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Abstract—On a uniform grid on the real axis, we study the Yanenko—Stechkin—Subbotin problem
of extremal function interpolation in the mean in the space L,(R), 1 < p < oo, of two-way real
sequences with the least value of the norm of a linear formally self-adjoint differential operator £,,
of order n with constant real coefficients. In case of even n, the value of the least norm in the
space L,(R), 1 < p < oo, of the extremal interpolant is calculated exactly if the grid step h and
the averaging step hy are related by the inequality h < hy < 2h.
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INTRODUCTION

Let D denote the symbol of differentiation, £,, = £, (D), n € N, be an arbitrary linear differential
operator of order n with real constant coefficients, whose leading coefficient is equal to 1. Operator £,,
can be written as

k n—2k
Lo =La(D) = [[(D* = 23D +77 +ad) [T (D -5, (0.1)
s=1 j=1

where as, 8,75 € R, moreover, in the case k # 0 one can assume that a; > 0. Denote by

k n—2k
pn=pn(N) = [ = 2v:A +92+a2) [T (A - 85) (0.2)
s=1 j=1

a characteristic polynomial of this differential operator. To a linear differential operator £,, we put in
correspondence a difference operator with step h > 0

k n—2k
Af”ym = l_I(T2 — 2T cos ah + ¥ E) H (T — %" By, (0.3)
s=1 j=1

defined on the space of sequences y = {ym } Here T'y,, = ym+1 and E is an identity operator.

A difference operator Af;” is chosen such that for any solution f of the homogeneous equation
Ln(D)f = 0forany z € R the inequality

Af”f(;v—l—mh) =0
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1018 SHEVALDIN

holds.
Introduce a class of sequences

Yh,p = {y = {ym}ﬁz—oo: HAfnyHlp < 1}7 h>0, 1<p<occ.

The norm on the space of sequences y is defined, as usual, by the equality

1/p
(k) " 12p<,

lyll, = ¢ Nmez
SUP [Yrm|, p = 00.
m

Let AC be a class of locally absolute continuous functions f: R — R, L,(R), 1 < p < oo, be a space of
functions g absolutely integrable on R with the norm

1/p
9o = ( /R 90 dt) ,

and Lo (R) be a space of essentially bounded on R functions with the norm

19/ Lo (r) = esssup [g(x)].
z€eR
For the operator £(D) = D™ a problem of connection between the finite differences AP" = A" (as well
as divided differences) of order n and the derivative of the function of order n is well studied (see, e.g.,[1]).
Favard [2] considered this problem in 1940 in the extremal setting on the segment for a uniform grid of
nodes and respective divided differences.

The problem of the extremal functional interpolation (on a uniform grid of nodes), which was
set up in the beginning of 1960s by Yanenko and Stechkin for a particular case of the operator of n-fold
differentiation D™, is as follows.

Let hy > 0. For any sequence y € Y}, , consider a class of functions

Fapa(y) = {f: 5D € AC, Lo(D)f € Ly(R),

1 h1/2
/ f(mh+t)dt:ym,m€Z}
hi J_py/2

(for hy = 0 we set f(mh) = y,). For every sequence y € Y}, it is required to construct a function
[ € Fy n, p(y) and compute (or efficiently estimate from below and above) the following quantity

A, =A,(Ly,h,h1) = su inf L,(D . 0.4
p = Ap( 1) erhp,p rern 1Ln (D) fll L, ) (0.4)

This problem is commonly called the Yanenko—Stechkin—Subbotin problem, and a significant number
of works (see some early works of Subbotin [3]—{5] on the operator £,, = D™ and the survey [6]) are
devoted to it (and its generalizations).

In this work, only the problem of interpolation in the mean is studied, i.e. the case hy # 0. In that case,
a solution to problem (0.4) turned out to be quite difficult, and there are few results in this direction.
For the operator £,, = D™ quantity (0.4) for 1 <p < o0, 0 < h < o0, 0 < hy < 2h was computed by
Subbotin[1]—[3], [7][9]. [t is worth noting that the time interval between Subbotin’s first and last works
on this topic is 32 years, and the case h < h; < 2h (overlapping averaging intervals) turned out to be
the most difficult to study. Subbotin proved that for any » € N the equality A,(D™, h,2rh) = +oc holds.
In 1983, in [10] quantity (0.4) was computed for 1 < p < 00,0 < h < hg = 7/(max «ay) for an arbitrary
linear differential operator of form (0.1) for nonoverlapping averaging intervals, i.e. in case 0 < hy < h.

