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Abstract—On a uniform grid on the real axis, we study the Yanenko–Stechkin–Subbotin problem
of extremal function interpolation in the mean in the space Lp(R), 1 < p < ∞, of two-way real
sequences with the least value of the norm of a linear formally self-adjoint differential operator Ln

of order n with constant real coefficients. In case of even n, the value of the least norm in the
space Lp(R), 1 < p < ∞, of the extremal interpolant is calculated exactly if the grid step h and
the averaging step h1 are related by the inequality h < h1 ≤ 2h.
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INTRODUCTION

Let D denote the symbol of differentiation, Ln = Ln(D), n ∈ N, be an arbitrary linear differential
operator of order n with real constant coefficients, whose leading coefficient is equal to 1. Operator Ln

can be written as

Ln = Ln(D) =
k∏

s=1

(D2 − 2γsD + γ2s + α2
s)

n−2k∏

j=1

(D − βj), (0.1)

where αs, βj , γs ∈ R, moreover, in the case k �= 0 one can assume that αs > 0. Denote by

pn = pn(λ) =
k∏

s=1

(λ2 − 2γsλ+ γ2s + α2
s)

n−2k∏

j=1

(λ− βj) (0.2)

a characteristic polynomial of this differential operator. To a linear differential operator Ln we put in
correspondence a difference operator with step h > 0

ΔLn
h ym =

k∏

s=1

(T 2 − 2Teγsh cosαsh+ e2γshE)

n−2k∏

j=1

(T − eβjhE)ym (0.3)

defined on the space of sequences y = {ym}∞m=−∞. Here Tym = ym+1 and E is an identity operator.
A difference operator ΔLn

h is chosen such that for any solution f of the homogeneous equation
Ln(D)f = 0 for any x ∈ R the inequality

ΔLn
h f(x+mh) = 0
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holds.
Introduce a class of sequences

Yh,p =
{
y = {ym}∞m=−∞ : ‖ΔLn

h y‖lp ≤ 1
}
, h > 0, 1 ≤ p ≤ ∞.

The norm on the space of sequences y is defined, as usual, by the equality

‖y‖lp =

⎧
⎪⎪⎨

⎪⎪⎩

( ∑

m∈Z
|ym|p

)1/p

, 1 ≤ p < ∞,

sup
m

|ym|, p = ∞.

Let AC be a class of locally absolute continuous functions f : R → R, Lp(R), 1 ≤ p < ∞, be a space of
functions g absolutely integrable on R with the norm

‖g‖Lp(R) =

(ˆ
R

|g(t)|p dt
)1/p

,

and L∞(R) be a space of essentially bounded on R functions with the norm

‖g‖L∞(R) = ess sup
x∈R

|g(x)|.

For the operator L(D) = Dn a problem of connection between the finite differences ΔDn

h = Δn
h (as well

as divided differences) of order n and the derivative of the function of order n is well studied (see, e.g., [1]).
Favard [2] considered this problem in 1940 in the extremal setting on the segment for a uniform grid of
nodes and respective divided differences.

The problem of the extremal functional interpolation (on a uniform grid of nodes), which was
set up in the beginning of 1960s by Yanenko and Stechkin for a particular case of the operator of n-fold
differentiation Dn, is as follows.

Let h1 ≥ 0. For any sequence y ∈ Yh,p consider a class of functions

Fh,h1,p(y) =

{
f : f (n−1) ∈ AC, Ln(D)f ∈ Lp(R),

1

h1

ˆ h1/2

−h1/2
f(mh+ t) dt = ym, m ∈ Z

}

(for h1 = 0 we set f(mh) = ym). For every sequence y ∈ Yh,p it is required to construct a function
f ∈ Fh,h1,p(y) and compute (or efficiently estimate from below and above) the following quantity

Ap = Ap(Ln, h, h1) = sup
y∈Yh,p

inf
f∈Fh,h1,p

(y)
‖Ln(D)f‖Lp(R). (0.4)

This problem is commonly called the Yanenko–Stechkin–Subbotin problem, and a significant number
of works (see some early works of Subbotin [3]–[5] on the operator Ln = Dn and the survey [6]) are
devoted to it (and its generalizations).

In this work, only the problem of interpolation in the mean is studied, i.e. the case h1 �= 0. In that case,
a solution to problem (0.4) turned out to be quite difficult, and there are few results in this direction.
For the operator Ln = Dn quantity (0.4) for 1 ≤ p ≤ ∞, 0 < h < ∞, 0 ≤ h1 ≤ 2h was computed by
Subbotin [1]–[3], [7]–[9]. It is worth noting that the time interval between Subbotin’s first and last works
on this topic is 32 years, and the case h < h1 ≤ 2h (overlapping averaging intervals) turned out to be
the most difficult to study. Subbotin proved that for any r ∈ N the equality Ap(D

n, h, 2rh) = +∞ holds.
In 1983, in [10] quantity (0.4) was computed for 1 ≤ p ≤ ∞, 0 < h < h0 = π/(maxαs) for an arbitrary
linear differential operator of form (0.1) for nonoverlapping averaging intervals, i.e. in case 0 ≤ h1 ≤ h.

