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1. INTRODUCTION

Let X be a Banach space, and let B(X) be the Banach algebra of bounded linear operators
A : X → X. A closed subspace E ⊂ X is called an invariant subspace of A if AE ⊂ E, i.e., Ax ∈ E
for all x ∈ E. An operator A ∈ B(X) is said to be unicellular if its lattice Lat(A) of invariant subspaces
is linearly ordered, i.e., for any two A-invariant subspaces E and M one has either E ⊂ M or M ⊂ E.
A subspace E ⊂ X is called a hyperinvariant subspace of A if BE ⊂ E for each operator B such that
BA = AB. The lattice of hyperinvariant subspaces of A is denoted by Hyplat(A).

It is well known [1], [2] that the classical indefinite integration operator V defined on the Lebesgue
space Lp[0, 1] by

V f(x) =

ˆ x

0
f(t) dt

is unicellular for p ∈ [1,∞) and the lattice of invariant subspaces of V is anti-isomorphic to the
interval [0, 1]. The same is true (see [1], [3]) for the Riemann and Liouville fractional integration operators

Jαf(x) =
1

Γ(α)

ˆ x

0
(x− t)α−1f(t) dt, Reα > 0,

which are complex powers of J . Namely,

Lat(Jα) = Hyplat(Jα) = {Ea = κ[0,a]L
p[0, 1] : 0 ≤ a ≤ 1}

(see [1], [4]). The results about the unicellularity of the operator V on Lp[0, 1] (see Donoghue [5])

was extended to the Sobolev spaces W
(k)
2 [0, 1] (see Tsekanovskii [6]), W (k)

p [0, 1] and C(n)[0, 1] (see
Ostapenko–Tarasov [7] and also [3], [8]). For the results on some double integration operators

Wf(x, y) =

ˆ x

0

ˆ y

0
f(t, τ) dτ dt,
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we refer the reader to [9]. The Volterra integral operator

V f(x) =

ˆ x

0
f(t) dt (1.1)

is well defined for functions f in the space C(n)[0, 1] of n times continuously differentiable functions on
the unit interval [0, 1] of the real axis R = (−∞,∞). A closed subspace E ⊂ C(n)[0, 1] is said to be
V -invariant if V E ⊂ E, i.e., V f ∈ E for every f ∈ E. The present paper is motivated by the papers of
Ostapenko–Tarasov [7] and Tapdigoglu [8], where the unicellularity of the integration operator V on the
space C(n)[0, 1] is proved. Here we propose a new proof of the Ostapenko–Tarasov theorem by using
some of the ideas in the papers [8], [10], and [11]. Namely, we prove that

Lat(V ) = {Eλ, E
(k) : 0 < λ < 1, k = 1, . . . , n+ 1},

where

Eλ = {f ∈ C(n)[0, 1] : f(x) ≡ 0 on [0, λ]} (1.2)

and

E(k) = {f ∈ C(n)[0, 1] : f(0) = f ′(0) = · · · = f (k−1)(0) = 0}. (1.3)

Clearly,

{0} ⊂ Eλ ⊂ Eμ ⊂ E(n+1) ⊂ E(n) ⊂ · · · ⊂ E(1) ⊂ C(n)[0, 1] (λ > μ), (1.4)

and hence V is a unicellular operator on C(n)[0, 1].

2. LATTICE OF V -INVARIANT SUBSPACES

In this section, we describe the lattice of invariant subspaces of the operator V on the space C(n)[0, 1]
and prove its unicellularity. Our discussion is based on the Duhamel product of functions defined by

(f � g)(x) :=
d

dx

ˆ x

0
f(x− t)g(t) dt =

ˆ x

0
f ′(x− t)g(t) dt+ f(0)g(x) (2.1)

(see Wigley [12]).

Recall that the norm on C(n)[0, 1] is defined by

‖f‖n = max
0≤i≤n

‖f (i)‖∞, (2.2)

where

‖f (i)‖∞ := ‖f (i)‖C(n)[0,1] = max
0≤x≤1

|f (i)(x)|.

