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Abstract—In this paper, we extend the SOR-like iteration method for a new generalized absolute
value equation and obtain its convergence properties. What is more, the optimal parameter of the
SOR-like iteration is obtained. The result of numerical experiments shows that the proposed method
is reliable and feasible.
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1. INTRODUCTION

In this paper, we focus on the numerical solution of the new generalized absolute value equation
(NGAVE)

Ax− |Bx| = b, (1.1)

where A,B ∈ R
n×n, b ∈ R

n, and |x| denotes the vector that consists of the absolute values of compo-
nents of the vector x. Obviously, it is not difficult to find when B = I and the NGAVE (1.1) reduces to
the standard absolute value equation (AVE), see [1]:

Ax− |x| = b. (1.2)

The AVE (1.2) has many applications in the field of optimization, such as linear complementarity
problem, linear programming, complex quadratic programming, and binary matrix game. By now, the
existence and uniqueness of the solution of the AVE have been comprehensively studied. For example,
Mangasarian [1] proved that the AVE (1.2) has a unique solution if the smallest singular value of A
exceeds 1. In [2], it was established that the AVE (1.2) has a unique solution if and only if A+ (I − 2D)
is nonsingular, where D = diag(di), di ∈ [−1, 1]. Wu [3] gave some necessary and sufficient conditions
for the unique solvability of the NGAVE (1.1). For solving the AVE (1.2), many algorithms are proposed,
such as the Newton method and its other versions in [4] and [5], the NINE-method (Noor, Iqbal, Noor)
in [6], and the SOR-like iteration method in [7].

To our knowledge, there does not exist a numberical method for solving the NGAVE (1.1) so far,
and this is our motivation to write this paper. In this paper, we will try to extend the SOR-like iterative
method to solve the NGAVE (1.1) and further to discuss the convergence condition for the SOR-like
iterative method. Finally, the efficiency of the proposed method is verified by numerical experiments.

2. PRELIMINARIES

In this section, we give some symbol descriptions and lemmas to help the discussion later.
We introduce the following notation:

• I is an identity matrix.

• ρ( · ) is the spectral radius.
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• ‖ · ‖ is the 2-norm.

• σ( · ) is a singular value.

• diag(x) is the diagonal matrix whose diagonal elements are components of the vector x.

Lemma 2.1 [3]. Assume that A and B are nonsingular and σmin(AB
−1) > 1. Then the NGAVE (1.1)

has a unique solution for any b ∈ R
n, where σmin denotes the smallest singular value.

Lemma 2.2 [8]. For the real quadratic equation x2 − bx+ c = 0, where b, c ∈ R, both absolute
values of the roots are less than one if and only if |c| < 1 and |b| < 1 + c.

3. SOR-LIKE ITERATION METHOD

First, let y = |Bx|. Then we find that the NGAVE (1.1) is equivalent to{
Ax− y = b,

−|Bx|+ y = 0.
(3.1)

We can rewrite (3.1) as

Az :=

[
A −I

−D(x) I

] [
x

y

]
=

[
b

0

]
:= b, (3.2)

where D(x) := diag(sgn(Bx))B.
Let A = D − L− U , where

D =

[
A 0

0 I

]
, L =

[
0 0

D(x) 0

]
, U =

[
0 I

0 0

]
. (3.3)

Thus, we obtain

(D − ωL)z = [(1 − ω)D + ωU ]z + ωb, (3.4)

where ω > 0. Equation (3.4) can be expanded as follows:[
A 0

−ωD(x) I

] [
x

y

]
=

[
(1− ω)A ωI

0 (1− ω)I

] [
x

y

]
+

[
ωb

0

]
. (3.5)

Based on (3.5), we can easily obtain the SOR-like method, which is described below:{
xk+1 = (1− ω)xk + ωA−1(yk + b),

yk+1 = (1− ω)yk + w|Bxk+1|,
(3.6)

where k = 0, 1, . . . , n.
To study the convergence property of (3.6), let

Mω = (D − ωL)−1[(1− ω)D + ωU ].

Now we note that the eigenvalue of Mω must be less than 1, and we need to find the values of the
parameter ω satisfying this condition. To solve this problem, we need some lemmas.

Lemma 3.1. Let AB−1 ∈ R
n×n satisfy the assumptions of Lemma 2.1. If μ is an eigenvalue of the

matrix D(x)A−1, then |μ| < 1.

