
ISSN 0001-4346, Mathematical Notes, 2023, Vol. 114, No. 3, pp. 387–396. © Pleiades Publishing, Ltd., 2023.
Russian Text © The Author(s), 2023, published in Matematicheskie Zametki, 2023, Vol. 114, No. 3, pp. 447–457.

On the Sum of Digits
of Expansions of a Pair of Consecutive Numbers

over a Linear Recurrent Sequence

A. V. Shutov1*

1 Khabarovsk Division of the Institute for Applied Mathematics,
Far Eastern Branch, Russian Academy of Sciences, Khabarovsk, 680038 Russia

Received June 2, 2022; in final form, December 2, 2022; accepted March 15, 2023
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1. INTRODUCTION

Let a1, . . . , ad be positive integers satisfying the condition

a1 ≥ a2 ≥ · · · ≥ ad−1 ≥ ad = 1.

Define a sequence {Tn} using a linear recurrent relation

Tn = a1Tn−1 + a2Tn−2 + · · · + adTn−d.

The initial conditions have the form

T0 = 1, Tn = 1 + a1Tn−1 + a2Tn−2 + · · ·+ anT0

for n < d. In this case, any positive integer N admits a unique greedy expansion with respect to the
sequence {Tn} [1]:

N =

m(N)∑

k=0

εk(N)Tk. (1.1)

The expansion (1.1) being greedy means that the inequalities 0 ≤ N −
∑m(N)

k=m1
εk(N)Tk < Tm1 hold for

any m1 < m(N).
Define the sets

N0 =

{
n :

m(N)∑

k=0

εk(N) ≡ 0 (mod 2)

}
, N1 =

{
n :

m(N)∑

k=0

εk(N) ≡ 1 (mod 2)

}

of positive integers with a given parity of the sum of the digits of the expansion with respect to the
sequence {Tn}.

Let

Ti,j(X) = �
{
n ≤ X : n ∈ Ni, n+ 1 ∈ Nj

}
.

Our objective is to prove the following theorem.
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Theorem 1. There exist effectively computable λ, 0 < λ < 1, and Cij (C00 = C11 = −C10 = −C01)
such that

Ti,j(X) =

(
1

4
+ Cij

)
X +O(Xλ).

An explicit formula for the constants Cij is rather complicated and is given below.
For the special case in which {Tn} is a Fibonacci sequence (d = 2, a1 = a2 = 1), this problem was

considered in [2], [3], where it was shown in two different ways that, in this case,

Ti,j(X) =

√
5

10
X +O(logX) for i = j,

Ti,j(X) =
5−

√
5

10
X +O(logX) for i �= j.

It should also be noted that, in [4], [5], an analog of this problem for the binary number system was
considered.

2. AUXILIARY RESULTS
In this section, we present some auxiliary results concerning expansions with respect to a sequence

{Tn}. Some of them are of independent interest.
Let us first obtain a bound for m(N). The following assertion holds [6, Theorem 2].

Proposition 1. Let a1, . . . , ad be positive integers satisfying the condition

a1 ≥ a2 ≥ · · · ≥ ad−1 ≥ ad.

Then the root β with the greatest absolute value of the equation

xd − a1x
d−1 − a2x

d−2 − · · · − ad = 0 (2.1)

is real, and β > 1. The absolute value of all other roots of equation (2.1) is less than 1.
In other words, β is a Pisot number. Moreover, if Tβ(x) = βx (mod 1) and d(1, β) = t1t2 . . . ,
where tk = �βT k−1

β (1)	, and the process is terminated if zero is obtained at the next step, then
d(1, β) = a1 · · · ad.

Note also that, in the proof of Theorem 2 in [6], it was also shown that (2.1) is the minimal polynomial
for β under consideration. This implies that, to different linear recurrent sequences of the class under
consideration, there correspond different β.

Using the standard theory of linear recurrence relations with constant coefficients, we immediately
obtain an asymptotic formula for Tn.

Corollary 1. The following asymptotic formula holds:

Tn ∼ cβn +O(1)

with some effectively computable constant c �= 0.

This immediately implies a bound for m(N).

