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Abstract—In the paper, our main aim is to introduce a new concept and call it the Lp-mixed
geominimal surface area Gp(K1, . . . ,Kn) of n convex bodies K1, . . . ,Kn, which obeys the
classical basic properties. The new affine geometric quantity in a special case yields Petty’s
geominimal surface area G(K) of a convex body K , Lutwak’s p-geominimal surface area Gp(K)
of K , and the newly established mixed geominimal surface area G(K1, . . . ,Kn) of n convex bodies
K1, . . . ,Kn. We establish some Lp-mixed geominimal surface area inequalities for the Lp-mixed
geominimal surface area, whose some special cases are Petty’s geominimal surface area inequality,
Lutwak’s p-geominimal surface area inequality, and some new mixed geominimal surface area
inequalities.
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1. INTRODUCTION

The setting for this paper is the n-dimensional Euclidean space R
n. Let Kn denote the set of the

convex bodies (compact, convex sets with nonempty interiors) of Rn. For a compact set K, we write
V (K) for the (n-dimensional) Lebesgue measure of K and call V (K) the volume of K. Let B be the unit
ball centered at the origin, and let its volume be ωn. For the set of convex bodies containing the origin
in their interiors, write Kn

o , and let Kn
c denote the set of convex bodies whose centroids lie at the origin.

The important concept of geominimal surface area was introduced by Petty [1]. The concept serves as
a bridge connecting a number of areas of geometry: affine differential geometry, relative geometry, and
Minkowski geometry. The geominimal surface area G(K) of K ∈ Kn was defined by

ω1/n
n G(K) = inf{nV1(K,Q)V (Q∗)1/n : Q ∈ Kn

o }, (1)

where V1(K,Q) denotes the usual mixed volume of K and Q, and Q∗ is the polar of Q. Given Q ∈ Kn
o ,

let Q∗ denote the polar of the body Q, defined by (see, e.g. [2])

Q∗ = {x ∈ R
n : 〈x, y〉 ≤ 1 for all y ∈ Q},

where 〈x, y〉 denotes the usual inner product of x and y in R
n.

The geominimal surface area of a body is invariant under the unimodular affine transformations of
the body. Petty [1] showed that the geominimal surface area G : Kn → (0,∞) is continuous and also
established the following fundamental inequality for the geominimal surface area:

Petty’s geominimal surface area inequality. If K ∈ Kn
o , then

G(K)n ≤ nnωnV (K)n−1 (2)

with equality if and only if K is an ellipsoid.
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Some extension of Petty’s geominimal surface area was presented by Lutwak [3]. The Lp-mixed
geominimal surface area, Gp(K) of K ∈ Kn

o , with p ≥ 1, was defined by

ωp/n
n Gp(K) = inf{nVp(K,Q)V (Q∗)p/n : Q ∈ Kn

o }, (3)

where Vp(K,Q) denotes the usual Lp-mixed volume of K and Q. It was also shown that the Lp-mixed
geominimal surface area of a body is invariant under the unimodular centro-affine transformations of
the body. He showed also that Gp : Kn

o → (0,∞) is continuous. Some extension of Petty’s geominimal
surface area inequality was also obtained:

Lutwak’s p-geominimal surface area inequality. If p ≥ 1 and K ∈ Kn
o , then

Gp(K)n ≤ nnωp
nV (K)n−p (4)

with equality if and only if K is an ellipsoid.

Recently, the geominimal surface area, p-geominimal surface area, Orlicz geominimal surface area
and related inequalities have attracted extensive attention and research. The recent research on these
matters can be found in the references [4]– [14].

To the convex bodies K1, · · · ,Kn−1 in R
n there is a unique positive Borel measure on Sn−1,

S(K1, . . . ,Kn−1; ·), called the mixed area measure of K1, . . . ,Kn−1, such that for every convex body
Kn we have the integral representation (see, e.g. [15], p. 280)

V (K1, . . . ,Kn) =
1

n

ˆ
Sn−1

h(Kn, u) dS(K1, . . . ,Kn−1;u), (5)

where u ∈ Sn−1, Sn−1 stands for the unit sphere, and h(K,x) is the support function of a convex body
K (simply denoted by hK).