Later in 1998 in [11], the quantity Ap(Ln, h, h1) was found for 0 < h < h0, h < h1 ≤ 2h (overlapping
averaging intervals) also in the general case for an arbitrary linear differential operator Ln of form (0.1),
but only for p = ∞. Moreover, it turned out that the quantity A∞(Ln, h, 2h) = ∞, and interest in the
problem of extremal interpolation subsided for a long time. Recently, the author (see [12]) managed,
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SUBBOTIN’S METHOD IN THE PROBLEM OF EXTREMAL INTERPOLATION 1019

using the ideas of previous works by Subbotin and works [10], [11], to generalize the result of [11] to the
case 1 < p < ∞, but only under the additional assumptions that the operator Ln is formally self-adjoint
and n is odd. Later in [13], for such differential operators, quantity (0.4) was also computed for p = 1 for
all positive integer numbers n ∈ N.

In the present article, we indicate the value of the quantityAp(Ln, h, h1) for 0 < h < h0, h < h1 ≤ 2h,
if the number n is even and the operator Ln is formally self-adjoint (i.e., satisfies the condition
Ln(−D) = Ln(D)). Let us explain how the proof of the supremum given below for the quan-
tity Ap(Ln, h, h1) (this is the main content of the present work) differs in the case when the number n
is even. The auxiliary polynomials considered below are the same ones that appeared in the author’s
previous works [10]–[13]. On their basis, more general characteristic polynomials of difference equa-
tions are constructed, depending on the “gluing” parameter of the subsequent extremal interpolation
L-splines and their generalizations. Since this parameter is chosen differently depending on the parity of
the number n (This choice for the n-fold differentiation operator was first made by Subbotin [3] in 1965),
the properties of these polynomials for different n are significantly different. For even n, an additional
study of the zeros (namely, the proof of their negativity and simplicity) of the characteristic polynomials
constructed below was required, which in the present work is carried out using Subbotin method [7]–[9].
For the operator Ln(D) = Dn, he also divided his proof into two cases depending on the parity of n. Note
that for the even n it turned out to be more complicated (see Lemmas 1, 2 and 4–9 below).

To formulate the main statement of this work, we introduce auxiliary functions from the pa-
pers [10], [11]. Let

Hn(t) = C(Ln, h)
∑

s∈Z

ei(2s+1)π(1−t) sin(((2s + 1)πh1)/(2h))

π(2s + 1)h1pn(((2s + 1)πi)/h)
,

C(Ln, h) = 2(−1)n+1h
k∏

s=1

(1 + 2eγsh cosαsh+ e2γsh)
n−2k∏

j=1

(1 + eβjh),

(0.5)

where pn = pn(λ) is a characteristic polynomial of the operator Ln (see (0.2)).
The main result of the work is

Theorem 1. Let number n be even, and Ln = Ln(D) be an arbitrary linear differential operator of
form (0.1) satisfying the condition

Ln(−D) = Ln(D).

Then for any 1 < p < ∞, 0 < h < h0 = π/(maxαs), h < h1 < 2h, the equality

Ap(Ln, h, h1) = (‖Hn‖Lq [0;1])
−1,

1

p
+

1

q
= 1

holds.

Remark 1. Note that in [10], [11] it was proven that for any 0<h<h0, 0 < h1 < 2h the equality

A∞(Ln, h, h1) = (‖Hn‖L1[0;1])
−1

holds for an arbitrary linear differential operator of form (0.1) (without the requirement of its formal
self-adjointness). As mentioned earlier, Theorem 1 for odd n was proved in [12].

1. PROPERTIES OF AUXILIARY FUNCTIONS

With the operator Ln in (0.1) we associate the operator L0
n+1(D) = DLn(D). Let ϕn = ϕn(t)

(respectively, ϕ0
n+1 = ϕ0

n+1(t)) be the unique solution of the equation Ln(D)f = 0 (respectively,

L0
n+1(D)f = 0) with the condition ϕ

(j)
n (0) = δj,n−1 (respectively, (ϕ0

n+1)
(j)(0) = δj,n). Here δj,n−1

and δj,n are the Kronecker deltas. With the differential operator L0
n+1 we associate a difference operator

Δ
L0
n+1

h = (T − E)ΔLn
h
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(see (0.3)), which is defined on the space of sequences of the form y = {ym}∞m=−∞.

The operators ΔLn
h and Δ

L0
n+1

h can be easily reduced to the form

ΔLn
h ym =

n∑

s=0

(−1)n−sμsym+s, Δ
L0
n+1

h ym =
n+1∑

s=0

(−1)n+1−sμ0
sym+s,

where μs = μs(Ln, h) > 0, μ0
s = μ0

s(L0
n+1, h) > 0 and do not depend on ym, moreover, μ0

s = μs + μs−1,
s = 0, 1, . . . , n+1 (the numbers μ−1 and μn+1 are set to zero). Coefficients {μs} and {μ0

s}, functions ϕn

and ϕ0
n+1 are employed in the definition of all further auxiliary functions. Following [10], for 0 ≤ t ≤ 1,

h1 > 0, 0 < h < π/(maxαs) we define the functions

Pn(t) =

n∑

j=0

(−1)j
n∑

s=j

(−1)n−sμsϕn((s − j + 1− t)h),

P 0
n+1(t) =

n+1∑

j=0

(−1)j
n+1∑

s=j

(−1)n+1−sμ0
sϕ

0
n+1((s − j + 1− t)h),

aj,n(t, h, h1) =
h2

h1

ˆ h1/(2h)

−h1/(2h)

n∑

l=0

(−1)n−lμlϕn((l + x+ 1− j − t)+h) dx,

Hn(t) =

n+1∑

j=0

(−1)jaj,n(t, h, h1).