Corollary 2. We have

m(N) = logβ N +O(1).

By induction on n, we can readily show that the inequality Tn+1 < (a1 + 1)Tn holds. In combination
with the greedy condition of the expansion, this gives the bound εk(n) ≤ a1, 0 ≤ k ≤ m(N), for the
coefficients of the expansion (1.1). Therefore, for every positive integer N , the expansion (1.1) generates
a finite word w(N) = εm(N)(N) · · · ε0(N) over the alphabet {0, 1, . . . , a1}. Obviously, not all finite words
over the given alphabet are generated by greedy expansions of positive integers. We call the words
generated by such expansions admissible.. We want to describe all admissible words.

Consider a graph containing d vertices labelled with the numbers 0, 1, . . . , d− 1. The edges of the
graph have the following form:
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1) a1 oriented loops at the vertex 0 that are labelled with the numbers from 0 to a1 − 1;

2) oriented edges from the vertex i to the vertex i+ 1 that are labelled by the numbers ai+1;

3) ai+1 oriented edges from the vertex i to the vertex 0

labelled with the numbers from 0 to ai+1 − 1.

The construction of this graph was taken by us from the paper [7]. Denote the graph thus constructed
by G(β). It has the following form.

�������	00,...,a1−1
��

a1

��
�������	1

a2

��

0,...,a2−1

��
�������	2

0,...,a3−1

��
. . .

ad−1

��

��
����d− 1

0,...,ad−1

��

To every finite path v0
c0−→ v1

c1−→ · · · cm−1−→ vm in the graph G(β), one can assign the word c0c1 · · · cm−1

composed of the labels of the path edges. The following assertion holds [7, Sec. 1.1], [8, Theorem 2.1
and Section 2.2].

Proposition 2. The following assertions are equivalent:

1) a word w is admissible;

2) the word w is obtained from some path of the graph G(β) starting at the vertex 0;

3) every subword of the word w is lexicographically less than the word a1 · · · ad.

3. NUMBERS WITH A SPECIFIED ENDING OF THE EXPANSION

Let w be an admissible word. Consider the set N(w) of positive integers for which w(N) ends with
the word w. Let

Nw(X) = �
{
n ∈ N : n ≤ X, n ∈ N(w)

}
.

In this section, we obtain an asymptotics for Nw(N).
The derivation of this asymptotics is based on the theory of generalized Rauzy tilings.

Let β(1), . . . , β(r1) be the real conjugates to β and β(r1+1), β(r1+1), . . . , β(r1+r2), β(r1+r2) be the
complex conjugates to β.

Define the mapping Φ: N → R
d−1 by the equality

Φ(N) =

(m(N)∑

k=0

εk(N)(β(1))k, . . . ,

m(N)∑

k=0

εk(N)(β(r1))k,

m(N)∑

k=0

εk(N)(Re β(r1+1))k,

m(N)∑

k=0

εk(N)(Im β(r1+1))k, . . . ,

m(N)∑

k=0

εk(N)(Re β(r1+r2))k,

m(N)∑

k=0

εk(N)(Im β(r1+r2))k
)
.
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The set

T = Φ(N)

is called the Rauzy fractal (the bar denotes the closure). The above construction of the Rauzy fractal
was proposed in [9]; this is an analog of the construction of the Rauzy fractal used in [10] and based on
greedy β-expansions of real numbers. The equivalence is shown in [9, Theorem 6].

Let Admn(j) be the set of admissible words of length n for which the corresponding paths in the
graph G(β) end at the vertex j. For any word u ∈ Admd−1(j), denote by Ãn(j) the set of words w of
length n for which the word uw is admissible. Note that the admissibility of the word uw depends only
on the existence, in the graph G(β), of a path that starts at the vertex at which the path corresponding
to u ends. This means that Ãn(j) does not depend on the choice of u and is the set of admissible words
of length n for which there is a corresponding path starting at j. For every w ∈ Ãn(j), define the set

Rn,j(w) = Φ

( ⊔

u∈Admd−1(j)

N(uw)

)
.