Theorem 1. Let V be the Volterra integration operator defined by (1.1) on the space C(n)[0, 1].
Then

Lat(V ) = {Eλ, E
(k) : α < λ < 1, k = 1, . . . , n+ 1},

where Eλ and E(k) are the nontrivial V -invariant subspaces defined by formulas (1.2) and (1.3),
and V is unicellular in C(n)[0, 1].

Proof. The proof is based on some of the arguments in the papers [3], [10], and [11]. Using (2.1), one
can readily see that

(f � g)(k)(x) =

ˆ x

0
f (k)(x− t)g′(t) dt+

k−1∑

m=0

f (m)(0)g(k−m)(x) + g(0)f (k)(x) (2.3)

for all f, g ∈ C(n)[0, 1] and 1 ≤ k ≤ n. Thus, it is an easy consequence of (2.3) that f � g belongs
to C(n)[0, 1] as well, and (C(n)[0, 1],�) becomes an algebra. One can use the results of operational
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calculus to show that (Cn[0, 1],�) is a commutative and associative algebra with unit element f(z) = 1.
Moreover, one can readily prove that (C(n)[0, 1],�) is a Banach algebra. Indeed, for all f, g ∈ C(n)[0, 1],
from (2.1)–(2.3) we have

|(f � g)(x)| ≤ max |f ′|max |g| +max |f |max |g|
and

|(f � g)(k)(x)| ≤ max |f (k)|max |g′|+
k−1∑

m=0

max |f (m)|max |g(k−m)|+max |f (k)|max |g|

≤ ‖f‖n‖g‖n + k‖f‖n‖g‖n + ‖f‖n‖g‖n
= (k + 2)‖f‖n‖g‖n ≤ (n+ 2)‖f‖n‖g‖n

for each k ∈ {1, 2, . . . , n}. Thus,

‖f � g‖n ≤ (n+ 2)‖f‖n‖g‖n, (2.4)

and by setting M = n+ 2 in (2.4), we obtain

‖f � g‖n ≤ M‖f‖n‖g‖n. (2.5)

By passing to an equivalent norm on C(n)[0, 1], from (2.5) we obtain the desired multiplicative inequality

‖f � g‖n ≤ ‖f‖n‖g‖n,

which shows that (C(n)[0, 1],�) is a Banach algebra.
The set of V -cyclic vectors is denoted by Cyc(V ); in other words,

Cyc(V ) = {f ∈ C(n)[0, 1] : span{V mf : m = 0, 1, . . . } = C(n)[0, 1]}.
Lemma 1. One has f ∈ Cyc(V ) if and only if f(0) 	= 0.

Proof. Indeed, it follows from (2.1) that x� f(x) = V f(x) for all f ∈ C(n)[0, 1]. More generally,

V mf(x) =
xm

m!
� f, m ≥ 0. (2.6)

Then we have

span{V mf : m ≥ 0} = span

{
f � xm

m!
: m ≥ 0

}

= span

{
Df

(
xm

m!

)
: m ≥ 0

}

= closDf span{xm : m ≥ 0}
= closDf [span{z1 : z ∈ C} ⊕ span{xm : m ≥ 1}]
= closDfC

(n)[0, 1],

where Df and ⊕ stand for the Duhamel operator and the direct sum of subspaces, respectively. Thus,

span{V mf : m ≥ 0} = DfC(n)[0, 1], (2.7)

which implies that f ∈ Cyc(V ) if and only if the range of the Duhamel operator Df is dense, i.e.,

DfC(n)[0, 1] = C(n)[0, 1]. (2.8)

Now if f ∈ Cyc(V ), then it follows from (2.8) that there exists a sequence

{gm}m≥1 ⊂ C(n)[0, 1]

such that

lim
m→∞

f � gm = 1 in C(n)[0, 1].
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Therefore, (f � gm)(0) → 1 as m → ∞, or, equivalently, f(0)gm(0) → 1 as m → ∞, which shows that
f(0) 	= 0. Now it remains to prove that if f ∈ C(n)[0, 1] and f(0) 	= 0, then f ∈ Cyc(V ). To this end,
in view of (2.8), we must show that the range of the operator Df is dense under the condition f(0) 	= 0.
However, in the following Statement we prove even more than we actually need.