(1.1)

Here, as usual, u+ stands for max{0, u}.
Due to the equalities Pn(1) = −Pn(0), P 0

n+1(1) = −P 0
n+1(0), Hn(1) = −Hn(0), these functions can

be continued to the entire real axis by the formulas

Pn(t+ 1) = −Pn(t), P 0
n+1(t+ 1) = −P 0

n+1(t), Hn(t+ 1) = −Hn(t).

In [10] it was proved that for these continuations the inclusions Pn ∈ Cn−2(R), P 0
n+1 ∈ Cn−1(R),

Hn ∈ Cn−1(R) take place. Moreover, the following equalities hold:

(P 0
n+1(t))

′ = 2hPn(t),
h1
h2

Hn(t) =
1

2h

(
P 0
n+1

(
t+

h1
2h

)
− P 0

n+1

(
t− h1

2h

))
.

Since the constructed function Hn(t) is 2-periodic, it can be expanded into the Fourier series, and at
the same time representation (0.5) is valid (see [10], [11]). The properties of the functions Pn(t), P 0

n+1(t)
and Hn(t) are described in [10, Lemmas 1, 7], [11, Lemmas 1, 5], [12, Lemmas 1–5 and Remark 4] (see
also [14], [15]). Let us continue to study the properties of the function Hn(t) in the case of overlapping
averaging intervals, i.e. in the case h < h1 < 2h. These properties are useful for us in the next sections.
In all subsequent statements we also assume the operator Ln to be formally self-adjoint (i.e. we assume
that it satisfies the condition Ln(−D) = (−1)nLn(D)) and the condition 0 < h < h0 to hold. Under
these assumptions, from [14] it follows that for even n = 2r the function ϕ2r(t) is odd, and for odd
n = 2r + 1 the function ϕ2r+1(t) is even.

Lemma 1. Let 1 < q < ∞, n = 2r, r ∈ N, and

Φ2r(t) =

∣∣∣∣H2r

(
t− h1

2h

)∣∣∣∣
q−1

−
∣∣∣∣H2r

(
t+

h1
2h

)∣∣∣∣
q−1

.

The following inequalities hold:

a) Φ2r(t) ≤ 0 for 0 ≤ t ≤ h1
(2h)

− 1

2
,

b) Φ2r(t) ≥ 0 for
3

2
− h1

(2h)
≤ t ≤ 1.
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Proof. It follows from [Lemma 5 and Remark 4][12] that the function |H2r(t)| is monotonically decreas-
ing on the segment [0; 0.5], moreover, H2r(0.5) = 0, and it is monotonically increasing on the segment
[0.5; 1], moreover, |H2r(1)| = |H2r(0)|. In addition, |H2r(t+ 1)| = |H2r(t)|, |H2r(1− t)| = |H2r(t)| for
all t ∈ R. To prove Lemma 1 we consider two cases:

1) 1 < h1/h ≤ 3/2,

2) 3/2 < h1/h < 2.

In the first case, due to the properties of the function H2r(t), the function |H2r(t− h1/(2h))|q−1 is
monotonically decreasing on the segment [0;h1/(2h) − 1/2], and the function |H2r(t+ h1/(2h))|q−1

is monotonically increasing on this segment, since for 1 < h1/h ≤ 3/2 the inequality h1/h− 1/2 ≤ 1
holds and

Φ2r(0) =

∣∣∣∣H2r

(
−h1
2h

)∣∣∣∣
q−1

−
∣∣∣∣H2r

(
h1
2h

)∣∣∣∣
q−1

= 0,

Φ2r

(
h1
2h

− 1

2

)
= −

∣∣∣∣H2r

(
h1
h

− 1

2

)∣∣∣∣
q−1

< 0.

This implies the validity of the first inequality in Lemma 1 for 0 ≤ t ≤ h1/(2h) − 1/2.
In case 2), we divide the segment [0;h1/(2h) − 1/2] into two subsegments:

[
0; 1 − h1

2h

]
and

[
1− h1

2h
;
h1
2h

− 1

2

]
.

On the first subsegment, the previous proof is completely valid, since the function |H2r(t− h1/(2h))|q−1

is monotonically decreasing, and the function |H2r(t+ h1/(2h))|q−1 is monotonically increasing. On
the second subsegment, we use the fact the function H2r(t) is 2-periodic, namely, we use the equality

∣∣∣∣H2r

(
t+

h1
2h

)∣∣∣∣
q−1

=

∣∣∣∣H2r

(
t+

h1
2h

− 2

)∣∣∣∣
q−1

.

Then the arguments of both functions |H2r(t− h1/(2h))|q−1 and |H2r(t+ h1/(2h) − 2)|q−1 belong to
the segment [−1;−0.5], moreover, t+ h1/(2h) − 2 < t− h1/(2h), and hence, due to the fact that the
function |H2r(t)|q−1 is monotonically decreasing on the segment [0; 0.5], it implies the first statement of
Lemma 1. The second statement of Lemma 1 follows by the first one, if we make a change of variable
1− t = t′ and use the properties of the function |H2r(t)| mentioned in the beginning of the proof of
Lemma 1. Proof of Lemma 1 is completed.