The integration is with respect to the mixed area measure S(K1, . . . ,Kn−1; ·) on Sn−1. The mixed
area measure S(K1, . . . ,Kn−1; ·) is symmetric in its first n− 1 arguments. If K1 = · · · = Kn−i−1 = K
and Kn−i = · · · = Kn−1 = B, the mixed area measure S(K, . . . ,K,B, . . . , B; ·) with i copies of B and
(n− i− 1) copies of K will be written as Si(K, ·). If K1 = · · · = Kn−1 = K, then S(K1, . . . ,Kn−1; ·)
becomes the surface area measure S(K, ·).

We will present some natural extension of Lutwak’s p-geominimal surface area in this paper. The
Lp-mixed geominimal surface area Gp(K1, . . . ,Kn) of K1, . . . ,Kn ∈ Kn

o with p ≥ 1 was defined by

ωp/n
n Gp(K1, . . . ,Kn) = inf{nVp(K1, . . . ,Kn−1, Q,Kn)V (Q∗)p/n : Q ∈ Kn

o }, (6)

where Vp(K1, . . . ,Kn−1, Q,Kn) denotes the Lp-multiple mixed volume of n+ 1 convex bodies
K1, . . . ,Kn and Q and is defined by (see [16])

Vp(K1, . . . ,Kn−1, Q,Kn) =
1

n

ˆ
Sn−1

(
h(Q,u)

h(Kn, u)

)p

h(Kn, u) dS(K1, . . . ,Kn−1;u). (7)

It will be shown that the Lp-mixed geominimal surface area is invariant under unimodular
centro-affine transformations. It will also be shown that Gp : Kn

o × . . .×Kn
o︸ ︷︷ ︸

n

→ (0,∞) is unique and

continuous. In Sec. 4, we also establish an affine isoperimetric inequality for the Lp-mixed geominimal
surface area.

The Lp-mixed geominimal surface area inequality. If K1, . . . ,Kn ∈ Kn
o and p ≥ 1, then

Gp(K1, . . . ,Kn)
n ≤ nnωp

nV (K1, . . . ,Kn)
n/V (Kn)

p, (8)

with equality if and only if K1, . . . ,Kn−1 and Kn = E are mixed p-self-minimal, where E is an
ellipsoid.

The equality conditions for this inequality involve "mixed p-self-minimal" bodies. These bodies are
defined in Sec. 4.
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Obviously, if K1 = · · · = Kn = K, then (8) becomes (4). If p = 1 and K1 = · · · = Kn = K, then (8)
becomes (2).

It is worth mentioning here that other definitions of “Lp-mixed geominimal surface area” have
recently been published. However, none of them is based on the newly established Lp-multiple mixed
volume of (n+ 1) convex bodies K1, . . . ,Kn and Ln, so neither of them is a natural extension. Because
the Lp-multiple mixed volume was proposed which follows the spirit of introduction of Aleksandrov’s
mixed quermassintegrals and Lutwak’s p-mixed quermassintegrals. Thus, the concept of Lp-mixed
geominimal surface area based on the Lp-multiple mixed volume complies with the study line of Petty
and Lutwak’s geominimal surface area and the law of development.

2. NOTATION AND PRELIMINARIES

Let d denote the Hausdorff metric on Kn; i.e., for K,L ∈ Kn, we have

d(K,L) = |h(K,u) − h(L, u)|∞,

where | · |∞ denotes the sup-norm on the space C(Sn−1) of continuous functions. The Minkowski
addition plays an important role in the Brunn–Minkowski theory. During the last few decades, the
theory has been extended to Lp-Brunn–Minkowski theory. The well-known Lp addition is defined by
(see Firey [17])

h(K +p L, x)
p = h(K,x)p + h(L, x)p (9)

for all x ∈ R
n, 1 ≤ p ≤ ∞, and compact convex sets K and L in R

n containing the origin.