Laterin 1998 in [11], the quantity A,(Ly,, h, h1) was found for 0 < h < hg, h < hy < 2h (overlapping
averaging intervals) also in the general case for an arbitrary linear differential operator £,, of form (0.1),
but only for p = co. Moreover, it turned out that the quantity Ao (L, h,2h) = oo, and interest in the
problem of extremal interpolation subsided for a long time. Recently, the author (see [12]) managed,
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SUBBOTIN’S METHOD IN THE PROBLEM OF EXTREMAL INTERPOLATION 1019

using the ideas of previous works by Subbotin and works [10], [11], to generalize the result of [11] to the
case 1 < p < oo, but only under the additional assumptions that the operator £,, is formally self-adjoint
and n is odd. Later in [13], for such differential operators, quantity (0.4) was also computed forp = 1 for
all positive integer numbers n € N.

In the present article, we indicate the value of the quantity A,(L,,, h, k1) for0 < h < hg, h < hy < 2h,
if the number n is even and the operator £, is formally seli-adjoint (i.e., satisfies the condition
Ln(—D) = L,(D)). Let us explain how the proof of the supremum given below for the quan-
tity Ap(Ly, h, h1) (this is the main content of the present work) differs in the case when the number n
is even. The auxiliary polynomials considered below are the same ones that appeared in the author’s
previous works [10]—[13]. On their basis, more general characteristic polynomials of difference equa-
tions are constructed, depending on the “gluing” parameter of the subsequent extremal interpolation
L-splines and their generalizations. Since this parameter is chosen differently depending on the parity of
the number n (This choice for the n-fold differentiation operator was first made by Subbotin [3]in 1965),
the properties of these polynomials for different n are significantly different. For even n, an additional
study of the zeros (namely, the proof of their negativity and simplicity) of the characteristic polynomials
constructed below was required, which in the present work is carried out using Subbotin method [7]—[9].
For the operator £,,(D) = D™, he also divided his proof into two cases depending on the parity of n. Note
that for the even n it turned out to be more complicated (see Lemmas 1, 2 and 4—9 below).

To formulate the main statement of this work, we introduce auxiliary functions from the pa-
pers [10],[11]. Let

st gin(((2s + 1)mhy)/(2h))

Hn®)=Cum) D oy Dhapal(@s + mityh)

SEZL
" n—2k (0.5)
C(Ln,h) =2(=1)" 'R (1 + 2¢7" cos ash + €*) TT (1 + €%,
s=1 j=1

where p, = p, () is a characteristic polynomial of the operator L,, (see (0.2)).
The main result of the work is

Theorem 1. Let number n be even, and L,, = L, (D) be an arbitrary linear differential operator of
form (0.1) satisfying the condition

Ln(—=D) = Ly(D).
Then forany 1 < p < 00,0 < h < hg =m/(maxay), h < hy < 2h, the equality
1 1

Ap(Lay by ha) = (1 Hallo,) ™" b1

holds.

Remark 1. Note that in[10], [11]it was proven that for any 0 < h < hg, 0 < hy < 2h the equality
AOO(Ena h, hl) = (HHnHLl[O;l})_l

holds for an arbitrary linear differential operator of form (0.1) (without the requirement of its formal
self-adjointness). As mentioned earlier, Theorem 1 for odd n was proved in[12].

1. PROPERTIES OF AUXILIARY FUNCTIONS

With the operator £, in (0.1) we associate the operator £, (D) = DL,(D). Let ¢, = @,(t)
(respectively, 0. =2, ,(t)) be the unique solution of the equation L£,(D)f =0 (respectively,

£2.,,(D)f = 0) with the condition gpg)(O) = 0;n—1 (respectively, (gongl)(j)(O) =0;n). Here §;,1
and d; ,, are the Kronecker deltas. With the differential operator £2_; we associate a difference operator

Lo N
A = (T — B)AS
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1020 SHEVALDIN

(see (0.3)), which is defined on the space of sequences of the form y = {y,, }°_

SR
0
The operators Af” and As"“ can be easily reduced to the form
n £0 n+1
Afnym = Z(_l)n_sﬂsym+87 Ahn+1ym = Z( 1)n+1 sﬂ(s)ym-i-s;
s=0 s=0

where pis = pis(Lp, h) > 0, uf = Ns(£n+17 h) > 0 and do not depend on y,,,, moreover, 0 = s + ps_1,
s=0,1,...,n+ 1(thenumbers p_1 and j1,,+ 1 are set to zero). Coefficients {5} and {2}, functions ¢,
and gogﬂ are employed in the definition of all further auxiliary functions. Following [10], for 0 <¢ <1,
hi1 > 0,0 < h < 7/(max a,) we define the functions

Po(t) =) (1) > (=1 psen((s —j + 1 = t)h),
j=0 s=j
n+1 'n—i-l

Ply(t)=> (-1 > (=10 udel (s — 5 + 1= t)h),
=0 o (1.1)
p2 [hi/(2h) z
ainlthh) = [ (1" pipn(( + 2+ 1 j — £)h) da,
1 J—h1/(2h) 1=

n+1 .