Corollary 1. For q > 1, −1 ≤ x ≤ 1, 3/2− h1/(2h) ≤ t ≤ 1 the inequality

ψ2r(x, t) =

∣∣∣∣H2r

(
t− h1

2h

)∣∣∣∣
q−1

− x2
∣∣∣∣H2r

(
t+

h1
2h

)∣∣∣∣
q−1

≥ 0 (1.2)

holds.

Proof. The validity of corollary 1 follows by the inequality

ψ2r(x, t) ≥ Φ2r(t) ≥ 0

for 3/2 − h1/(2h) ≤ t ≤ 1.

Lemma 2. For q > 1 the function

S2r(t) =

∣∣∣∣
H2r(t− h1/(2h))

H2r(t+ h1/(2h))

∣∣∣∣
q−1

monotonically decreases from 1 to 0 on the segment [0;h1/(2h) − 1/2].
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Proof. In the cases described in Lemma 1

1) 1 < h1/h ≤ 3/2,

2) 3/2 < h1/h < 2, 0 ≤ t ≤ 1− h1/(2h)

the statement of Lemma 2 is in fact proved in the mentioned lemma, since the numerator of the frac-
tion S2r(t) is monotonically decreasing with rising t, and the denominator is monotonically increasing.

It only remains to consider the case

3) 3/2 < h1/(2h) < 2, 1− h1/(2h) ≤ t ≤ h1/(2h) − 1/2.

Since in this case 1 ≤ t+ h1/(2h) ≤ 3/2, 1 ≤ t+ 2− h1/(2h) ≤ 3/2, then to prove Lemma 2, due to
the properties of the function H2r(t), it is sufficient to establish that the derivative of the function

S̃2r(t) =
H2r(t+ 2− h1/(2h))

H2r(t+ h1/(2h))

is nonpositive on the segment [1− h1/(2h);h1/(2h)− 1/2]. In that case, without loss of generality, one
can assume that the numerator and denominator of the fraction S̃2r(t) are nonnegative. In view of [12,
Lemma 5 and Remark 4], we have

S̃′
2r(t) =

(
H2r

(
t+

h1
2h

))−2(
H̃2r−1

(
2 + t− h1

2h

)
H2r

(
t+

h1
2h

)

−H2r

(
2 + t− h1

2h

)
H̃2r−1

(
t+

h1
2h

))
,

where

H̃2r−1(t) = H ′
2r(t) = P2r

(
t+

h1
2h

)
− P2r

(
t− h1

2h

)

(see (1.1)). Note that both points t+ h1/(2h) and t+ 2− h1/(2h) belong to the interval [1; 3/2] and
t+ h1/(2h) < t+ 2− h1/(2h). Since the function H2r(t) is monotone decreasing on this interval, we
obtain the inequality

H2r

(
t+

h1
2h

)
> H2r

(
t+ 2− h1

2h

)
≥ 0. (1.3)

From [11, Lemma 5] (see also [12, Lemma 5 and Remark 4]), in the case of formally self-adjoint
operator Ln, due to the fact that on the segment [1; 3/2] the function H2r is nonnegative, monotonically
decreasing, and, moreover, the equality H̃2r−1(t) = H ′

2r(t) holds, we get that the function H̃2r−1(t) on
this segment is monotonically decreasing and nonpositive. Since t+ h1/(2h) < t+ 2− h1/(2h),

0 ≥ H̃2r−1

(
t+

h1
2h

)
> H̃2r−1

(
t+ 2− h1

2h

)
. (1.4)

(1.3) and (1.4) imply that S̃′
2r(t) ≤ 0 for 1− h1/(2h) ≤ t ≤ h1/(2h) − 1/2. The proof of Lemma 2 is

complete.
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2. PROPERTIES OF SOME ALGEBRAIC POLYNOMIALS

In Sec. 3, the problem of obtaining an upper bound for the quantity Ap(Ln, h, h1) is reduced to
studying the zeros of the characteristic polynomial of an infinite-difference equation. So we need to
study the properties of some algebraic polynomials.

Let Ln be an arbitrary linear differential operator of form (0.1) and 0 < h < h0, h < h1 < 2h, q > 1.
For 0 ≤ t ≤ 1, consider a polynomial of degree n in variable x

R0
n(x, t) =

n∑

l=0

clx
l, cl =

l∑

s=0

(−1)n−sμ0
sϕ

0
n+1((s− l − t)h).

Lemma 3 [10, Lemmas 3 and 5]. 1. For the coefficients of the polynomial R0
n(x, t) for 0 < t < 1, the

inequalities c0 > 0, cn > 0 hold.
2. Let 0 < t < 1 and ηj(t) < 0, j = 1, 2, . . . , n, be zeros of the polynomial R0

n(x, t) written in
descending order, and η1 = 0, ηj < 0, j = 2, 3, . . . , n, be zeros of the polynomial R0

n(x, 0) written
in descending order. Then the following assertions hold:

1) for any j = 1, 2, . . . , n, the function ηj(t) is strictly decreasing on the interval (0;1), and for
0 < t < 1 the inequalities

ηj+1 < ηj(t) < ηj, j = 1, 2, . . . , n− 1, −∞ < ηn(t) < ηn

hold;

2) the following equalities hold:

signR0
n(ηj(t), u) =

{
(−1)j , 0 ≤ u < t,

(−1)j+1, t < u < 1,

signR0
n(ηj , t) = (−1)j+1, 0 < t < 1.