Statement. If f(0) 	= 0, then Df is invertible on C(n)[0, 1].

Indeed, for F = f − f(0) we have Df = f(0)In +DF , where In is the identity operator on C(n)[0, 1].
To prove that Df is invertible, it suffices to show that DF is a quasinilpotent operator on C(n)[0, 1], i.e.,
σ(DF ) = {0}, or, equivalently, the spectral radius r(DF ) of the operator DF is zero. In fact, by the
well-known Gelfand formula (e.g., see Dunford–Schwartz [13]),

r(DF ) = lim
m→∞

‖Dm
F ‖ 1

m ,

and so we will estimate ‖Dm
F ‖. For every g ∈ C(n)[0, 1], we have

DF g(x) =
d

dx

ˆ x

0
F (x− t)g(t) dt =

ˆ x

0
F ′(x− t)g(t) dt

def
= (F ′ ∗ g)(x) def

= (KF ′g)(x).

Hence we obtain

|(KF ′g)(x)| =
∣∣∣∣
ˆ x

0
F ′(x− t)g(t) dt

∣∣∣∣ ≤
ˆ x

0
|F ′(x− t)||g(t)| dt ≤

ˆ x

0
‖F ′‖∞‖g‖∞ dt

≤ ‖F‖n‖g‖n(x),

|(K2
F ′g)(x)| =

(ˆ x

0
F ′(x− t)(Kg)(t) dt

)
=

∣∣∣∣
ˆ x

0
F ′(x− t)

(ˆ t

0
F ′(t− τ)g(τ) dτ

)
dt

∣∣∣∣

≤
ˆ x

0
|F ′(x− t)|

(∣∣∣∣
ˆ t

0
F ′(t− τ)g(τ) dτ

∣∣∣∣

)
dt

≤ ‖F‖2n‖g‖n
x2

2!
.

Thus, by induction,

|(Km
F ′g)(x)| ≤ ‖F‖mn ‖g‖n

xm

m!

for each integer m ≥ 0. Further, we can prove that

|(Km
F ′g)′(x)| ≤ ‖F‖mn ‖g‖n

(x+ 1)m

m!

for all x ∈ [0, 1] and m ≥ 0. The proof is similar to that in the paper [11] and hence is omitted. In a similar
way, one can also prove by induction (we omit the proof) that

|(Km
F ′g)(j)(x)| ≤ ‖F‖mn ‖g‖n

(x+ j)m

m!
, j = 0, 1, . . . , n. (2.9)

It follows from (2.9) that

‖Km
F ′g‖n ≤ ‖F‖mn ‖g‖n

(n+ 1)m

m!
,

and hence

‖Km
F ′‖

1
m ≤ ‖F‖n

n+ 1

(m!)
1
m

→ 0 as m → ∞.

Consequently, r(Kα,F ′) = 0, i.e., Kα,F ′ is quasinilpotent, and hence Dα,f is an invertible operator on
C(n)[0, 1], which proves the Statement. The proof of the lemma is complete.
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Lemma 2. Let f ∈ C(n)[0, 1].

(i) If f ∈ E(k), 1 ≤ k ≤ n, then f ∈ Cyc(V | E(k)) if and only if f ∈ Ek\Ek+1, i.e., if

f(0) = f ′(0) = · · · = fk−1(0) = 0, f (k)(0) 	= 0.

(ii) If f ∈ E(n+1), then f ∈ Cyc(V | E(n+1)) if only if f ∈ E(n+1)\Eλ for every λ ∈ (0, 1).