Hy(t) => (=1 aju(t,h, hy).
=0

Here, as usual, u4 stands for max{0, u}.
Due to the equalities P, (1) = —P,(0), P2, (1) = =P2,,(0), H,(1) = —H,(0), these functions can

be continued to the entire real axis by the formulas
Po(t+1) = —P,(t), PPL(t+1)==P) (t), Hy(t+1)=—H,t).

In [10] it was proved that for these continuations the inclusions P, € C"*(R), PJ,; € C"'(R),
H,, € C" 1(R) take place. Moreover, the following equalities hold:

(PO, (t)) = 2hP,(t), Z;Hn(t) 2h<PO< §h> P0< ;7}))

Since the constructed function H,(t) is 2-periodic, it can be expanded into the Fourier series, and at
the same time representation (0.5) is valid (see [10], [11]). The properties of the functions P, (t), P, (t)
and Hy(t) are described in[10, Lemmas 1, 7], [11, Lemmas 1, 5], [12, Lemmas 1—5 and Remark 4] (see
also [14], [15]). Let us continue to study the properties of the function H,,(¢) in the case of overlapping
averaging intervals, i.e. in the case h < h; < 2h. These properties are useful for us in the next sections.
In all subsequent statements we also assume the operator £,, to be formally self-adjoint (i.e. we assume
that it satisfies the condition £,(—D) = (—1)"L,(D)) and the condition 0 < h < hg to hold. Under
these assumptions, from [14] it follows that for even n = 2r the function ¢o,(t) is odd, and for odd

n = 2r + 1 the function 9,41 (t) is even.
Lemmal. letl < q<oo,n=2rreN, and
1
ha
— |Hop [ t
‘ ’ ( i 2h>

hi\ |
(t B 2h>

Do, (1) =

The following inequalities hold:

h1 1
< <t < —
a) ®q.(t) <0 for 0<t< (o) "2’
3 h1
> - <t <I1.
b) ®9.(t) >0 for e t<1
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SUBBOTIN’S METHOD IN THE PROBLEM OF EXTREMAL INTERPOLATION 1021

Proof. Itfollowsfrom|[Lemma 5and Remark 4] 12]that the function |Hs,. ()| is monotonically decreas-
ing on the segment [0; 0.5], moreover, Hs,(0.5) = 0, and it is monotonically increasing on the segment
[0.5; 1], moreover, |Hg,(1)| = |Ha-(0)[. In addition, |Ha,(t + 1)| = |Hay(t)], |[Har(1 — t)| = |Har(t)| for
all t € R. To prove Lemma 1 we consider two cases:

1) 1< hl/h < 3/2,
2) 3/2 < hi/h<2.

In the first case, due to the properties of the function Ha,(t), the function |Ha,.(t — hy1/(2R))[771 is
monotonically decreasing on the segment [0; hy/(2h) — 1/2], and the function |Ha,(¢t 4+ hy/(2R))[771
is monotonically increasing on this segment, since for 1 < hy/h < 3/2 the inequality hy/h —1/2 <1

holds and
B h\ |71 hi
q>2r(0) — 'H2r <_2h> - ‘H2r<2h>

hio 1\ he 1\ |7
(1)27"(211_2) __H2T<h _2>

< 0.
This implies the validity of the first inequality in Lemma 1 for 0 < ¢ < hy/(2h) — 1/2.
In case 2), we divide the segment [0; hy /(2h) — 1/2] into two subsegments:

[O;l—hl} and [1—h1'h1 1]

qg—1
= 07

2h 2h’ 2h 2]
On the first subsegment, the previous proof is completely valid, since the function | Ha,.(t — hy/(2h))|771

is monotonically decreasing, and the function |Ha,(t 4+ hy/(2h))|9~! is monotonically increasing. On
the second subsegment, we use the fact the function Ho,.(t) is 2-periodic, namely, we use the equality

A\ |7 h1
‘H2r<t+2h> —‘H2r<t+2h—2
Then the arguments of both functions |Ha,(t — hy/(2h))|9! and |Ha,.(t + h1/(2h) — 2)|97! belong to
the segment [—1; —0.5], moreover, t + hy/(2h) — 2 < t — hy/(2h), and hence, due to the fact that the
function | Ha,-(¢)|971 is monotonically decreasing on the segment [0; 0.5], it implies the first statement of
Lemma 1. The second statement of Lemma 1 follows by the first one, if we make a change of variable

1 —t =1t and use the properties of the function |Hs,(¢)| mentioned in the beginning of the proof of
Lemma 1. Proof of Lemma 1 is completed.

q—1

Corollary 1. Forqg>1,-1<x<1,3/2—hy1/(2h) <t <1 theinequality

B hy hy
¢2r(m7t) — ‘H2r <t 2h> H2r <t + 2h>

q—1
>0 (1.2)

q—1

holds.