In what follows, we will need some more properties of the polynomial R0
n(x, t) ialignn the case where

the operator Ln is formally self-adjoint and n = 2r, r ∈ N.

Lemma 4. Let 0 < h < h0, and the operator L2r be formally self-adjoint. Then the following
assertions hold:

1) signR0
2r(−1, t) = (−1)r, 0 < t < 1,

2) the polynomial R0
2r(x, 0)/x is self-reciprocal (i.e. if x0 is its root, then 1/x0 is its root as

well);

3) R0
2r(−1, 0) = 0, i.e. ηr+1 = −1.

Proof. From the definitions of functions P 0
n+1(t) and R0

n(x, t) for x = −1 (see [14], [15]) equality
R0

2r(−1, t) = −P 0
2r+1(t) follows, 0 < t < 1. Moreover, signP 0

2r+1(t) = (−1)r , 1/2 < t < 1, by [14,
Eq. (1.19)]. This implies the first statement of Lemma 4.

To prove the second statement, we first note that at t = 0 we have c0 = 0 (therefore η1 = 0), and we
need to prove the equality c2r+1−l = cl, l = 1, 2, . . . , 2r. This fact follows, e.g., from [14, Eq. (2.9)].

The third statement follows by the second one and Lemma 3. Proof of Lemma 4 is completed.

Lemma 5. The nonlinear system of equations
{
R0

2r(x, u) = 0,

ψ2r(x, u) = 0

in the region −1 < x < 0, 0 ≤ u ≤ h1/(2h) − 1/2 has a unique solution (x, u) consisting of ex-
actly r points: x = {ηj(uj)}rj=1, u = {uj}rj=1.
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Proof. The function x = −
√

S2r(u) (see (1.2) and Lemma 2) with rising of argument u from 0 to
h1/(2h) − 1/2 monotonically increases from −1 to 0, and the functions ηj(u), j = 1, 2, . . . , 2r, for
0 < u < 1, due to Lemma 3, monotonically decrease. At the same time, the inequalities

ηj < ηj(u) < ηj−1, j = 2, 3, . . . , r + 1,

hold, where η1 = 0 and ηr+1 = −1 (see Lemma 4). Therefore, each nonlinear system of equations
{
R0

2r(ηj(u), u) = 0,

x = −
√

S2r(u) ,
j = 1, 2, . . . , r,

has a unique solution; denote it by (ηj(uj), uj). Thus, the system of equations in Lemma 5 has exactly r
pairwise distinct solutions (x, u), where x = {ηj(uj)}rj=1, u = {uj}rj=1, for which the inequalities

0 < ur < · · · < u2 < u1 <
h1
2h

− 1

2
, −1 < ηr(ur) < · · · < η2(u2) < η1(u1) < 0

hold. Proof of Lemma 5 is completed.

3. LOWER AND UPPER BOUNDS FOR Ap(L2r, h, h1)

Let us proceed to the proof of Theorem 1. First, we obtain a precise upper bound for the quantity
Ap(L2r, h, h1). Let 0 < h < h0, h < h1 < 2h, 1 < p < ∞, 1/p + 1/q = 1 and Ln(D) be an arbitrary
linear differential operator of ordern of form (0.1). Any solution to the linear nonhomogeneous differential
equation Ln(D)f = u, where u ∈ Lp(R), can be written as

f(x) =

n∑

j=1

Cjvj(x) +

ˆ x

0
ϕn(x− t)u(t) dt. (3.1)

Here {Cj}nj=1 are arbitrary constants, the function ϕn is defined in Sec. 1, and {vj(x)}nj=1 is an arbitrary
linearly independent system of functions from the kernel KerLn of the operator Ln. Let

ym =
1

h1

ˆ h1/2

−h1/2
f(mh+ t) dt, m ∈ Z.

In [10] for ΔLn
h ym (see (0.3)) the following equality was proved:

ΔLn
h ym =

h2

h1

ˆ 1

0

n+1∑

j=0

u((t+m− 1 + j)h) dt

×
ˆ h1/(2h)

−h1/(2h)

n∑

l=0

(−1)n−lμlϕn((l + x+ 1− j − t)+h) dx. (3.2)

Further in this section we assume that n = 2r and the operator L2r is formally self-adjoint. Let us
construct a generalized L-spline f ∈ Fh,h1,p(y) for any sequence y ∈ Yh,p using formula (3.1), setting

u(t) = L2r(D)f(t) = Zm

∣∣∣∣H2r

(
t

h

)∣∣∣∣
q−1

, (m− 0.5)h ≤ t < (m+ 0.5)h, m ∈ Z, (3.3)

where the function H2r is defined by equality (0.5) for n = 2r. From (3.3) it follows that the “gluing”
nodes of L-spline of f are uniform (moreover, they are also the zeros of the function H2r) , and they are
shifted for half a step compared to the interpolation nodes. The real numbers {Zm}∞m=−∞ are still to be
determined. From (3.2) and (3.3) we obtain a difference equation for the numbers {Zm}∞m=−∞