2.1. Basics on Convex Bodies

Define the Santaló product of K ∈ Kn
o as V (K)V (K∗). The Blaschke–Santaló inequality is one of

the fundamental affine isoperimetric inequalities (see [18]–[21]). It states that if K ∈ Kn
c , then

V (K)V (K∗) ≤ ω2
n, (10)

with equality if and only if K is an ellipsoid.
The radial function ρK = ρ(K, ·) : Rn\{0} → [0,∞) of a compact star-shaped K ⊂ R

n (about the
origin) is defined for x ∈ R

n\{0} as

ρ(K,x) = max{λ ≥ 0 : λx ∈ K}.
If ρ(K,u) (or simply ρK) is positive and continuous, then K is called a star body (about the origin).
Write Sn

o for the set of star bodies in R
n. For K ∈ Kn

o , it is easily seen that

h(K∗, ·) = 1

ρ(K, ·) and ρ(K∗, ·) = 1

h(K, ·) . (11)

For φ ∈ GL(n), we write φt for the transpose of φ and φ−t for the inverse of the transpose of φ. It is
easy that (see [22])

h(φK, x) = h(K,φtx), (12)

where K ∈ Kn
o . Obviously,

(φQ)∗ = φ−tQ∗. (13)

where Q ∈ Kn
o .

For K ∈ Kn
o , define the inner radius r(K) and outer radius R(K) by

r(K) = max{λ > 0 : λB ⊂ K} and R(K) = min{λ > 0 : λB ⊃ K}. (14)

Obviously,

r(K) = min
u∈Sn−1

h(K,u) and R(K) = max
u∈Sn−1

h(K,u).
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2.2. Lp-Mixed Volumes

The Brunn–Minkowski inequality is the best-known inequality concerning volumes of compact
convex sets. It states that if K and L are compact convex sets in R

n, then

V (K + L)1/n ≥ V (K)1/n + V (L)1/n, (15)

with equality if and only if K and L are homothetic.
The mixed volume V1(K,L) of compact convex sets K and L is defined by

V1(K,L) :=
1

n
lim
ε→0+

V (K + εL)− V (K)

ε
=

1

n

ˆ
Sn−1

h(L, u) dS(K,u). (16)

The Minkowski inequality for K and L states that

V1(K,L) ≥ V (K)(n−1)/nV (L)1/n, (17)

with equality if and only if K and L are homothetic.
The Lp Minkowski mixed volume inequality is as follows:

Vp(K,L) ≥ V (K)(n−p)/nV (L)p/n, (18)

with equality if and only if K and L are homothetic, where

Vp(K,L) :=
p

n
lim
ε→0+

V (K +p ε · L)− V (K)

ε
, (19)

and the Lp-mixed volume has the integral representation (see [23])

Vp(K,L) =
1

n

ˆ
Sn−1

h(L, u)ph(K,u)1−p dS(K,u). (20)

In particular, in the Lp-Brunn–Minkowski theory, S(K, ·) is replaced by the p-surface area measure
Sp(K, ·) given by

dSp(K, ·) = h(K,u)1−pdS(K,u).

2.3. Mixed p-Quermassintegrals

The mixed quermassintegrals are, of course, the first variation of the ordinary quermassintegrals
with respect to the Minkowski addition. The p-mixed quermassintegrals Wp,0(K,L),Wp,1(K,L) . . .
Wp,n−1(K,L), are the first variation of the ordinary quermassintegrals with respect to the Firey addition;
i.e., for K,L ∈ Kn

o and real p ≥ 1, we have (see e.g. [24])

Wp,i(K,L) =
p

n− i
lim
ε→0+

Wi(K +p ε · L)−Wi(K)

ε
. (21)

For p ≥ 1, 0 ≤ i < n, and each K ∈ Kn
o , there exists a regular Borel measure Sp,i(K;u) on Sn−1 such

that the p-mixed quermassintegral Wp,i(K,L) has the integral representation

Wp,i(K,L) =
1

n

ˆ
Sn−1

h(L, u)p dSp,i(K,u) (22)

for all L ∈ Kn
o . Obviously, for p = 1, Wp,i(K,L) becomes the well-known mixed quermassintegral

Wi(K,L) of K and L. The measure Sp,i(K, ·) is absolutely continuous with respect to Si(K, ·) and
has the Radon–Nikodym derivative

dSp,i(K, ·)
dSi(K, ·) = h(K, ·)1−p. (23)