Proposition 3. For every n, one has the tiling

T =
d−1⊔

j=0

⊔

w∈ ˜An(j)

Rn,j(w)

of the Rauzy fractal T into sets Rn,j(w) having no common interior points. Each of the sets
Rn,j(w) has a boundary of zero measure.

This assertion is proved in [11, Theorem 11]. The tiling thus constructed is called the Rauzy tiling
of order n.

Proposition 4. Let j ∈ {0, 1, . . . , d− 1}. Then the following equality holds for any n and any word
w ∈ Ãn(j):

mesRn,j(w) =
βd−1−j−n

∑d−1
l=0 βl

mesT .

This assertion is proved in [9, Theorem 10].
Further, let us define a mapping S on the Rauzy fractal. Let Adm(j) =

⋃
nAdmn(j) be the

set of words to which there correspond paths on the graph G(β) that begin at the vertex 0 and
end at the vertex j. Let N(j) = {n ∈ N : w(n) ∈ Adm(j)}. Here N =

⊔d−1
j=0 N(j). As is known

(see, for example, [7, Sec. 1.3]), there are vectors vj ∈ R
d−1 such that Φ(n+ 1)− Φ(n) = vj . Write

T (j) = Φ(N(j)) and define the mapping S : T → T of the Rauzy fractal into itself according to the
rule S(x) = x+ vj if x ∈ T (j). It turns out (see [7, Theorem 6], [12, Theorem 2]) that the mapping S is
defined almost everywhere on T (and is an exchange of the domains T (j), j ∈ {0, 1, . . . , d− 1}).

Remark 1. Usually, this assertion is proved for a more general class of Rauzy fractals that are
constructed using the basis of the so-called primitive unimodular Pisot substitutions. The reduction
of the case under consideration to the general case can be found in [7, Secs. 2.3, 2.4]. Here it is required
that β is a Pisot number (of degree d) and a unit of the ring Z[β] and that the length of the word d(1, β)
is equal to d. The fact that β is a unit of the ring Z[β] holds because ad = 1, and the other conditions
follow from Proposition 1.

The mapping S is not defined on points in the sets of the form T (j1) ∩ T (j2). Note that the points
of the form Φ(n) with n ∈ N do not belong to the boundaries of the sets of the form T (j) (and even do
not belong to the boundaries of sets of the form Φ(N(w)) for any admissible word w) [10, Corollary 1],
and hence, for such points, the mapping S is well defined. Here S(Φ(n)) = Φ(n+ 1).
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Note also that the diagram

N
n→n+1 ��

Φ

��

N

Φ

��
T

S �� T

is commutative [9, Theorem 7].

Remark 2. It can be shown [7, Theorem 7], [13, Theorem 7] that the Rauzy fractal T represents
a fundamental domain of some lattice L. In this case, one can consider the natural projection
π : Rd−1 → T

d−1 = R
d−1/L. It turns out [12, Theorem 2 and Remark 5] that there exists a vector

l ∈ T
d−1 whose coordinates in the basis of the lattice L are linearly independent over Q, together with

the unit, and such that the equality π(S(x)) = π(x) + l (modL) holds for every x ∈ T for which the
mapping S is defined.

Proposition 5. The sets Rn,j(w) are bounded remainder sets for the mapping S; i.e., there exists
a constant C depending only on β and such that the following inequality holds for all positive
integers X:

∣∣∣∣�
{
k : k ≤ X, Sk(0) ∈ Rn,j(w)

}
− mesRn,j(w)

mesT
X

∣∣∣∣ ≤ C.

Moreover, C depends on β, but not on n, j, and w.

For the proof, see [9, Theorem 12].

Let w be an admissible word of length |w|. Let J(w) be the set of vertices of the graph G(β) for which
there is a path in G(β) beginning at a vertex j and labelled with the word w. Let

T (w) =
⊔

j∈J(w)

R|w|,j.

Proposition 6. For every admissible word w, n ∈ N(w) if and only if Sn(0) ∈ T (w).

Proof. The proof can be found in [9, Theorems 13, 14]

By Proposition 3, the sets R|w|,j contained in T (w) have no common interior points. Therefore,
taking into account Proposition 4, we have

mesT (w) =

∑
j∈J(w) β

d−1−j−|w|

∑d−1
l=0 βl

mesT .