ΔL2r
h ym =

h2

h1

2r+2∑

j=0

Zm−1+jBj , m ∈ Z, (3.4)
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where

B0 =

ˆ 0.5

0
|H2r(t)|q−1 dt

ˆ h1/(2h)

−h1/(2h)

2r∑

l=0

(−1)2r−lμlϕ2r((l + z + 1− t)+h) dz,

Bj =

ˆ 0.5

0
|H2r(t)|q−1 dt

ˆ h1/(2h)

−h1/(2h)

2r∑

l=0

(−1)2r−lμlϕ2r((l + z + 1− j − t)+h) dz

+

ˆ 0.5

0
|H2r(t)|q−1 dt

ˆ h1/(2h)

−h1/(2h)

2r∑

l=0

(−1)2r−lμlϕ2r((l + z + 2− j − t)+h) dz,

j = 1, 2, . . . , 2r + 1,

B2r+2 =

ˆ 1

0.5
|H2r(t)|q−1 dt

ˆ h1/(2h)

−h1/(2h)

2r∑

l=0

(−1)2r−lμlϕ2r((l + z + 2r − t)+h) dz.

The characteristic polynomial of the difference equation (3.4) can be written as

U2r+2(x) =
2r+2∑

j=0

Bjx
j. (3.5)

Lemma 6. The polynomial U2r+2(x) is self-reciprocal.

Proof. We have to prove that B2r+2−j = Bj , j = 0, 1, . . . , 2r. For j = 1, 2, . . . , 2r − 1, after the
changes 1− t = t′, z = −z′ (and then after omitting the primes), with the oddness of the function ϕ2r(t)
(see Sec. 1) and the properties of the function H2r(t) taken into account, we have

Bj =

ˆ 1

0.5
|H2r(t)|q−1 dt

ˆ h1/(2h)

−h1/(2h)

2r∑

l=0

(−1)2r−lμl(ϕ2r((l − z − j + t)h))+ dz

+

ˆ 0.5

0
|H2r(t)|q−1 dt

ˆ h1/(2h)

−h1/(2h)

2r∑

l=0

(−1)2r−lμl(ϕ2r((l − z − j + 1− t)h))+ dz.

Now we use the equality u+ + u− = u and the fact that μ2l−r = μl, l = 0, 1, . . . , 2r, since the opera-
tor L2r is formally self-adjoint. In addition, we use the fact that the difference operator ΔL2r

h annihilates
any function from the kernel of the differential operator L2r, taken on a uniform grid with step h. We get

Bj = −
ˆ 0.5

0
|H2r(t)|q−1 dt

ˆ h1/(2h)

−h1/(2h)

2r∑

l=0

(−1)2r−lμ2r−l(ϕ2r((l − z − j + 1 + t)h))− dz

−
ˆ

0.51|H2r(t)|q−1 dt

ˆ h1/(2h)

−h1/(2h)

2r∑

l=0

(−1)2r−lμ2r−l(ϕ2r((l − z − j + t)h))− dz.

Let us apply the equality (−u)− = −u+ and make the change 2r − l = l′. Then from the previous
equality we obtain (the primes are omitted)

Bj =

ˆ 0.5

0
|H2r(t)|q−1 dt

ˆ h1/(2h)

−h1/(2h)

2r∑

l=0

(−1)2r−lμlϕ2r((l − 2r + z + j − 1− t)+h)) dz

+

ˆ 1

0.5
|H2r(t)|q−1 dt

ˆ h1/(2h)

−h1/(2h)

2r∑

l=0

(−1)2r−lμlϕ2r((l − 2r + z + j − t)+h)) dz

= B2r+2−j.

The equality B0 = B2r+2 can be proved by similar reasoning. Proof of Lemma 6 is completed.
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Let us transform the characteristic polynomial U2r+2(x) of degree 2r + 2 of difference equation (3.4).

Let

Q2r+1(x, z − t) =

⎧
⎪⎨

⎪⎩

x2R2r−1(x,−z + t+ 1), 0 ≤ z − t < 1,

xR2r−1(x,−z + t), −1 ≤ z − t < 0,

R2r−1(x,−z + t− 1), −2 ≤ z − t < −1,

where the function R2r−1(x, t) has the form

R2r−1(x, t) =

2r−1∑

l=0

xl
l∑

s=0

(−1)2r−1−sμsϕ2r((s − l − t)h), 0 ≤ t ≤ 1.

Then formula (3.5) can be rewritten as

U2r+2(x) =

ˆ 0.5

0
|H2r(t)|q−1 dt

ˆ −t+h1/(2h)

−t−h1/(2h)
Q2r+1(x, z) dz

+

ˆ 1

0.5
|H2r(t)|q−1 dt

ˆ −t+h1/(2h)

−t−h1/(2h)
xQ2r+1(x, z) dz.

In [10] the following formulas were proved:

(R0
2r(x, t))

′
t = h(1 − x)R2r−1(x, t), 0 ≤ t ≤ 1, xR0

2r(x, t+ 1) = R0
2r(x, t), t ∈ R.

