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Abstract—The main purpose of this article is to show that every commuting Jordan derivation on
triangular rings (unital or not) is identically zero. Using this result, we prove that if A is a 2-torsion
free ring that is either semiprime or satisfies Condition (P), then, under certain conditions, every
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1. INTRODUCTION AND PRELIMINARIES

Let R be an associative ring with center Z(R). We write [x, y] = xy − yx for all x, y ∈ R. The ring R
is said to be 2-torsion free if the relation 2a = 0 for a ∈ R implies that a = 0. Further, R is called
a prime ring if the relation aRb = {0} implies that a = 0 or b = 0 and a semiprime ring if the relation
aRa = {0} implies that a = 0. Finally, R satisfies Condition (P) if xax = 0 for all x ∈ R implies that
a = 0. Clearly, every unital ring satisfies this condition. For nonunital rings that satisfy Condition (P),
the reader is referred to [1].

Recall that an additive map Δ: R → R is called a derivation if Δ(ab) = Δ(a)b+ aΔ(b) for all
a, b ∈ R. Further, Δ is called a Jordan derivation if Δ(a2) = Δ(a)a+ aΔ(a) for all a ∈ R. Also, Δ is
called a left (respectively, right) Jordan derivation if Δ(a2) = 2aΔ(a) (respectively, Δ(a2) = 2Δ(a)a)
for any a ∈ A. For more details about left (Jordan) derivations, e.g., see [2], [3].

The first result on a Jordan derivation to be a derivation is due to Herstein [4], who proved that every
Jordan derivation on a 2-torsion free prime ring is a derivation. Cusack [5] generalized Herstein’s result
to 2-torsion free semiprime rings (see also [6] for an alternative proof). In 2008, Vukman [3] studied left
Jordan derivations on semiprime rings. In that article he showed, that if R is a 2-torsion free semiprime
ring and Δ: R → R is a left Jordan derivation, then Δ is a derivation that maps R into Z(R). In recent
years, the characterizations of Jordan derivations on triangular rings have been studied. For example,
it was proved in [1] that, under some conditions, every Jordan derivation on a triangular ring (without
assuming unitality) is a derivation. For more studies concerning Jordan derivations, we refer the reader
to [7], [8], and references therein.

A mapping F : R → R is said to be centralizing on a subset X of R if [F(x), x] ∈ Z(R) for all x ∈ X.
In particular, if [F(x), x] = 0 for all x ∈ X, then F is said to be commuting on X. In the last few decades,
commuting maps have been one most active topic in the study of mappings on rings. For commuting
maps, we refer the readers to the very nice survey paper [9]. The history of commuting and centralizing
mappings goes back to 1955, when Divinsky [10] proved that a simple Artinian ring is commutative if
it has a nontrivial commuting automorphism. Two years later, Posner [11] achieved the first result on
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commuting derivations, which claims that if Δ is a commuting derivation on a prime ring R, then either
R is commutative or Δ is zero.

In the present paper, we aim at studying commuting Jordan derivations on triangular rings. Different
from Ponser’s result, we show that every commuting Jordan derivation on a triangular ring has to be
zero. We also point out that our result in this paper does not require the triangular rings in question to
be unital.

Throughout the paper, A and B are associative rings and M is an (A,B)-bimodule. Recall that
a triangular ring T = Tri(A,M,B) is a ring of the form

T = Tri(A,M,B) =
{[

a m

0 b

]
: a ∈ A, m ∈ M, b ∈ B

}

under the usual matrix addition and multiplication (see [12]). Note that T = Tri(A,M,B) is unital if
and only if both A and B are unital. Note that there exist many triangular rings without unity. For
example, if A is a ring without unity, then every upper triangular matrix ring over A does not contain
unity.

Set

T11 =

{[
a 0

0 0

]
: a ∈ A

}
,

T12 =

{[
0 m

0 0

]
: m ∈ M

}
,

T22 =

{[
0 0

0 b

]
: b ∈ B

}
.

Then T = T11 ⊕ T12 ⊕ T22, and every element A ∈ T can be written as A = A11 +A12 +A22, where
Aij ∈ Tij , i, j ∈ {1, 2}.