In addition, taking into account Proposition 5, we see that the sets T (w) are also sets of bounded
remainder with respect to the mapping S. Moreover, since T (w) obviously contains at most d sets
R|w|,j, it follows that the corresponding bound for the remainder does not depend on the choice of the
word w. Combining this result with Proposition 6, we obtain the required information concerning the
asymptotic of Nw(X).

Theorem 2. There exists a constant C1 depending on β only and such that the following
inequality holds for any admissible word w and any positive integer X:

∣∣∣∣Nw(X)−
∑

j∈J(w) β
d−1−j−|w|

∑d−1
l=0 βl

X

∣∣∣∣ ≤ C1. (3.1)
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4. PROOF OF THE MAIN THEOREM

Let

ε(n) =

{
1, n ∈ N0,

−1, n ∈ N1.

Then it can readily be seen that the following equality holds:

Ti,j(X) =
∑

n≤X

(−1)iε(n) + 1

2

(−1)jε(n+ 1) + 1

2
. (4.1)

Proposition 7. There is an effectively computable constant λ < 1 such that
∑

n≤N

ε(n) = O(nλ). (4.2)

For the proof of Proposition 7, see [14]. A description of λ in terms of the roots of some equation
depending on the coefficients of the linear recurrent sequence is given ibidem. A more general result
is also proved in [15]. In [16], the possibility of strengthening the bound for the remainder term to
a logarithmic one is discussed.

Let

S(X) =
∑

n≤X

ε(n)ε(n + 1).

Multiplying out in (4.1), we obtain

Ti,j(X) =
X

4
+

∑

n≤X

(−1)i+jε(n)ε(n + 1)

4
+

∑

n≤X

(−1)iε(n)

4
+

∑

n≤X

(−1)jε(n+ 1)

4
.

Taking into account (4.2) and the definition of S(X), we can represent the last expression in the form

Ti,j(X) =
X + (−1)i+jS(X)

4
+O(Xλ)

for some effectively computable λ ∈ (0; 1).
Then it can readily be seen from (4.1) and (4.2) that, to prove Theorem 1, it suffices to prove the

following assertion.

Proposition 8. There exists an effectively computable constant Cβ such that

S(X) = CβX +O(logX).

It can readily be seen here that C00 = C11 = (1/4)Cβ and C01 = C10 = −(1/4)Cβ .

Let us pass to the proof of Proposition 8. For k ∈ {0, 1, . . . , d− 1}, write w(k)
max = a1 · · · ak (for k = 0,

w
(0)
max is the empty word). Write w

(d)
max = a1 · · · ad−10. Then it is easy to see that the word w

(k)
max is

admissible for any k. Moreover, it is the maximum admissible word of length k with respect to the
lexicographic order.

Let U be the set of admissible words of length d corresponding to paths of the graph G(β) starting

and ending at the vertex 0 and different from the word w
(d)
max. It follows from the consideration of the

graph G(β) that an admissible word belongs to U if and only if it does not end by any of the words w(k)
max

(1 ≤ k ≤ d). For u ∈ U , k ∈ {0, 1, . . . , d− 1}, and an integer nonnegative m, define the word

wu,m,k = uw(d)
max · · ·w(d)

max︸ ︷︷ ︸
m

w(k)
max.

The words introduced in this way have the following important properties.
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1) None of the words wu,m,k ends with another word.
2) For any positive integer N , the word w(N) (or a word derived from w(N) by adding a certain

number of zeros from the left) ends with one of the words wu,m,k.
Thus, there is a representation of the set of positive integers as the disjoint union

N =
⊔

u∈U

⊔

m≥0

d−1⊔

k=0

N(wu,m,k). (4.3)

For any admissible word w, denote by w′ the lexicographically next admissible word. Then it can
readily be seen that the following equality holds:

(wu,m,k)
′ = u′ 0 . . . 0︸ ︷︷ ︸

md+k

. (4.4)

For the word w = w1 · · ·w|w| (where wi ∈ {0, 1, . . . , a1} are separate symbols of the word), write

ε(w) = (−1)w1+···+w|w| .