Proof. The validity of corollary 1 follows by the inequality
¢27‘($7t) > @2,«(1&) >0

for3/2 —hy/(2h) <t < 1.

Lemma 2. For q > 1 the function

| Hap(t — he/(2h)) |7
| Hop(t + h1/(2h))

monotonically decreases from 1 to 0 on the segment [0; hy/(2h) — 1/2].

Sar(t)
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1022 SHEVALDIN

Proof. Inthe cases described in Lemma 1

1) 1< hy/h<3/2,

2) 3/2<h1/h<2,0§t§1—h1/(2h)

the statement of Lemma 2 is in fact proved in the mentioned lemma, since the numerator of the frac-
tion So,.(t) is monotonically decreasing with rising ¢, and the denominator is monotonically increasing.

[t only remains to consider the case
3) 3/2 < hi/(2h) <2,1—h1/(2h) <t <hy/(2h) —1/2.

Since in this case 1 <t 4 hy/(2h) <3/2,1 <t+2— hy/(2h) < 3/2, then to prove Lemma 2, due to
the properties of the function Hy,(¢), it is sufficient to establish that the derivative of the function

_ _ Ho(t+2—hy/(2h))
Sor®) = "h 4 hu/(2h)

is nonpositive on the segment [1 — hy /(2h); h1 /(2h) — 1/2]. In that case, without loss of generality, one

can assume that the numerator and denominator of the fraction Sa,(t) are nonnegative. In view of [12,
Lemma 5 and Remark 4], we have

Sy (t) = (H t4 M - o a(24¢— "V (¢4 ™
e - 2r oh 2r—1 oh 2r oh
hi\ = hq
—H2T<2+t— 2h>H2r_1<t+ 2h>>’

- hy hy
_ ! — _
Hor_1(t) = H) (t) = Py, (t + 2h> Py, (t 2h>

where

(see (1.1)). Note that both points ¢ + hy/(2h) and t 4+ 2 — h1/(2h) belong to the interval [1;3/2] and
t+ hi/(2h) <t+2— hy/(2h). Since the function Ha,(t) is monotone decreasing on this interval, we
obtain the inequality

h1 h1
— > 0. .
H2T<t+2h> >H27«<t+2 2h> >0 (13)

From [11, Lemma 5] (see also [12, Lemma 5 and Remark 4]), in the case of formally self-adjoint
operator £, due to the fact that on the segment [1;3/2] the function Hy, is nonnegative, monotonically

decreasing, and, moreover, the equality ﬁg,«_l(t) = H/, (t) holds, we get that the function ﬁgr_l(t) on
this segment is monotonically decreasing and nonpositive. Since t + hy/(2h) < t+ 2 — hy/(2h),

~ h1 ~ h1
> — . .
0_H2r—1<t+ 2h> >H2r—1<t+2 2h> (1.4)

(1.3) and (1.4) imply that §§T(t) <0forl—~hy/(2h) <t <hi/(2h) —1/2. The proof of Lemma 2 is
complete.

MATHEMATICALNOTES Vol. 115 No.6 2024



SUBBOTIN’S METHOD IN THE PROBLEM OF EXTREMAL INTERPOLATION 1023

2. PROPERTIES OF SOME ALGEBRAIC POLYNOMIALS

In Sec. 3, the problem of obtaining an upper bound for the quantity A,(L,,h,hy) is reduced to
studying the zeros of the characteristic polynomial of an infinite-difference equation. So we need to
study the properties of some algebraic polynomials.

Let £,, be an arbitrary linear differential operator of form (0.1) and 0 < h < hg, h < h1 < 2h, ¢ > 1.
For 0 <t <1, consider a polynomial of degree n in variable

l

Ry(z,t)=> aa', =Y (=1)""uled (s —1—t)h).
=0 s=0

Lemma 310, Lemmas 3 and 5]. 1. For the coefficients of the polynomial RO (x,t) for0 <t < 1, the
inequalities ¢y > 0, ¢,, > 0 hold.