Let A and B be algebras. A left (respectively, right) A-module M is said to be left (respec-
tively, right) faithful if a = 0 is the only element in A satisfying aM = 0 (respectively, Ma = 0).
An (A,B)-bimodule M is said to be faithful if M is both a faithful left A-module and a faithful right
B-module (see [12] for more details). A module M is said to be n-torsion free, where n > 1 is an integer,
if, for any x ∈ M, nx = 0 implies that x = 0.

Now let us state the main result of this paper. Let A and B be 2-torsion free rings each of which is
either semiprime or satisfies Condition (P), and let M be a 2-torsion free faithful (A,B)-bimodule such
that if Am = {0} (respectively, mB = {0}) for some m ∈ M, then m = 0. If Δ is a commuting Jordan
derivation on the triangular ring T = Tri(A,M,B), then Δ is zero.

As stated above, Posner [11, Lemma 3] proved that if R is a prime ring and d is a commuting
derivation of R, then R is commutative or d is zero. As a corollary of the main theorem of this paper, we
show that every commuting Jordan derivation on a 2-torsion free ring that is either semiprime or satisfies
Condition (P)is identically zero under certain conditions. Some other related results are also presented.

2. RESULTS AND PROOFS

We begin our discussion with the following useful lemmas, which we will employ frequently to prove
the main result of this paper.

Lemma 2.1. Let R be a 2-torsion free ring, and let Δ: R → R be a commuting Jordan derivation;
i.e., Δ(x2) = Δ(x)x+ xΔ(x) and Δ(x)x = xΔ(x) for all x ∈ R. Then the following assertions
hold for any x, y ∈ R:

(i) Δ(xy + yx) = 2
(
xΔ(y) + yΔ(x)

)
.

(ii) Δ(xy + yx) = 2
(
Δ(x)y +Δ(y)x

)
.
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(iii) Δ(xyx) = 3Δ(x)yx+Δ(y)x2 −Δ(x)xy.

(iv) Δ(xyx) = x2Δ(y) + 3xyΔ(x)− yxΔ(x).

Proof. It is clear that Δ is both a left and a right Jordan derivation. Relations (i) and (iv) were
proved in [2, Proposition 1.1]. Likewise, relations (ii) and (iii) can be obtained for the right Jordan
derivations, and to make the paper self-contained, we prove them here. Relation (ii) readily follows from
Δ(x2) = 2Δ(x)x by linearization (i.e., substituting x+ y for x). Let us prove (iii). From (ii), we have

Δ(x(xy + yx) + (xy + yx)x) = 2Δ(x)(xy + yx) + 2Δ(xy + yx)x

= 6Δ(x)yx+ 2Δ(x)xy + 4Δ(y)x2

for all x, y ∈ R. On the other hand,

Δ(x(xy + yx) + (xy + yx)x) = Δ(x2y + yx2) + 2Δ(xyx)

= 2Δ(x2)y + 2Δ(y)x2 + 2Δ(xyx)

= 4Δ(x)xy + 2Δ(y)x2 + 2Δ(xyx).

Comparing these expressions and using the assumption that R is a 2-torsion free ring, we obtain

Δ(xyx) = 3Δ(x)yx+Δ(y)x2 −Δ(x)xy

for all x, y ∈ R, as desired.

Lemma 2.2. Let R be a 2-torsion free ring, and let x2a = 0 for all x ∈ R and for some a ∈ Z(R).
The following assertions hold:

(i) If R is semiprime, then a = 0.

(ii) If R satisfies Condition (P), then a = 0.

Proof. (i) Replacing x by x+ y in the equation x2a = 0 and then using this equation, we obtain
(xy + yx)a = 0 for all x, y ∈ R. Setting y = a in the previous equation and using the assumption that
a ∈ Z(R), we obtain 2axa = 0 for all x ∈ R. Since R is 2-torsion free, we have axa = 0 for all x ∈ R,
and R being semiprime implies that a = 0, as desired.

(ii) Since x2a = 0 for all x ∈ R and some a ∈ Z(R), we conclude that xax = 0 for all x ∈ R.
Condition (P) for R implies that a = 0.