It is clear that ε(N) = ε(w(N)). Let us represent w(N) in the form w(N) = vwu,m,k. Then we have
(w(N))′ = v(wu,m,k)

′. Therefore,

ε(n)ε(n + 1) = ε(v)ε(wu,m,k)ε(v)ε((wu,m,k)
′).

Then, taking into account (4.4) and the definition of wu,m,k, we see that the following equality holds for
any n ∈ N(wu,m,k):

ε(n)ε(n + 1) = ε(u)ε(u′)(ε(w(d)
max))

mε(w(k)
max).

Taking into account the definition of the words w(k)
max, we obtain

ε(n)ε(n + 1) = ε(u)ε(u′)(−1)m(a1+···+ad−1)+a1+···+ak . (4.5)

Combining (4.3) and (4.5), we have

S(X) =
∑

u∈U

∑

m≥0

d−1∑

k=0

ε(u)ε(u′)(−1)m(a1+···+ad−1)+a1+···+akNwu,m,k
(X).

Note that the equality Nwu,m,k
(X) = 0 obviously holds for |wu,m,k| > |w(X)| = m(X). Therefore,

S(X) =
∑

u∈U

|w(X)|∑

m=0

d−1∑

k=0

ε(u)ε(u′)(−1)m(a1+···+ad−1)+a1+···+akNwu,m,k
(X).

Let

rwu,m,k
(X) = Nwu,m,k

(X)−
∑

j∈J(wu,m,k)
βd−1−j−|wu,m,k|

∑d−1
l=0 βl

.

Then

S(X) = S1(X) + S2(X),

where

S1(X) =
∑

u∈U

|w(X)|∑

m=0

d−1∑

k=0

ε(u)ε(u′)(−1)m(a1+···+ad−1)+a1+···+ak

×
∑

j∈J(wu,m,k)
βd−1−j−|wu,m,k|

∑d−1
l=0 βl

,
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S2(X) =
∑

u∈U

|w(X)|∑

m=0

d−1∑

k=0

ε(u)ε(u′)(−1)m(a1+···+ad−1)+a1+···+akrwu,m,k
(X).

Applying Theorem 2, we see that there is a constant C1 depending on β only and such that

|rwu,m,k
(X)| ≤ C1.

Applying the triangle inequality and taking into account that

|ε(u)ε(u′)(−1)m(a1+···+ad−1)+a1+···+ak | = 1,

we obtain

|S2(X)| ≤
∑

u∈U

|w(X)|∑

m=0

d−1∑

k=0

C1,

i.e.,

|S2(X)| ≤ �U dC1|w(X)|.
Here it follows from the definition of the set U that its cardinality �U does not depend on X. Moreover, it
follows from Corollary 2 that |w(X)| = O(logX). Hence

S2(X) = O(logX).

Therefore, transposing the summation over m and k in the sum for S1(X), we find that

S(X) =
∑

u∈U

d−1∑

k=0

Σu,k(X)X +O(logX),

where

Σu,k(X) =

m(X)∑

m=0

ε(u)ε(u′)(−1)m(a1+···+ad−1)+a1+···+ak

∑
j∈J(wu,m,k)

βd−1−j−|wu,m,k|

∑d−1
l=0 βl

.

Since |wu,m,k| = (m+ 1)d+ k, it follows that the last equality can be represented in the form

Σu,k(X) =
ε(u)ε(u′)(−1)a1+···+akβ−1−k

∑d−1
l=0 βl

m(X)∑

m=0

(−1)m(a1+···+ad−1)β−md
∑

j∈J(wu,m,k)

β−j .

Further, note that it is easy to derive that any path in G(β) corresponding to a word u must end at

the vertex 0 from the fact that the word u ∈ U does not end with w
(k)
max. In addition, the word w

(k)
max

with k > 0 is admissible and, corresponding to it, there is a path in the graph G(β) starting at the
vertex 0. Therefore, every path corresponding to the word u can be continued to a path corresponding to

the word uw
(k)
max. Hence we see that J(wu,m,k) = J(u) and

Σu,k(X) =
ε(u)ε(u′)(−1)a1+···+akβ−1−k

∑d−1
l=0 βl

m(X)∑

m=0

(−1)m(a1+···+ad−1)β−md
∑

j∈J(u)
β−j .

