the basic physical quantities (velocity, density, vor-
ticity, energy dissipation rate, and the components of
the salinity and pressure gradients) are calculated.

The physical mechanism for the self-propulsion of
bodies in a stably stratified f luid at rest is the pressure
deficit near acute parts of the bodies, because the f luid
is drawn into the ascending structured compensation
flow on the upper side and the analogous descending
flow on the lower side.

In all cases, the patterns of the fields of the physical
quantities are characterized by a complex spatial struc-
ture reflecting the effect of structural f low compo-
nents: jets at the boundary of the body, short internal
waves near the vertices, and longer internal waves. The
finest structures of f lows occur near the vertices of the
base of the wedge; here, the turning regions for the
main jets are sources of dissipative gravity waves,
which are visualized in laboratory experiments at
extended horizontal striped structures.

The dimensions of the perturbation field are deter-
mined by the efficiency of wave generation, which in
turn depends on the value of stratification, the dimen-
sions of the body, and its velocity. Large (when com-
pared to the body) sizes of the region of dynamic per-
turbations ensure the long-range interaction of slow-
moving bodies in a stratified f luid, which is likely one
of the mechanisms of clustering of small biological
objects without special locomotory organs. Natural
metabolism that ensures the consumption of certain
substances from the environment and the excretion of
others can also affect the self-propulsion of the small-
est organisms.

A unified approach to calculations makes it possi-
ble to use the results from calculating two-dimensional
diffusion-induced flows around a fixed obstacle as the
initial conditions for the problem of establishment of
the f low pattern when a body begins, and then contin-
ues, moving at a constant velocity. The resulting f low
pattern with a small Reynolds number includes lead-
ing perturbations, the wake, and a family of internal
waves observed in experiments using high-sensitive
shadow apparatus.
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