2. Let 0<t<1landmn;(t)<0,j=12,...,n, be zeros of the polynomial RO (z,t) written in
descending order, and 1 =0, n; <0, j =2,3,...,n, be zeros of the polynomial RY(x,0) written
in descending order. Then the following assertions hold:

1) forany j=1,2,...,n, the function n;(t) is strictly decreasing on the interval (0;1), and for
0 <t < 1theinequalities

77]+1<77](t)<77]7 ]:17277n_17 —OO<77n(t)<77n
hold,

2) the following equalities hold:
. —1), 0<u<t,
sign R, (17;(t), u) = {E_1;j+1 feu<l
sign RO (n;,t) = (—1)711 0<t<l.

In what follows, we will need some more properties of the polynomial RO (x, ) ialignn the case where
the operator L,, is formally self-adjoint and n = 2r, r € N.

Lemma 4. Let 0 < h < hg, and the operator Lo, be formally self-adjoint. Then the following
assertions hold:

1) sign R, (—1,t) = (-1)", 0 <t <1,

2) the polynomial RS.(x,0)/x is self-reciprocal (i.e. if xq is its root, then 1)z is its root as
well);

3) RY,.(—1,0) =0, i.e.npp1 = —1.

Proof. From the definitions of functions P2, (t) and RS (z,t) for z = —1 (see [14], [15]) equality
RS, (=1,t) = —P§ . (t) follows, 0 <t < 1. Moreover, sign Py () = (=1)", 1/2 <t <1, by [14,
Eq. (1.19)]. This implies the first statement of Lemma 4.

To prove the second statement, we first note that at £ = 0 we have ¢y = 0 (therefore 17, = 0), and we
need to prove the equality cop 11— = ¢;, 1 = 1,2,...,2r. This fact follows, e.g., from[14, Eq. (2.9)].
The third statement follows by the second one and Lemma 3. Proof of Lemma 4 is completed.

Lemma b. The nonlinear system of equations
RY.(z,u) =0,
¢27‘(337 U) =0

in the region —1 <x <0, 0 <wu < hy/(2h) —1/2 has a unique solution (x,u) consisting of ex-
actly r points: x = {n;(u;) tj_1, uw={u;}j_;.
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Proof. The function 2 = —+/Sa,(u) (see (1.2) and Lemma 2) with rising of argument u from 0 to
hi1/(2h) — 1/2 monotonically increases from —1 to 0, and the functions n;(u), 7 =1,2,...,2r, for
0 < u < 1, due to Lemma 3, monotonically decrease. At the same time, the inequalities

7]]<7']](U)<T]]_1, j:2,3,...,T+1,

hold, where n; = 0 and 1,41 = —1 (see Lemma 4). Therefore, each nonlinear system of equations
0 ) —
R2T(77](u)7u)_07 j:1,27'“,7,.,
T = —\/Sgr (u),

has a unique solution; denote it by (n;(u;), u;). Thus, the system of equations in Lemma 5 has exactly r
pairwise distinct solutions (z,u), where x = {n;(u;)}7_;, u = {u;}7_;, for which the inequalities

0<u, < <u<u<hl—1
r 2 1 2h 27

hold. Proof of Lemma 5 is completed.

—1<n(u) < <ma(ug) <m(uy) <0

3. LOWER AND UPPER BOUNDS FOR A,(Lay, h, h1)

Let us proceed to the proof of Theorem 1. First, we obtain a precise upper bound for the quantity
Ap(Lor,hyhy). Let 0 < h < hg, h <hy <2h,1<p<oo,1/p+1/q=1and L,(D) be an arbitrary
linear differential operator of order n of form (0.1). Any solution to the linear nonhomogeneous differential
equation £,,(D) f = u, where u € L,(R), can be written as

fl@)=>_Cjuj(x) + /x on(@ — t)u(t) dt. (3.1)
=1 0

Here {C;}}_, are arbitrary constants, the function ¢y, is defined in Sec. 1, and {v;(z)}7_

linearly independent system of functions from the kernel Ker £,, of the operator £,,. Let

, is an arbitrary

1 h1/2
Ym = / f(mh +t) dt, m € Z.
hi ) hy)2

In[10]for Af”ym (see (0.3)) the following equality was proved:

2 1n+1
AEry,, = h > u((t+m—1+ j)h) dt
h hl 0 —~

hi/(2h) T .
X / Z(—l)”_ wen((l+2+1—7—1t)1h)de. (3.2)
—h1/(2h) 1=

Further in this section we assume that n = 2r and the operator Lo, is formally seli-adjoint. Let us
construct a generalized L£-spline f € F}, p,, »(y) for any sequence y € Y}, , using formula (3.1), setting