The measure Sn−1(K, ·) is independent of the body K, presenting just the ordinary Lebesgue measure
S(K, ·) onSn−1. Si(B, ·) denotes the ith surface area measure of the unit ball inR

n. In fact, Si(B, ·) = S

MATHEMATICAL NOTES Vol. 112 No. 6 2022



1048 ZHAO

for all i. The surface area measure S0(K, ·) will frequently be written simply as S(K, ·). When i = 0,
Sp,i(K, ·) is just the p-surface area measure Sp(K, ·) (see [25]). Obviously, putting i = 0 in (22),
the mixed p-quermassintegral Wp,i(K,L) becomes the Lp-mixed volume Vp(K,L). The fundamental
inequality for mixed p-quermassintegrals states that (see [24]) for K,L ∈ Kn

o , p ≥ 1, and 0 ≤ i < n,

Wp,i(K,L)n−i ≥ Wi(K)n−i−pWi(L)
p, (24)

with equality if and only if K and L are homothetic.
Obviously, when p = 1, inequality (24) becomes the well-known Minkowski inequality for mixed

quermassintegrals.

2.4. Mixed Projection Body

For K ∈ Kn and u ∈ Sn−1, let v(K|u⊥) denote the (n− 1)-dimensional volume of K|u⊥, the image
of the orthogonal projection of K onto the (n− 1)-dimensional subspace of Rn that is orthogonal to u.
The projection body ΠK ∈ Kn

o of K ∈ Kn is the body whose support function is given by

h(ΠK,u) = v(K|u⊥) = 1

2

ˆ
Sn−1

|〈u, u′〉| dS(K,u′), (25)

where u ∈ Sn−1. Let Π(K1, . . . ,Kn−1) be the mixed projection body of convex bodies K1, . . . ,Kn−1.
It is defined by (see, e.g. [26])

h(Π(K1, . . . ,Kn−1), u) =
1

2

ˆ
Sn−1

|〈u, u′〉| dS(K1, . . . ,Kn−1;u
′). (26)

One of the fundamental inequalities for the mixed projection body is the following Aleksandrov–Fenchel
inequality for mixed projection bodies: If K1, . . . ,Kn−1 are compact convex subsets and 1 ≤ r < n,
then (see [26])

V (Π(K1, . . . ,Kn−1)) ≥
r∏

j=1

V (Π(Kj , . . . ,Kj ,Kr+1, . . . ,Kn−1)
1/r. (27)

If K1, . . . ,Kn−1 ∈ Kn, then the mixed projection body of convex bodies K1, . . . ,Kn−1 is denoted
by Π(K1, . . . ,Kn−1), and its support function is given for u ∈ Sn−1 as (see [26])

h(Π(K1, . . . ,Kn−1), u) = v(K1|u⊥, . . . ,Kn−1|u⊥), (28)

where v(K1|u⊥, . . . ,Kn−1|u⊥) is the (n− 1)-dimensional mixed volume of K1|u⊥, . . . ,Kn−1|u⊥.

3. Lp-Multiple Mixed Volume

Let us introduce the Lp-multiple mixed volume of n+ 1 convex bodies K1, . . . ,Kn and Ln.
Definition 3.1. (see [16]) For K1, . . . ,Kn, Ln ∈ Kn

o , and p ≥ 1, the Lp-multiple mixed volume,
denoted by Vp(K1, · · · ,Kn, Ln), is defined by

Vp(K1, · · · ,Kn, Ln) :=
1

n

ˆ
Sn−1

(
h(Kn, u)

h(Ln, u)

)p

h(Ln, u) dS(K1, . . . ,Kn−1;u). (29)

Zhao [16] shown also that the Lp-multiple mixed volume has the limit representation; i.e.,

Vp(K1, · · · ,Kn, Ln) =
d

dε

∣∣∣∣
ε=0+

V (K1, · · · ,Kn−1, Ln +p ε ·Kn). (30)