(iii) If f ∈ Eλ, then f ∈ Cyc(V | Eλ) if and only if f ∈ Xλ\Xμ for all μ > λ.

Proof. Let us define the following convolution products on the subspaces E(k), 1 ≤ k ≤ n+ 1:

(f
k
� g)(x) =

d

dx

ˆ x

0

f(x− t)

(x− t)k
g(t) dt, f, g ∈ E(k). (2.10)

(i) Let f ∈ E(k) and f /∈ E(k+1), where 1 ≤ k ≤ n. It is easily seen from (2.10) that

xk+m

m!

k
� g = V mg, g ∈ E(k), (2.11)

for all m ≥ 0. The Maclaurin series expansion of f gives

f(x) =
f (k)(0)

k!
xk +

f (k+1)(0)

(k + 1)!
xk+1 + · · · + f (n)(0)

n!
xn + q(x),

whence it follows that

f(x) =
f (k)(0)

k!
xk + q̃(x), (2.12)

where f (k)(0) 	= 0 and

q̃(x) =
f (k+1)(0)

(k + 1)!
xk+1 + · · ·+ f (n)(0)

n!
xn + q(x) ∈ E(k).

We define the k-Duhamel operator Dk,f on the subspace E(k) by the formula

Dk,fg = f
k
� g, g ∈ E(k).

It is obvious from (2.11) and (2.12) that

Dk,f = f (k)(0)IE(k) +Dk,q̃.

Since f (k)(0) 	= 0, it can be proved by the same argument as in the papers [3, Lemma 2] and [10,
Lemma 1] that Dk,f is invertible on E(k) (we omit the proof). On the other hand,

span{xk+m : m ≥ 0} = E(k).

In view of the representation (2.11), we have

Ef (V | E(k)
n ) := span{V mf : m ≥ 0} = span

{
xk+m

m!

k
� f : m ≥ 0

}

= span

{
Dk,f

xk+m

m!
: m ≥ 0

}

= closDk,f span{xk+m : m ≥ 0}
= closDk,fE

(k) = E(k);

i.e., if f ∈ E(k)\E(k+1), then f ∈ Cyc(V | E(k)).
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Conversely, the equality Ef (V ) = E(k) readily implies that f (k)(0) 	= 0, whence f /∈ E(k+1). Thus, if
f ∈ E(k) and f ∈ Cyc(V | E(k)), then f (k)(0) 	= 0, which proves (i).

The proof of (ii) is very similar to that of (i).
Indeed, the Maclaurin formula for the function f ∈ E(n+1) has the integral representation

f(x) =
1

(n− 1)!

ˆ x

0
f (n)(t)(x− t)n−1 dt

=
xn

n!
+

(
1

(n− 1)!

ˆ x

0
f (n)(t)(x− t)n−1 dt− xn

n!

)

=
xn

n!
+ q1(x).

Clearly, q1 ∈ E(n) and f
n
� g ∈ E(n+1) for every g ∈ E(n). Since f /∈ Eλ for all 0 < λ < 1, we have

ker(Dn,f ) = {0} by the Titchmarsh convolution theorem. Further, the condition q1 ∈ E(n) implies that
Dn,q1 is a compact operator on the space E(n+1) (see [3, Lemma 2]). Since

Dn,f = Dn,x
n

n!
+q1(x)

= Dn,x
n

n!
+Dn,q1(x) =

1

n!
IE(n+1) +Dn,q1(x)

and Dn,f is invertible on E(n+1), we have

Dn,fE
(n+1) = E(n+1).

Now

Ef (V | E(n)) = span{V mf : m ≥ 0} = span

{
xn+m

m!

n
� f : m ≥ 0

}

= span

{
Dn,f

xn+m

m!
: m ≥ 0

}
⊃ span

{
Dn,f

xn+1+m

(m+ 1)!
: m ≥ 0

}

= closDn,f span

{
xn+1+m

(m+ 1)!
: m ≥ 0

}
= closDn,fE

(n+1) = E(n+1).