Lemma 2.3 [13, Lemma 3]. Let R be a semiprime ring, and let f : R → R be an additive mapping.
If either f(x)x = 0 or xf(x) = 0 holds for all x ∈ R, then f = 0.

We are now in a position to prove our main result.

Theorem 2.4. Let A and B be 2-torsion free rings each of which is either semiprime or satisfies
Condition (P), and let M be a 2-torsion free faithful (A,B)-bimodule such that if m ∈ M and
Am = {0} (respectively, mB = {0}), then m = 0. If Δ is a commuting Jordan derivation on the
triangular ring T = Tri(A,M,B), then Δ is zero.

Proof. Without loss of generality, we assume that A is a semiprime ring and B satisfies Condition (P).
The proof is divided into the following six steps.

Step 1. For any

A11 =

[
a 0

0 0

]
∈ T11, A22 =

[
0 0

0 b

]
∈ T22,

we have

(i) [Δ(A11)]22 = 0.
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(ii) [Δ(A11)]12 = 0.

(iii) [Δ(A22)]11 = 0.

Note that A11A22 = A22A11 = 0. It follows from Lemma 2.1 (i) that

0 = Δ(A11A22 +A22A11) = 2
(
Δ(A11)A22 +Δ(A22)A11

)

= 2

[
[Δ(A11)]11 [Δ(A11)]12

0 [Δ(A11)]22

] [
0 0

0 b

]
+ 2

[
[Δ(A22)]11 [Δ(A22)]12

0 [Δ(A22)]22

] [
a 0

0 0

]

=

[
0 2[Δ(A11)]12b

0 2[Δ(A11)]22b

]
+

[
2[Δ(A22)]11a 0

0 0

]

=

[
2[Δ(A22)]11a 2[Δ(A11)]12b

0 2[Δ(A11)]22b

]
,

which implies that [
2[Δ(A22)]11a 2[Δ(A11)]12b

0 2[Δ(A11)]22b

]
= 0.

It follows that [Δ(A22)]11a = 0 for any a ∈ A and that [Δ(A11)]12b = 0 and [Δ(A11)]22b = 0 for any
b ∈ B. Since the ring A is semiprime and the ring B satisfies Condition (P), we have [Δ(A22)]11 = 0 and
[Δ(A11)]22 = 0. Using the fact that m = 0 is the only element in M such that mB = {0}, we see that
[Δ(A11)]12 = 0.

Step 2. For any

A11 =

[
a 0

0 0

]
∈ T11, A12 =

[
0 m

0 0

]
∈ T12,

we have

(i) [Δ(A12)]11 = 0.

(ii) [Δ(A11)]11 = 0.

To show that [Δ(A12)]11 = 0, first, we show that [Δ(A12)]11 ∈ Z(A). According to Step 1,
[Δ(A11)]22 = 0, which implies that A12Δ(A11) = 0. Hence we have

Δ(A11A12) = Δ(A11A12 +A12A11)

= 2
(
A11Δ(A12) +A12Δ(A11)

)
= 2A11Δ(A12)

= 2

[
a 0

0 0

] [
[Δ(A12)]11 [Δ(A12)]12

0 [Δ(A12)]22

]

=

[
2a[Δ(A12)]11 2a[Δ(A12)]12

0 0

]
,

which means that

Δ(A11A12) =

[
2a[Δ(A12)]11 2a[Δ(A12)]12

0 0

]
(2.1)

On the other hand, by Step 1, we have

Δ(A11A12) = Δ(A11A12 +A12A11)

= 2
(
Δ(A11)A12 +Δ(A12)A11

)
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=

[
2[Δ(A11)]11 0

0 0

] [
0 m

0 0

]
+

[
2[Δ(A12)]11 2[Δ(A12)]12

0 2[Δ(A12)]22

] [
a 0

0 0

]

=

[
2[Δ(A12)]11a 2[Δ(A11)]11m

0 0

]
,

which means that

Δ(A11A12) =

[
2[Δ(A12)]11a 2[Δ(A11)]11m

0 0

]
. (2.2)

Comparing Eqs. (2.1) and (2.2) and using the assumption that A is a 2-torsion free ring, we obtain
[Δ(A12)]11 ∈ Z(A).