Obviously, the classical mixed volume V (K1, . . . ,Kn) of K1, . . . ,Kn, the Lp-mixed volume
Vp(K,L) of convex bodies K and L, and the p-mixed quermassintegral Wp,i(K,L) of K and L are
all special cases of the Lp-multiple mixed volume Vp(K1, . . . ,Kn−1, Q,Kn).
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The fundamental inequality for Lp-multiple mixed volume of K1, · · · ,Kn, Ln is the follow-
ing Lp-Aleksandrov–Fenchel inequality for Lp-multiple mixed volume: If K1, · · · ,Kn, Ln ∈ Kn

o ,
1 ≤ r ≤ n, and p ≥ 1, then (see [16])

Vp(K1, · · · ,Kn, Ln) ≥

r∏
i=1

V (Ki . . . ,Ki,Kr+1, . . . ,Kn)
p/r

V (K1, · · · ,Kn−1, Ln)
p−1 . (31)

The classical Aleksandrov–Fenchel inequality of K1, · · · ,Kn is an important special case of the
Lp-Aleksandrov–Fenchel inequality. The Minkowski inequality (24) for mixed p-quermassintegrals is
also a special case of the Lp-Aleksandrov–Fenchel inequality.

Lemma 1. If K1, . . . ,Kn ∈ Kn
o and p ≥ 1, then, for A ∈ SL(n), we have

Vp(AK1, · · ·AKn−1,Kn, ALn) = Vp(K1, · · · ,Kn−1, A
−1Kn, Ln). (32)

Proof. From (12) and (29), we obtain

Vp(AK1, · · ·AKn−1,Kn, ALn) =
1

n

ˆ
Sn−1

(
h(Kn, u)

h(ALn, u)

)p

h(ALn, u) dS(AK1, . . . , AKn−1;u)

=
1

n

ˆ
Sn−1

(
h(Kn, u)

h(Ln, Atu)

)p

h(Ln, A
tu) dS(K1, . . . ,Kn−1;A

tu)

=
1

n

ˆ
Sn−1

(
h(Kn, A

−tu)

h(Ln, u)

)p

h(Ln, u) dS(K1, . . . ,Kn−1;u)

=
1

n

ˆ
Sn−1

(
h(A−1Kn, u)

h(Ln, u)

)p

h(Ln, u) dS(K1, . . . ,Kn−1;u)

= Vp(K1, · · · ,Kn−1, A
−1Kn, Ln).

This completes the proof.

Lemma 2. Let Ki1, . . . ,Kin, Lin ∈ Kn
o and p ≥ 1. If Kij → K0j , j = 1, . . . , n, and Lin → L0n, then

Vp(Ki1, · · · ,Kin, Lin) → Vp(K01, · · · ,K0n, L0n) (33)

as i → ∞.

Proof. To see this, let Kij ∈ Kn
o , i ∈ N ∪ {0}, j = 1, . . . , n, be such that Kij → K0j as i → ∞ and

Lin → L0n as i → ∞. The mixed area measure is weakly continuous; i.e.,

dS(Ki1, . . . ,Ki(n−1);u) → dS(K01, . . . ,K0(n−1);u) weakly on Sn−1.

Since h(Kin, u) → h(K0n, u) and h(Lin, u) → h(L0n, u) uniformly on Sn−1, it follows that, for p ≥ 1,(
h(Kin, u)

h(Lin, u)

)p

→
(
h(K0n, u)

h(L0n, u)

)p

.

Further, ˆ
Sn−1

(
h(Lin, u)

h(Kin, u)

)p

h(Kin, u) dS(Ki1, . . . ,Ki(n−1);u)

→
ˆ
Sn−1

(
h(L0n, u)

h(K0n, u)

)p

h(K0n, u) dS(K01, . . . ,K0(n−1);u).

Hence

lim
i→∞

Vp(Ki1, · · · ,Kin, Lin) = Vp(K01, · · · ,K0n, L0n).

This shows that Vp(K1, · · · ,Kn, Ln) is continuous.
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Lemma 3. Let K1, . . . ,Kn, Ln ∈ Kn
o and pi, p ≥ 1. If pi → p, then

Vpi(K1, · · · ,Kn, Ln) → Vp(K1, · · · ,Kn, Ln). (34)

Proof. Note that pi → p implies that(
h(Ln, u)

h(Kn, u)

)pi

→
(
h(Ln, u)

h(Kn, u)

)p

.