()

where the function Ha, is defined by equality (0.5) for n = 2. From (3.3) it follows that the “gluing”
nodes of L-spline of f are uniform (moreover, they are also the zeros of the function Hs,.), and they are
shifted for half a step compared to the interpolation nodes. The real numbers {Z,,}>°__ __ are still to be

q—1

u(t) = Lop(D)f(t) = Zn, . (m—05)h<t<(m+05h  meZ,  (33)

determined. From (3.2) and (3.3) we obtain a difference equation for the numbers {Z,,,}2°__
B2 22
ARy, = , Zm-115Bj,  meL, (3.4)
14
7=0
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SUBBOTIN’S METHOD IN THE PROBLEM OF EXTREMAL INTERPOLATION 1025

where

0.5 h1/(2h) 2r
BOZ/I|H%mW”d{/ > (1P uear (U + 2+ 1 —t) 4 h) dz,
0 —h1/(2h) 15

0.5 h1/(2h) 2r
Bj = / | Hap(£)|7" dt / YD par (U + 2+ 1= = t)4h) d=
0 —h1/(2h) 12,

2r

0.5 X hi/(2h) -
[ e [ S i (04 2 2 - )b
0 ~h1/(2h) 125

j=1,2,...,2r+1,

1 h1/(2h) 2T
Boio = / | Ha, (t)]971 dt/ Z(—l)zr_lulwgr((l +2z+42r—t)1h)dz.
0.5 —h1/(2h) 1=
The characteristic polynomial of the difference equation (3.4) can be written as
2r4-2
Uzio(x Z Bjal. (3.5)

Lemma 6. The polynomial Uyr4o(x) is self-reciprocal.

Proof. We have to prove that By, 4o_j = B;, 7=0,1,...,2r. For j=1,2,...,2r — 1, aiter the
changes 1 — ¢ =/, 2 = —2/ (and then after omitting the primes), with the oddness of the function o, (t)
(see Sec. 1) and the properties of the function Hs,(t) taken into account, we have

2r

h1/(2h)
B_/ | Hap ()] qldt/ Z D2y (por((l— 2 — j +t)h))4 dz

h1/(2h) 1=

0.5 h1/(2h) 2r
- / | Ha, (t)]971 dt/ Z(—1)27"—lm(¢2r((z —z—j+1—1)h)), dz.
0 —h1/(2h) 15

Now we use the equality uy + u_ = u and the fact that po; . =y, I =0,1,...,2r, since the opera-
tor Ly, is formally self-adjoint. In addition, we use the fact that the difference operator Af%' annihilates
any function from the kernel of the differential operator £, taken on a uniform grid with step h. We get

hi1/(2h) 2r

0.5
Bj:—/ |Ho, (1) 1dt/ Z (—1)* g i(por (I — 2 — j + 1+ t)h))_ dz
0 h1/(2h) 124

hi/(2h) 2r
/05 | Hy (1) ldt/ S 12 g i(par (1= 2 = j + D)) d.
hi/(2h)

Let us apply the equality (—u)_ = —uy and make the change 2r — 1 =1’. Then from the previous
equality we obtain (the primes are omitted)

0.5 hi1/(2h) 2r
B; = / | Hop ()| dt / S ()" (L= 2r+ 2+ j— 1 —t)h)) dz
0 —h1/(2h) 15,

h1/(2h) 27‘

/ (o (1)) dt / P o (L= 2+ 2+ — 1)4h)) dz
h1/(2h) l 0

= Boryo—j.

The equality By = Ba,2 can be proved by similar reasoning. Proof of Lemma 6 is completed.
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Let us transform the characteristic polynomial Us,1o(z) of degree 2r + 2 of difference equation (3.4).
Let

$2R2r—1($7_z+t+1)7 0<z—-t <1,
Qary1(w,2 —t) = S xRop_1(z, —2 + 1), -1<2—-1t<0,
Roy_1(x,—z+t—1), —2<z—t< -1,

where the function Ry,_1(z,t) has the form

2r—1 l
Ropq(z,t) = > &l > (-1 ugpo((s —1—t)h), 0<t<1
=0 =0

Then formula (3.5) can be rewritten as

0.5 —t+ha/(2h)
Uzrt2(z) :/ | Hyp ()] dt/ Qar41(z, 2) dz
0 —t—hy/(2h)

1 —t+h1/(2h)
+/ | Ho, (£)|771 dt/ 2Qor+1(z, 2) dz.
0.5 —t—h1/(2h)

In[10] the following formulas were proved:
(RS, (2,t))} = h(1 — 2)Rgy—1(2,t), 0<t<1, xRy (v,t+1)=R3(z,t), tcR