Now let us prove that [Δ(A12)]11 = 0 = [Δ(A11)]11. Using Lemma 2.1 (iii), we have

0 = Δ(A11A12A11) = 3Δ(A11)A12A11 +Δ(A12)A
2
11 −Δ(A11)A11A12

=

[
[Δ(A12)]11 [Δ(A12)]12

0 [Δ(A12)]22

] [
a2 0

0 0

]
−

[
[Δ(A11)]11 0

0 0

] [
0 am

0 0

]

=

[
[Δ(A12)]11a

2 −[Δ(A11)]11am

0 0

]
,

which means that [
[Δ(A12)]11a

2 −[Δ(A11)]11am

0 0

]
= 0.

Therefore,

[Δ(A12)]11a
2 = 0, (2.3)

[Δ(A11)]11am = 0, (2.4)

for all a ∈ A and m ∈ M. Since [Δ(A12)]11 ∈ Z(A), the relation [Δ(A12)]11a
2 = 0 for all a ∈ A implies

that [Δ(A12)]11 = 0 by Lemma 2.2 (i).

It follows from Eq. (2.4) that [Δ(A11)]11a = 0 for each a ∈ A, because M is a faithful left A-module.
Now we define a mapping F11 : A → A by setting F11(a) = [Δ(A11)]11, where

A11 =

[
a 0

0 0

]
.

Obviously, the mapping F11 is additive. Thus, we have F11(a)a = 0 for all a ∈ A. It follows from
Lemma 2.3 that F11(a) = [Δ(A11)]11 = 0 for all A11 ∈ T11, as desired.

Step3. [Δ(A22)]12 = 0 for all A22 ∈ T22.

Obviously, A11A22 = 0 = A22A11 for all A11 ∈ T11 and A22 ∈ T22. Applying Lemma 2.1 (i) and
Step 1 (i) and (iii), we have

0 = Δ(A11A22 +A22A11)

= 2
(
A11Δ(A22) +A22Δ(A11)

)

= 2

[
a 0

0 0

] [
0 [Δ(A22)]12
0 [Δ(A22)]22

]

=

[
0 2a[Δ(A22)]12
0 0

]
,

which implies that 2a[Δ(A22)]12 = 0 for all a ∈ A. Since M is a 2-torsion free ring, we have
a[Δ(A22)]12 = 0 for all a ∈ A, and so [Δ(A22)]12 = 0 for all A22 ∈ T22, as desired.
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Step 4. For any

A12 =

[
0 m

0 0

]
∈ T12, A22 =

[
0 0

0 b

]
∈ T22,

we have

(i) [Δ(A12)]22 = 0.

(ii) [Δ(A22)]22 = 0.

First, let us show that [Δ(A12)]22 ∈ Z(B). On the one hand, using Step 1 (iii), Step 2 (i), and Step 3,
we obtain the following expressions:

Δ(A12A22) = Δ(A22A12 +A12A22)

= 2
(
Δ(A22)A12 +Δ(A12)A22)

= 2

[
0 0

0 [Δ(A22)]22

] [
0 m

0 0

]
+ 2

[
0 [Δ(A12)]12
0 [Δ(A12)]22

] [
0 0

0 b

]

=

[
0 2[Δ(A12)]12b

0 2[Δ(A12)]22b

]
;

that is,

Δ(A12A22) =

[
0 2[Δ(A12)]12b

0 2[Δ(A12)]22b

]
(2.5)

for all b ∈ B. On the other hand, using Lemma 2.1 (i), Step 1 (iii), Step 2 (i), and Step 3, we obtain

Δ(A12A22) = Δ(A22A12 +A12A22)

= 2
(
A22Δ(A12) +A12Δ(A22)

)

= 2

[
0 0

0 b

] [
0 [Δ(A12)]12
0 [Δ(A12)]22

]
+ 2

[
0 m

0 0

] [
0 0

0 [Δ(A22)]22

]