Write

Cu,k =
ε(u)ε(u′)(−1)a1+···+akβ−1−k

∑d−1
l=0 βl

∞∑

m=0

(−1)m(a1+···+ad−1)β−md
∑

j∈J(u)
β−j .

Taking into account the formula for the sum of an infinite geometric progression, we obtain

Cu,k =
ε(u)ε(u′)(−1)a1+···+akβ−1−k

∑d−1
l=0 βl(1− (−1)a1+···+ad−1β−d)

∑

j∈J(u)
β−j.
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Write

Cβ =
∑

u∈U

d−1∑

k=0

Cu,k.

Note that all constants Cu,k, and thus also all constants Cβ , are effectively computable.
To complete the proof of Proposition 8, it remains to prove that

|Cβ −
∑

u∈U

d−1∑

k=0

Σu,k(X)|X = O(logX). (4.6)

For the proof of this bound, it suffices to prove that

|Cu,k − Σu,k(X)|X = O(logX).

When taking into account the definitions of Cu,k and Σu,k, we see that the last bound is equivalent to

X

∞∑

m=|w(X)|+1

(−1)m(a1+···+ad−1)β−md = O(logX). (4.7)

Summing the infinite geometric progression again, we obtain

X

∞∑

m=|w(X)|+1

(−1)m(a1+···+ad−1)β−md ≤ C2X

βd|w(X)|

with some constant C2. When taking into account Corollary 2, we see that the last value is O(X1−d)
and, therefore, O(logX), which proves (4.7), and hence also (4.6), which completes the proof of
Proposition 8, and hence also of Theorem 1.
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5. K. M. Éminyan, “A binary problem,” Math. Notes 60 (4), 478–481 (1996).
6. C. Frougny and B. Solomyak, “Finite beta-expansions,” Ergodic Theory Dynam. Systems 12 (4), 713–723

(1992).
7. V. Berthe and A. Siegel, “Tilings associated with beta-numeration and substitutions,” Integers 5 (3), A02

(2008).
8. S. Akiyama, G. Barat, V. Berthe, and A. Siegel, “Boundary of central tiles associated with Pisot beta-nume-

ration and purely periodic expansions,” Monatsh. Math. 155 (3–4), 377–419 (2008).
9. A. V. Shutov, “Generalized Rauzy tilings and linear recurrence sequences,” Chebyshevskii Sb. 22 (2),

313–333 (2021).
10. S. Akiyama, “Self affine tiling and Pisot numeration system,” in Number Theory and its Applications,

Kyoto, 1997, Vol. 2, Dev. Math. (Kluwer Acad. Publ., Dordrecht, 1999), pp. 7–17.
11. A. V. Shutov, “Generalized Rauzy tilings and bounded remainder sets,” Chebyshevskii Sb. 20 (3), 372–389

(2019).

MATHEMATICAL NOTES Vol. 114 No. 3 2023



396 SHUTOV

12. P. Arnoux and S. Ito, “Pisot substitutions and Rauzy fractals,” Bull. Belg. Math. Soc. Simon Stevin 8 (2),
181–207 (2001).

13. S. Akiyama, “Pisot number system and its dual tiling,” in Physics and Theoretical Computer Science,
NATO Secur. Sci. Ser. D Inf. Commun. Secur. (IOS Press, Amsterdam, 2007), Vol. 7, pp. 133–154.

14. M. Drmota and J. Gajdosik, “The parity of the sum-of-digits-function of generalized Zeckendorf representa-
tions,” Fibonacci Quart. 36 (1), 3–19 (1998).

15. M. Lamberger and J. W. Thuswaldner, “Distribution properties of digital expansions arising from linear
recurrences,” Math. Slovaca 53 (1), 1–20 (2003).

16. A. A. Zhukova and A. V. Shutov, “On Gelfond-type problem for generalized Zeckendorf representations,”
Chebyshevskii Sb. 22 (2), 104–120 (2021).

MATHEMATICAL NOTES Vol. 114 No. 3 2023