Hence Ef (V | E(n)) ⊃ E(n+1). On the other hand, V E(n+1) ⊂ E(n+1), and so Ef (V | E(n)) ⊂ E(n+1).
Thus, Ef (V | E(n)) = E(n+1), whence f ∈ Cyc(V | E(n+1)). Conversely, if f ∈ Cyc(V | E(n+1)), then
f ∈ E(n+1)\Eλ for all λ ∈ (0, 1), which proves (ii).

The proof of (iii) can be obtained from Lemma 1 by a standard argument based on a simple change
of variables (e.g., see Ostapenko–Tarasov [7], Kalisch [14], and Gohberg–Krein [1]) and hence it is
omitted. The proof of Lemma 2 is complete.

Now let us return to the proof of Theorem 1. We will show that there exist no V -invariant subspaces
other than those in the chain (1.4) and hence

Lat(V ) = {Eλ, E
(k) : 0 < λ < 1; k = 1, 2, . . . , n+ 1}.

Indeed, assume the contrary: there exists a nontrivial V -invariant subspace E ⊂ C(n)[0, 1] different from
the invariant subspaces in (1.4). It is clear that

E =
⋃

g∈E
Eg(V | E),

where, as before,

Eg(V | E) = span{V mg : m = 0, 1, . . . }.
Then it is clear by Lemma 1 that there exists a function f ∈ E such that f(0) 	= 0. Consequently, by
Lemma 1, we conclude that E = C(n)[0, 1], which contradicts our assumption that E is a nontrivial
subspace. Since the set of subspaces in (1.4) is linearly ordered, it follows that the operator V is
unicellular. The proof of the theorem is complete.
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Recall that the commutant of an operator A on a Banach space X is the set

{A}′ = {B ∈ B(X) : BA = AB},
where B(X) is the Banach algebra of all bounded linear operators on X. Set

Hyplat(B) := {E ⊂ X : AE ⊂ E for each A ∈ {B}′}.

Corollary 1. Hyplat(V ) = {Eλ, E
(k) : 0 < λ < 1; k = 1, . . . , n + 1}.

The proof is immediate by the well-known general theorem stating that the lattice of hyperinvariant
subspaces of any unicellular operator A coincides with the lattice of nontrivial A-invariant subspaces
(e.g., see Radjavi–Rosenthal [2]).

The following corollary describes the commutant of the operator V .

Corollary 2. {V }′ = {Df : f ∈ C(n)[0, 1]}.

Proof. Indeed, it is clear from the formula

V f(x) = x� f ∀f ∈ C(n)[0, 1]

that DfV = V Df for all f ∈ C(n)[0, 1] and hence

{Df : f ∈ C(n)[0, 1]} ⊂ {V }′. (2.13)

Let T ∈ {V }′. Then TV = V T , and hence TV m = V mT for all m ≥ 0. Applying formula (2.6) to the
identity function f = 1, we obtain

TV m1 =
xm

m!
� T1, m ≥ 0,

i.e.,

T

(
x

m!
� 1

)
= DT1

(
xm

m!

)
, m ≥ 0.

Since
xm

m!
� 1 =

xm

m!
, m ≥ 0,

we have

T

(
xm

m!

)
= DT1

(
xm

m!

)
,

or, equivalently,

T (xm) = DT1(x
m), m ≥ 0.

Since

span{xm : m ≥ 0} = span{z1 : z ∈ C} ⊕ span{xm : m ≥ 1} = C(n)[0, 1],

it follows from the last equalities that Tf(x) = DT1f(x) for all f ∈ C(n)[0, 1] and hence T = DT1. Thus,
{V }′ ⊂ {Df : f ∈ C(n)[0, 1]}, which, together with (2.13), proves the corollary.
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