=

[
0 2m[Δ(A22)]22
0 2b[Δ(A12)]22

]
;

that is,

Δ(A12A22) =

[
0 2m[Δ(A22)]22
0 2b[Δ(A12)]22

]
(2.6)

for all b ∈ B. Comparing Eqs. (2.5) and (2.6), we see that [Δ(A12)]22 ∈ Z(B) for all A12 ∈ T12. Using
Lemma 2.1 (iv), Step 1 (iii), Step 2 (i), and Step 3, we obtain

0 = Δ(A22A12A22) = A2
22Δ(A12) + 3A22A12Δ(A22)−A12A22Δ(A22)

=

[
0 0

0 b2

] [
0 [Δ(A12)]12
0 [Δ(A12)]22

]
−

[
0 m

0 0

] [
0 0

0 b

] [
0 0

0 [Δ(A22)]22

]

=

[
0 −mb[Δ(A22)]22
0 b2[Δ(A12)]22

]
,

which implies that

b2[Δ(A12)]22 = 0 (b ∈ B), (2.7)

mb[Δ(A22)]22 = 0 (b ∈ B, m ∈ M). (2.8)

MATHEMATICAL NOTES Vol. 115 No. 6 2024



1012 HOSSEINI, JING

Note that [Δ(A12)]22 ∈ Z(B) for all A12 ∈ T12. This, along with Eq. (2.7), implies b[Δ(A12)]22b = 0
for all b ∈ B. Since B satisfies Condition (P), we obtain [Δ(A12)]22 = 0 for all A12 ∈ T12. Further, it
follows from Eq. (2.8) that Mb[Δ(A22)]22 = {0} for all

A22 =

[
0 0

0 b

]
∈ T22.

Since M is a faithful right B-module, we obtain

b[Δ(A22)]22 = 0 (2.9)

for all

A22 =

[
0 0

0 b

]
∈ T22.

It is clear that the mapping F22 : B → B defined by F22(b) = [Δ(A22)]22, where

A22 =

[
0 0

0 b

]
,

is additive. It follows from Eq. (2.9) that

bF22(b) = 0 (b ∈ B). (2.10)

Since Δ is a commuting map, it can be verified that F22(b)b = bF22(b) for any b ∈ B. Therefore,

F22(b)b = bF22(b) = 0 (b ∈ B). (2.11)

Replacing b by b1 + b2 in Eq. (2.10) and then using Eq. (2.10), we have

b1F22(b2) + b2F22(b1) = 0 (b1, b2 ∈ B).
Multiplying the previous equality on the right by b1 and then using identity (2.11), we obtain

b1F22(b2)b1 = 0, (b1, b2 ∈ B). (2.12)

Equation (2.12) and the assumption that the ring B satisfies Condition (P) imply that F22(b) = 0 for all
b ∈ B. This means that [Δ(A22)]22 = 0 for all A22 ∈ T22.

Step 5. [Δ(A12)]12 = 0 for every A12 ∈ T12.
On the one hand, using Lemma 2.1 (i), Step 1 (i), Step 2 (i) and Step 4 (i), for any

A11 =

[
a 0

0 0

]
∈ T11, A12 ∈ T12

we have
Δ(A11A12) = Δ(A11A12 +A12A11)

= 2
(
A11Δ(A12) +A12Δ(A11)

)

=

[
2a 0

0 0

] [
0 [Δ(A12)]12
0 0

]

=

[
0 2a[Δ(A12)]12
0 0

]
,

which means that

Δ(A11A12) =

[
0 2a[Δ(A12)]12
0 0

]
(2.13)

for all

A12 ∈ T12, A11 =

[
a 0

0 0

]
∈ T11.
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On the other hand, using Lemma 2.1 (ii) and Step 2, we have

Δ(A11A12) = Δ(A11A12 +A12A11)

= 2
(
Δ(A11)A12 +Δ(A12)A11

)
= 0,

which means that

Δ(A11A12) = 0 (A11 ∈ T11, A12 ∈ T12). (2.14)

Comparing Eqs. (2.13) and (2.14) and using the assumption that M is 2-torsion free, we conclude that
a[Δ(A12)]12 = 0 for all a ∈ A and all A12 ∈ T12. Using the fact that m = 0 is the only element in M
satisfying Am = {0}, we see that [Δ(A12)]12 = 0 for all A12 ∈ T12.