Changing the order of integration in the formula for U, 42(z) and using the mentioned formulas, we
obtain

1—h1/(2h) 0
Ugrio(z) = / |Ha, (t)]971 {/ xRor_1(z,—2)dz
0 —t—hy/(2h)

—t+h1/(2h)
+ / ZL‘2R27«_1($, —z+1) dz] dt
0

0.5 -1
o A [ / Ry, —2 — 1) d2
1—h1/(2h) —t—h1/(2h)

0 —t+h1 /(2h)
+ / I‘RQT_l(I‘, —Z) dz + / 1‘2R27«_1(1‘, —zZ + 1) dz] dt
-1 0

h1/(2h) -1
+ / | Hyy (1)1 [ / SR 1 (,—2 — 1) dz
0.5 —t—h1/(2h)

0 —t4+h1/(2h)
+ / 1‘2R27«_1(ZL‘, —Z) dz + / ZL‘3R27«_1(1‘, —zZ + 1) dz] dt
-1 0

1 1
+ / |Hg,ﬂ(t)\q_l [/ TRop_1(x,—2 —1)dz
h )

1/(2h —t—hl/(2h)

—t+h1/(2h)
+/ x2R2T_1(m, —2) dz} dt
-1

1 1—h1/(2h) h h
= Hy, ()27 1 0 LYy . 2p0 1M
h(l_x){/o | Hoy (8)] [:ER2T<:1:,1€+ 2h> 2R, (we+1- 1) a
+/0'5 |Ho, (1)]771 [RO <a: L 1) — 2%R) <:r t+1— hl)] dt
| /(2h) 2r 2r ) oh 2r ) 2%h

h1/(2h) h h
+ / |Ho (1) | 2RS, (2t 4+ —1) —a®RY (a6 +1— " )| dt
05 2h 2h
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1
+ / | Ho, (£)[771 [azRgr <m,t + P _ 1> — 22R), <a:, t— fu ﬂ dt}. (3.6)
Since Hy, (t + 1) = —Hy,(t), from (3.6) we derive that
Uart2(z)
1 h1/(2h)—0.5 0 hy q—1 ) hy q—1
= h(l—m){/o RQr(x,t)[‘H2r<t— 2h> -z H2T<t+2h> ]dt
1.5—h1/(2h) h q—1 h]_ q—1
+/ RY (z,t [azHT<t— 1> —m2HT<t+ > }dt
h1/(2h)—0.5 2r(1) ? 2h 2 2h
1 q—1 q-1
hl hl
+/ RY (z,t [xHT<t— > —x3HT<t+ > }dt}. 3.7
oo 2 (z,t) 2 oh 2 oh (3.7)
Lemma 7. One has the inequality sign Us,4o(—1) = (—=1)" 1.
The proof of Lemma 7 follows by representation (3.7) forz = —1, Lemma 1, corollary 1 and the first

statement of Lemma 4.

Lemma 8. The solution of the system of equations in Lemma b satisfies the relations
sign Uprya(nj(uy)) = (=1, j=12....m

Proof. Letusfirst note that from the proof of Lemma 5 it follows thatforany j = 1,2, ..., r the following
inequalities hold: 19, (n;(u;j),u) > 0for0 < u < u; and 1o, (nj(u;), u) < 0foru; < u < hy/(2h) —1/2.
Therefore, from (3.7) and the second statement of Lemma 3, the validity of Lemma 8 follows.

Lemma9. All 2r + 2 roots of the polynomial Uy, o(x) are negative and simple.

Proof. By virtue of Lemma 8 we get that the polynomial Us,2(z) has sign changes on every
interval (n;(u;);nj-1(uj-1)), 5 =1,2,...,r. This means that the mentioned polynomial on the in-
terval (n,(u,);m(u1)) has at least » — 1 negative roots. On the interval (—1;7,(u,)), the polyno-
mial Us42(x) has at least one more root, since sign U, y2(n-(u,)) = (—1)", and due to Lemma 7,
sign Us,42(—1) = (—=1)""1.  The first statement of Lemma 3 implies that the free coefficient By
of the polynomial Ug,y2(x) (i.e. the number Us,42(0)) is positive. However, on the other hand,
Usri2(m(u1)) < 0. This means that on the interval (1 (uq);0) there is one more negative root. Thus,
it is proved that on the interval (—1;0) the polynomial Us,42(x) has at least r 4+ 1 pairwise distinct
negative roots. Recall that it is proved in Lemma 6 that this polynomial is self-reciprocal. Therefore, on
the semiaxis (—oo; —1) this polynomial has r 4+ 1 more pairwise distinct negative roots, which completes
the proof of Lemma 9.