Proof. From Lemma 2.1, we know that σmin(AB
−1) > 1 is equivalent to ‖BA−1‖ < 1. Further, we

have

|μ| ≤ ρ(D(x)A−1) ≤ ‖D(x)A−1‖ ≤ ‖diag(sgn(Bx))‖ ‖BA−1‖ < 1.

This completes the proof.
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Lemma 3.2. Let AB−1 ∈ R
n×n satisfy the assumptions of Lemma 2.1. If λ is an eigenvalue of the

matrix Mω, then λ �= 1.

Proof. Assume that a vector [
x

y

]

is an eigenvector of the matrix Mω with the corresponding eigenvalue λ = 1. Then

Mω

[
x

y

]
=

[
x

y

]
, (3.7)

that is, {
y = Ax,

y = D(x)x.
(3.8)

Deforming (3.8), we obtain

(I −D(x)A−1)y = 0. (3.9)

From Lemma 3.1 it is clear that the matrix I −D(x)A−1 is nonsingular. So we have y = 0 and
x = A−1y = 0. This contradicts the fact that [

x

y

]

is an eigenvector of the matrix Mω. Hence λ �= 1.

Lemma 3.3. Let A ∈ R
n×n be nonsingular, and let ω > 0. Assume that λ is an eigenvalue of the

matrix Mω and λ �= 1− ω. If μ satisfies the condition

(λ+ ω − 1)2 = λω2μ, (3.10)

then μ is an eigenvalue of D(x)A−1. This conclusion can also be reversed: if μ is an eigenvalue of
D(x)A−1, then λ is an eigenvalue of the matrix Mω provided that (3.10) holds.

Proof. From Lemma 3.2, assume that [
x

y

]

is an eigenvector of the matrix Mω with the corresponding eigenvalue λ. Then

Mω

[
x

y

]
= λ

[
x

y

]
; (3.11)

that is, {
ωy = (λ+ ω − 1)Ax,

(λ+ ω − 1)y = λωD(x)x.
(3.12)

Let t = Ax. Then from (3.12) we obtain

(λ+ ω − 1)2

λω2
t = D(x)A−1t, (3.13)

and so μ = (λ+ ω − 1)2/(λω2) is an eigenvalue of the matrix D(x)A−1.
We can use a similar method to prove the second assertion.
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Theorem 3.1. Let AB−1 ∈ R
n×n satisfy the assumptions of Lemma 2.1. Assume that μ is an

eigenvalue of the matrix D(x)A−1. If μ > 0, then the SOR-like iteration method converges for
0 < ω < 2.

Proof. First, from (3.10) we obtain

λ2 + λ(−ω2μ+ 2ω − 2) + (ω − 1)2 = 0. (3.14)

By Lemma 2.2, |λ| < 1 if and only if{
|ω − 1|2 < 1,

| − ω2μ+ 2ω − 2| < 1 + (ω − 1)2.
(3.15)

Equation (3.15) is equivalent to the following form:{
0 < ω < 2,

−ω2 < −ω2μ < (ω − 2)2.
(3.16)

Obviously, from (3.16) we find 0 < ω < 2.

To minimize the number of iterations of the SOR-like method, it is necessary to find the optimal
relaxation parameters of the iterative equation. To this end, we have the following theorem.

Theorem 3.2. Let AB−1 ∈ R
n×n satisfy the assumptions of Lemma 2.1, and let ρ = ρ(D(x)A−1).

Assume also thatμ is any eigenvalue of the matrix D(x)A−1 andμ is positive. Then the parameter
ω0 = 2/(1 +

√
1− ρ) is optimal.

Proof. From (3.10) we obtain

λ =
1

2

[
ω2μ− 2ω + 2±

√
(ω2μ− 2ω + 2)2 − 4(ω − 1)2

]
. (3.17)

By calculating the modulus of λ, having in mind that the range of ω is (0, 2), we have

|λ| =

⎧⎪⎪⎨
⎪⎪⎩
|1− ω|, 2

1 +
√
1− μ

≤ ω < 2,

1

2

[
|ω2μ− 2ω + 2|+

√
(ω2μ− 2ω + 2)2 − 4(ω − 1)2

]
, 0 < ω <

2

1 +
√
1− μ

.
(3.18)

The graph of the function (3.18) is shown in Fig. 1.