Step 6. Δ(A) = 0 for all A ∈ T.

It follows from Steps 1–5 that Δ(A11) = 0, Δ(A12) = 0, and Δ(A22) = 0 for all A11 ∈ T11,
A12 ∈ T12, and A22 ∈ T22. Therefore, for any A ∈ T we have

Δ(A) = Δ(A11 +A12 +A22) = 0.

Thereby, our proof is complete. The proof for the cases in which both rings A and B are semiprime, or
both satisfy Condition (P), or B is semiprime and A satisfies Condition (P) is exactly the same as above,
and we leave it to the interested reader.

In the following, we provide an example showing that the assumptions of Theorem 2.4 are not
superfluous. In this example, we use zero square rings, so we define these rings first.

Definition 2.5. (i) A ring R is called a zero square ring of type 1 if x2 = 0 for all x ∈ R and there exist
two elements y, z ∈ R such that yz �= 0.

(ii) A ring R is called a zero square ring of type 2 if x2 = 0 for all x ∈ R.

Examples of the above-mentioned concepts can be found in [14, Example 2.2]; to make our exposition
self-contained, let us present an example of a zero square ring of type 1.

Example 2.6 [14, Example 2.2 (iv)]. Let Z be a nonnull ring (that is, Z2 �= {0}). Write R = Z ×Z ×Z .
Define addition on R componentwise, and define a multiplication • on R by setting

(x1, y1, z1) • (x2, y2, z2) = (0, 0, x1y2 − x2y1).

Stanley [15] mentioned that R2 �= {0} and r2 = 0 for all r ∈ R. Hence R is a zero square ring of type 1.

For more examples and details concerning zero square rings, e.g., see [14]–[17] and references
therein.

Example 2.7. Let R be a zero square ring of type 1; that is, R is a ring such that the square of each
element in R is zero but the product of some nonzero elements in R is nonzero. Let

A =

⎧⎨
⎩
⎡
⎣0 a b

0 0 a

0 0 0

⎤
⎦ : a, b ∈ R

⎫⎬
⎭ .

Clearly, A is a ring with the annihilator

ann(A) =

⎧⎨
⎩
⎡
⎣0 x y

0 0 x

0 0 0

⎤
⎦ : x ∈ ann(R), y ∈ R

⎫⎬
⎭ ,
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where ann(R) denotes the annihilator of R. We know that the annihilator of any ring is an ideal of that
ring. Thus, ann(A) is an ideal of A, and we can view it as an A-bimodule. Define a mapping δ : A → A

by

δ

⎛
⎝
⎡
⎣0 a b

0 0 a

0 0 0

⎤
⎦
⎞
⎠ =

⎡
⎣0 a 0

0 0 a

0 0 0

⎤
⎦ .

It is easily seen that δ is a commuting Jordan derivation (see [18, Example 2.8]). Now let

T = Tri(A, ann(A),A) =

{[
A X

0 B

]
: A,B ∈ A,X ∈ ann(A)

}
.

Define a mapping Δ: T → T by

Δ

([
A X

0 B

])
=

[
δ(A) 0

0 0

]
.

A straightforward verification shows that Δ(X2) = 2Δ(X)X = 2XΔ(X) for all X ∈ T. As can be seen,
Δ is a nonzero commuting Jordan derivation of T, and this shows that the conditions outlined in
Theorem 2.4 are not superfluous.

As mentioned in Sec. 1, the following result is quite different from that in [11].

Corollary 2.8. Let A and B be 2-torsion free rings each of which is either semiprime or satisfies
Condition (P), and let M be as in Theorem 2.4. If the triangular ring T = Tri(A,M,B) is
commutative, then every Jordan derivation on T is identically zero.