Changing the order of integration in the formula for U2r+2(x) and using the mentioned formulas, we
obtain

U2r+2(x) =

ˆ 1−h1/(2h)

0
|H2r(t)|q−1

[ˆ 0

−t−h1/(2h)
xR2r−1(x,−z) dz

+

ˆ −t+h1/(2h)

0
x2R2r−1(x,−z + 1) dz

]
dt

+

ˆ 0.5

1−h1/(2h)
|H2r(t)|q−1

[ˆ −1

−t−h1/(2h)
R2r−1(x,−z − 1) dz

+

ˆ 0

−1
xR2r−1(x,−z) dz +

ˆ −t+h1/(2h)

0
x2R2r−1(x,−z + 1) dz

]
dt

+

ˆ h1/(2h)

0.5
|H2r(t)|q−1

[ˆ −1

−t−h1/(2h)
xR2r−1(x,−z − 1) dz

+

ˆ 0

−1
x2R2r−1(x,−z) dz +

ˆ −t+h1/(2h)

0
x3R2r−1(x,−z + 1) dz

]
dt

+

ˆ 1

h1/(2h)
|H2r(t)|q−1

[ˆ −1

−t−h1/(2h)
xR2r−1(x,−z − 1) dz

+

ˆ −t+h1/(2h)

−1
x2R2r−1(x,−z) dz

]
dt

=
1

h(1− x)

{ˆ 1−h1/(2h)

0
|H2r(t)|q−1

[
xR0

2r

(
x, t+

h1
2h

)
− x2R0

2r

(
x, t+ 1− h1

2h

)]
dt

+

ˆ 0.5

1−h1/(2h)
|H2r(t)|q−1

[
R0

2r

(
x, t+

h1
2h

− 1

)
− x2R0

2r

(
x, t+ 1− h1

2h

)]
dt

+

ˆ h1/(2h)

0.5
|H2r(t)|q−1

[
xR0

2r

(
x, t+

h1
2h

− 1

)
− x3R0

2r

(
x, t+ 1− h1

2h

)]
dt
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+

ˆ 1

h1/(2h)
|H2r(t)|q−1

[
xR0

2r

(
x, t+

h1
2h

− 1

)
− x2R0

2r

(
x, t− h1

2h

)]
dt

}
. (3.6)

Since H2r(t+ 1) = −H2r(t), from (3.6) we derive that

U2r+2(x)

=
1

h(1− x)

{ˆ h1/(2h)−0.5

0
R0

2r(x, t)

[∣∣∣∣H2r

(
t− h1

2h

)∣∣∣∣
q−1

− x2
∣∣∣∣H2r

(
t+

h1
2h

)∣∣∣∣
q−1]

dt

+

ˆ 1.5−h1/(2h)

h1/(2h)−0.5
R0

2r(x, t)

[
x

∣∣∣∣H2r

(
t− h1

2h

)∣∣∣∣
q−1

− x2
∣∣∣∣H2r

(
t+

h1
2h

)∣∣∣∣
q−1]

dt

+

ˆ 1

1.5−h1/(2h)
R0

2r(x, t)

[
x

∣∣∣∣H2r

(
t− h1

2h

)∣∣∣∣
q−1

− x3
∣∣∣∣H2r

(
t+

h1
2h

)∣∣∣∣
q−1]

dt

}
. (3.7)

Lemma 7. One has the inequality signU2r+2(−1) = (−1)r+1.

The proof of Lemma 7 follows by representation (3.7) for x = −1, Lemma 1, corollary 1 and the first
statement of Lemma 4.

Lemma 8. The solution of the system of equations in Lemma 5 satisfies the relations

signU2r+2(ηj(uj)) = (−1)j , j = 1, 2, . . . , r.

Proof. Let us first note that from the proof of Lemma 5 it follows that for any j = 1, 2, . . . , r the following
inequalities hold: ψ2r(ηj(uj), u) > 0 for 0 ≤ u < uj and ψ2r(ηj(uj), u) < 0 for uj < u ≤ h1/(2h)− 1/2.
Therefore, from (3.7) and the second statement of Lemma 3, the validity of Lemma 8 follows.

Lemma 9. All 2r + 2 roots of the polynomial U2r+2(x) are negative and simple.

Proof. By virtue of Lemma 8 we get that the polynomial U2r+2(x) has sign changes on every
interval (ηj(uj); ηj−1(uj−1)), j = 1, 2, . . . , r. This means that the mentioned polynomial on the in-
terval (ηr(ur); η1(u1)) has at least r − 1 negative roots. On the interval (−1; ηr(ur)), the polyno-
mial U2r+2(x) has at least one more root, since signU2r+2(ηr(ur)) = (−1)r , and due to Lemma 7,
signU2r+2(−1) = (−1)r+1. The first statement of Lemma 3 implies that the free coefficient B0

of the polynomial U2r+2(x) (i.e. the number U2r+2(0)) is positive. However, on the other hand,
U2r+2(η1(u1)) < 0. This means that on the interval (η1(u1); 0) there is one more negative root. Thus,
it is proved that on the interval (−1; 0) the polynomial U2r+2(x) has at least r + 1 pairwise distinct
negative roots. Recall that it is proved in Lemma 6 that this polynomial is self-reciprocal. Therefore, on
the semiaxis (−∞;−1) this polynomial has r+1 more pairwise distinct negative roots, which completes
the proof of Lemma 9.