The previous auxiliary statements aimed to prove that the characteristic polynomial being studied
satisfies the conditions of the following theorem.
Theorem A. [f all zeros of the polynomial U,(x) = Z;ZO Bjx?, Bj €R, B, #0, are nega-
tive and simple, U,(—1) # 0, then the difference equation Z§:o B;jZyyj = Km, m € Z, where
K={Ku}*_ _ €l, 1<p<oo, has a unique solution Z° = {Z%}°___ €, given by the
formula

221: i a—s—mKsa

where > o2 asx® = 1/U,(x), for which the bound
1Kl
ZO I S P
AR

holds.

MATHEMATICALNOTES Vol. 115 No.6 2024



1028 SHEVALDIN

The existence of a solution for the difference equation in Theorem A was proved by Krein [16], and
an upper bound for the norm of this solution was obtained by Subbotin [5].

Let us return to the proof of Theorem 1 again and obtain a precise upper bound for the quantity
Ap(Lar, h, hy). By virtue of what has been proved (see Lemmas 7 and 9), the polynomial Us,2(z) (we
replace the number r in Theorem A with 2r + 2) satisfies all the conditions of Theorem A and, therefore,
difference equation (3.4) for n = 2r has a unique solution Z° = {Z,,,}°° € ¢, for which the bound

m=—0oQ

h Aﬁzr
120y, < A vle
h2|Usp12(—1)]
is valid.

In particular, this statement implies that for an arbitrary sequence y € Y}, , there exists a function
[ € Fyn, p(y), for which, by virtue of (3.3), the inequality
eaD) e = (2

1 1/p 1 1/p
|Z21|p/ |H2r(t)‘(‘Z—1)P dt> = ”Zo”lp </ | Hop (2)]7 dt>
m=—o0 0 0

1 ——14—1/p .
< ( /0 |H2r<t>|wt> = (1l o))

holds. Hence, for 0 < h < hg, h < h; <2h,1 < p < oo, 1/p+1/q = 1Tfor the quantity A,(La;, h, h1)
we obtain an upper bound

o0

Ap(£2raha hl) < (”H2THLq[O;1})_17 (38)

which is valid for any linear formally self-adjoint differential operator of form (0.1) in the case n = 2r.
[t stands to mention that we constructed the function f € F}, p, ,(y) (see (3.2)) assuming

1 h1/2
/ f(mh+t)dt>, m € Z.

Afzrym _ AﬁQr
hi J hi)2

In this case, it is necessary to justify that this function satisfies the conditions for interpolation in the
mean, i.e.

1 h1/2
Ym = / f(mh +t) dt, m € Z.
hi J_py/2

This fact for p = oo was proved in [10] for an arbitrary linear differential operator of form (0.1). In the
case 1 < p < oo the proof of the mentioned statement from [10] remains valid completely.

We now obtain a lower bound for the quantity A,(Lay, h, h1). Let N be a positive integer number,
N > n+ 1. Consider an arbitrary sequence y* = {y;;,}>°__  satisfying the condition

Aﬁ2ry* _ (_1)m(2N+ 1)—1/p’ |m| <N,
Um0, lm| > N.

It can be easily verified that y* € Y}, ,,. For any function f € F}, p, ,(y*) in[10]and for 0 < hy < h < hg,
in particular, for n = 2r, the inequality

1£0(D) fll %) = (1l gf0:1) ™"

was proved. For h < h; < 2h the proof from [10] remains valid. Therefore, for h < h; < 2h for the
quantity A,(Lay, h, h1) alower bound

Ap(Lor, b, h1) > (|[Harl|py0:1) "

holds, and it coincides with upper bound (3.8), which completes the proof of Theorem 1.
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Corollary 2. [et 0 < h < hg, 1 <p < oo and L,(D) be an arbitrary formally self-adjoint linear
differential operator of form (0.1) for n = 2r. Then

Ap(Ly, h,2h) = oco.

Proof. The proof follows from the fact that for h; = 2h the function Ha,(t) = 0 (see (0.5)), and the
passage to the limit as h;y — 2h in Theorem 1.

4. CONCLUSIONS

In the present article, it was not possible to solve the problem of extremal interpolation, that is,
the problem of accurately computing the value of A,(Ly,, h, h1) for b < hy < 2h for an arbitrary linear
differential operator £,, of form (0.1). The properties of the functions H,, and S, in the general
case require more detailed studies. Note that for h; > 2h it is not even clear whether the quantity
Ap(Ly, h, hy) is finite (in particular, if the operator £,, is formally self-adjoint).
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