Corollary 2.9. Let A and B be 2-torsion free rings each of which is either semiprime or satisfies
Condition (P), let M be as in Theorem 2.4, and let {dn}∞n=0 be a commuting Jordan higher deriva-
tion on the triangular ring T = Tri(A,M,B); i.e., dn(A2) =

∑n
k=0 dn−k(A)dk(A), d0(A) = A and

[dn(A), A] = 0 for all nonnegative integers n and any A ∈ T. Then dn = 0 for all n ∈ N.

Proof. We prove this corollary by induction on n. According to Theorem 2.4, the result holds trivially
for n = 1. Thus, we observe that

d2(A
2) = d2(A)A+ (d1(A))

2 +Ad2(A) = d2(A)A+Ad2(A)

for all A ∈ T, which means that d2 is a Jordan derivation on T. By the induction assumption,
[d2(A), A] = 0 for all A ∈ T, and so d2 is a commuting Jordan derivation on the triangular ring T. It
follows from Theorem 2.4 that d2 is zero. Let n be an arbitrary positive integer, and assume that the
result holds for any k < n. Let us prove the result for n. In view of our assumption, [dn(A), A] = 0 for all
A ∈ T. Hence we have

dn(A
2) =

n∑
k=0

dn−k(A)dk(A) = dn(A)A+Adn(A) = 2dn(A)A = 2Adn(A)

for all A ∈ T, which means that dn is a commuting Jordan derivation on T. Reusing Theorem 2.4 gives
the result.

Corollary 2.10. Let A and B be 2-torsion free rings each of which is either semiprime or satisfies
Condition (P), let M and T be as in Theorem 2.4, and let B0 ∈ T. If [[A,B0], A] = 0 for all A ∈ T,
then B0 ∈ Z(T), the center of T.

Proof. It is clear that ΔB0 : T → T defined by ΔB0(A) = [A,B0] is a derivation. Since [[A,B0], A] = 0
for all A ∈ T, it follows that ΔB0 is a commuting derivation on T. By Theorem 2.4, ΔB0 is zero, which
implies that B0 ∈ Z(T), as desired.
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Posner [11, Lemma 3] proved that if R is a prime ring and d is a commuting derivation of R, then
either R is commutative or d is zero. In the following corollary, we show that every commuting Jordan
derivation on a 2-torsion free ring that is either semiprime or satisfies Condition (P) is identically zero
under certain conditions.

Corollary 2.11. Let A and B be 2-torsion free rings each of which is either semiprime or satisfies
Condition (P), and let M and T be as in Theorem 2.4. Let d : A → A and D : B → B be two
commuting Jordan derivations, and let G : M → M be a mapping satisfying

G(am+mb) = 2d(a)m+ 2G(m)b = 2aG(m) + 2mD(b) (2.15)

for all a ∈ A, b ∈ B, and m ∈ M. Then d, D, and G are identically zero.

Proof. Define Δ: T → T by

Δ

([
a m

0 b

])
=

[
d(a) G(m)

0 D(b)

]
.

Let

A =

[
a m

0 b

]

be an arbitrary element of T. We have

Δ(A2) = Δ

([
a2 am+mb

0 b2

])
= Δ

([
d(a2) G(am+mb)

0 D(b2)

])

=

[
2ad(a) 2(aG(m) +mD(b))

0 2bD(b)

]

= 2AΔ(A).

One can readily show that Δ(A2) = 2Δ(A)A for all A ∈ T, and this means that Δ is a commuting
Jordan derivation on T. It follows from Theorem 2.4 that Δ is identically zero, and this implies that d, D,
and G are all zero, as desired.

At the end of this article, we present an example of rings A and B and a module M satisfying the
assumptions of Theorem 2.4.

Example 2.12. Let Z be the set of all integers. Set

A = B =

{[
2n 0

0 2n

]
: n ∈ Z

}
.

It is obvious that A and B do not contain identity. Let

M =

{[
i j

0 k

]
: i, j, k ∈ Z

}
.

A straightforward verification shows that A is a semiprime ring that also satisfies Condition (P), and fur-
ther, M is a faithful (A,B)-bimodule. Moreover, m = 0 is the only element of M satisfying Am = {0}
(respectively, mB = {0}). Therefore, the module M satisfies all the assumptions in Theorem 2.4.
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