Fig. 1. The value of |λ| against ω for different values of μ.
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In Fig. 1, |λ| denotes the vertical axis, and ω denotes the horizontal axis. Different values of μ
represent different segmented function images, the larger μ is, the higher the position of segmented
function will be. It is clear that the |λ| is maximal when μ = μmax = ρ. Hence we have

ρ(Mω) =

⎧⎪⎪⎨
⎪⎪⎩
|1− ω|, 2

1 +
√
1− ρ

≤ ω < 2,

1

2

[
|ω2ρ− 2ω + 2|+

√
(ω2ρ− 2ω + 2)2 − 4(ω − 1)2

]
, 0 < ω <

2

1 +
√
1− ρ

.
(3.19)

For a given ρ, the ρ(Mω) is a function of ω, and we visualize (3.19) in Fig. 2.

Fig. 2. ρ(Mω) against ω.

Obviously, ρmin(Mω) is at the intersection of two curves, corresponding to ω = 2/(1 +
√
1− ρ).

4. NUMERICAL EXPERIMENTS
In this section, we test the efficiency of the optimal parameter by some numerical experiments. In

these experiments, the initial vector is the zero vector, ρ = ρ(AB−1), the error is expressed by RES, and
it satisfies

RES = ‖Axk + |Bxk| − d‖ < 10−6.

The SOR-like iterative process will be terminated only for RES ≤ 10−6 or after 500 iterations. All the
tests are executed in MATLAB 2020b.

Example 4.1 [9]. Let A,B ∈ R
n×n and d ∈ R

n×1, where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 1 0 · · · 0 0

1 8 1 · · · 0 0

0 1 8 · · · 0 0
...

...
...

...
...

0 0 0 · · · 8 1

0 0 0 · · · 1 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
7×7

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
4 0 · · · 0 0

1
4

1
2

1
4 · · · 0 0

0 1
4

1
2 · · · 0 0

...
...

...
...

...
0 0 0 · · · 1

2
1
4

0 0 0 · · · 1
4

1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
7×7

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

1

1

1

1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We can calculate ρ = 0.0977 and ω0 = 1.0257 easily, and the solution of the corresponding equation
is

(0.1223 0.1100 0.1112 0.1111 0.1112 0.1100 0.1223)T .

Then we draw the corresponding plot as shown below.
The optimal parameter can be seen in Fig. 3, between 1.1 and 1.2; this is consistent with our

theoretical optimal parameters ω0.
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Fig. 3. IT and ω of Example 4.1.

Example 4.2. Let A,B ∈ R
n×n and d ∈ R

n×1, where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −1 0 · · · 0 0

−1 4 −1 · · · 0 0

0 −1 4 · · · 0 0
...

...
...

...
...

0 0 0 · · · 4 −1

0 0 0 · · · −1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
n×n

, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
4 0 · · · 0 0

1
4

1
2

1
4 · · · 0 0

0 1
4

1
2 · · · 0 0

...
...

...
...

...
0 0 0 · · · 1

2
1
4

0 0 0 · · · 1
4

1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
n×n

, b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

1

1

1

1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
n×1

.

Table 1. Numerical results in Example 4.2

n 1000 2000 3000 4000 5000

SOR-like ω0 1.0263 1.0263 1.0263 1.0263 1.0263

IT 8 8 8 8 8

CPU(s) 0.0012 0.0019 0.0033 0.0051 0.0063

RES 2.7262e-07 3.8641e-07 4.7361e-07 5.4708e-07 6.1179e-07

GN IT 2 2 2 2 2

CPU(s) 0.0092 0.0459 0.0833 0.1590 0.2322

RES 1.9741e-14 2.8002e-14 3.4330e-14 3.9661e-14 4.4356e-14

NINE IT 18 18 18 18 18

CPU(s) 0.3073 0.9824 2.3326 3.9088 5.7240

RES 3.4947e-07 4.9580e-07 6.0786e-07 7.0227e-07 7.8541e-07

In Table 1, we display results for different sizes of n. In this table, ‘IT’ denotes the number of iteration
steps, and ‘CPU’ denotes the elapsed CPU time in seconds. From Table 1, we see that the iteration
steps increase very slowly for different dimensions. The accuracy of the GN method is an order of
magnitude higher than other methods and the number of iterations is the least. The NINA method
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is not an advantage compared with other methods. Nevertheless, the SOR-like method can rapidly
converge to the results under the specific parameter. In the elapsed CPU time, the SOR-like method is
advantageous over the GN and NINA methods.

CONCLUSIONS

In this paper, we mainly discuss the SOR-like iterative method for solving the new generalized
absolute value equation and further consider the convergence conditions. For the problem of the optimal
parameter, we give the formula to calculate it. Finally, numerical experiments confirm our theory,
showing that our algorithm is efficient and feasible.
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