The previous auxiliary statements aimed to prove that the characteristic polynomial being studied
satisfies the conditions of the following theorem.

Theorem A. If all zeros of the polynomial Ur(x) =
∑r

j=0Bjx
j , Bj ∈ R, Br �= 0, are nega-

tive and simple, Ur(−1) �= 0, then the difference equation
∑r

j=0BjZm+j = Km, m ∈ Z, where
K = {Km}∞m=−∞ ∈ �p, 1 ≤ p ≤ ∞, has a unique solution Z0 = {Z0

m}∞m=−∞ ∈ lp given by the
formula

Z0
m =

∞∑

s=−∞
a−s−mKs,

where
∑∞

s=−∞ asx
s = 1/Ur(x), for which the bound

‖Z0‖lp ≤
‖K‖lp

|Ur(−1)|
holds.
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The existence of a solution for the difference equation in Theorem A was proved by Krein [16], and
an upper bound for the norm of this solution was obtained by Subbotin [5].

Let us return to the proof of Theorem 1 again and obtain a precise upper bound for the quantity
Ap(L2r, h, h1). By virtue of what has been proved (see Lemmas 7 and 9), the polynomial U2r+2(x) (we
replace the number r in Theorem A with 2r + 2) satisfies all the conditions of Theorem A and, therefore,
difference equation (3.4) for n = 2r has a unique solution Z0 = {Zm}∞m=−∞ ∈ �p, for which the bound

‖Z0‖lp ≤
h1‖ΔL2r

h y‖�p
h2|U2r+2(−1)|

is valid.
In particular, this statement implies that for an arbitrary sequence y ∈ Yh,p there exists a function

f ∈ Fh,h1,p(y), for which, by virtue of (3.3), the inequality

‖Ln(D)f‖Lp(R) =

( ∞∑

m=−∞
|Z0

m|p
ˆ 1

0
|H2r(t)|(q−1)p dt

)1/p

= ‖Z0‖lp
(ˆ 1

0
|H2r(t)|q dt

)1/p

≤
(ˆ 1

0
|H2r(t)|q dt

)−1+1/p

= (‖H2r‖Lq [0;1])
−1

holds. Hence, for 0 < h < h0, h < h1 < 2h, 1 < p < ∞, 1/p + 1/q = 1 for the quantity Ap(L2r, h, h1)
we obtain an upper bound

Ap(L2r, h, h1) ≤ (‖H2r‖Lq [0;1])
−1, (3.8)

which is valid for any linear formally self-adjoint differential operator of form (0.1) in the case n = 2r.

It stands to mention that we constructed the function f ∈ Fh,h1,p(y) (see (3.2)) assuming

ΔL2r
h ym = ΔL2r

h

(
1

h1

ˆ h1/2

−h1/2
f(mh+ t) dt

)
, m ∈ Z.

In this case, it is necessary to justify that this function satisfies the conditions for interpolation in the
mean, i.e.

ym =
1

h1

ˆ h1/2

−h1/2
f(mh+ t) dt, m ∈ Z.

This fact for p = ∞ was proved in [10] for an arbitrary linear differential operator of form (0.1). In the
case 1 < p < ∞ the proof of the mentioned statement from [10] remains valid completely.

We now obtain a lower bound for the quantity Ap(L2r, h, h1). Let N be a positive integer number,
N > n+ 1. Consider an arbitrary sequence y∗ = {y∗m}∞m=−∞ satisfying the condition

ΔL2r
h y∗m =

{
(−1)m(2N + 1)−1/p, |m| ≤ N,

0, |m| > N.

It can be easily verified that y∗ ∈ Yh,p. For any function f ∈ Fh,h1,p(y
∗) in [10] and for 0 < h1 < h < h0,

in particular, for n = 2r, the inequality

‖Ln(D)f‖Lp(R) ≥ (‖Hn‖Lq [0;1])
−1

was proved. For h < h1 < 2h the proof from [10] remains valid. Therefore, for h < h1 < 2h for the
quantity Ap(L2r, h, h1) a lower bound

Ap(L2r, h, h1) ≥ (‖H2r‖Lq[0;1])
−1

holds, and it coincides with upper bound (3.8), which completes the proof of Theorem 1.
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Corollary 2. Let 0 < h < h0, 1 < p < ∞ and Ln(D) be an arbitrary formally self-adjoint linear
differential operator of form (0.1) for n = 2r. Then

Ap(Ln, h, 2h) = ∞.

Proof. The proof follows from the fact that for h1 = 2h the function H2r(t) ≡ 0 (see (0.5)), and the
passage to the limit as h1 → 2h in Theorem 1.

4. CONCLUSIONS

In the present article, it was not possible to solve the problem of extremal interpolation, that is,
the problem of accurately computing the value of Ap(Ln, h, h1) for h < h1 ≤ 2h for an arbitrary linear
differential operator Ln of form (0.1). The properties of the functions Hn and Sn in the general
case require more detailed studies. Note that for h1 > 2h it is not even clear whether the quantity
Ap(Ln, h, h1) is finite (in particular, if the operator Ln is formally self-adjoint).
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