Further, ˆ
Sn−1

(
h(Ln, u)

h(Kn, u)

)pi

h(Kn, u) dS(K1, . . . ,Kn−1;u)

→
ˆ
Sn−1

(
h(Ln, u)

h(Kn, u)

)p

h(Kn, u) dS(K1, . . . ,Kn−1;u).

Hence

lim
i→∞

Vpi(K1, · · · ,Kn, Ln) = Vp(K1, · · · ,Kn, Ln).

This completes the proof.

Lemma 4 (see [16]). If K1, . . . ,Kn, Ln ∈ Kn
o and p ≥ 1, then, for A ∈ SL(n), we have

Vp(AK1, · · · , AKn, ALn) = Vp(K1, · · · ,Kn, Ln). (35)

4. Lp-Mixed Geominimal Surface Area

Definition 4.1. For p ≥ 1 and K1, · · · ,Kn ∈ Kn
o , the Lp-mixed geominimal surface area of convex

bodies K1, · · · ,Kn, denoted by Gp(K1, · · · ,Kn), is defined by

ωp/n
n Gp(K1, · · · ,Kn) := inf{nVp(K1, . . . ,Kn−1, Q,Kn)V (Q∗)p/n : Q ∈ Kn

o }. (36)

If p = 1, then Gp(K1, . . . ,Kn) will be written G(K1, . . . ,Kn) and called the mixed geominimal
surface area of K1, . . . ,Kn, and

ω1/n
n G(K1, . . . ,Kn) = inf{nV1(K1, . . . ,Kn−1, Q,Kn)V (Q∗)1/n : Q ∈ Kn

o }. (37)

This is exactly another generalization of mixed angle of Petty’s geominimal surface area.
If K1 = · · · = Kn−i−1 = K, Kn−i = · · · = Kn−1 = B, and Kn = K, then Gp(K1, . . . ,Kn) will be

written Gp,i(K) and called the ith Lp-mixed geominimal surface area of K, and

ω1/n
n Gp,i(K) = inf{nWp,i(K,Q)V (Q∗)1/n : Q ∈ Kn

o }. (38)

In case i = 0 in (38), Gp,i(K) becomes the p-geominimal surface area Gp(K). If p = 1, then Gp,i(K)
will be written Gi(K) and called the ith geominimal surface area of K, and

ω1/n
n Gi(K) = inf{nWi(K,Q)V (Q∗)1/n : Q ∈ Kn

o }.

Lemma 5. If K1, . . . ,Kn ∈ Kn
o , p ≥ 1, and A ∈ SL(n), then

Gp(AK1, · · · , AKn) = Gp(K1, · · · ,Kn). (39)

Proof. From (13), (29) and Lemma 1, we have

ωp/n
n Gp(AK1, · · · , AKn) = inf{nVp(AK1, . . . , AKn−1, Q,AKn) · V (Q∗)p/n : Q ∈ Kn

o }
= inf{nVp(K1, . . . ,Kn−1, A

−1Q,Kn) · V ((A−1Q)∗)p/n : A−1Q ∈ Kn
o }

= ωp/n
n Gp(K1, · · · ,Kn).

This completes the proof.

MATHEMATICAL NOTES Vol. 112 No. 6 2022



THE Lp-MIXED GEOMINIMAL SURFACE AREAS 1051

Lemma 6 ([3]). Let Ki ∈ Kn
o and Ki → L ∈ Sn. If the sequence V (K∗

i ) is bounded, then L ∈ Kn
o .

Lutwak [3] introduced the Lp-compact convex set PpK whose support function for x ∈ R
n is given

by

h(PpK,x)p =
1

n

ˆ
Sn−1

1

2p
(|〈x, u〉| + 〈x, u〉)p dSp(K,u), (40)

where K ∈ Kn
o and p ≥ 1. Since h(PpK, ·) : Rn → [0,∞) is convex, it is the support function of a

compact convex set. Lutwak was the first to give a lower bound estimate of h(PpK, ·) and prove the
following important result for Lp-mixed geominimal surface area Gp(K): If K ∈ Kn

o , p ≥ 1, then there
exists a unique body K̄ ∈ Kn

o such that

Gp(K) = nVp(K, K̄) and V (K̄∗) = ωn.

For the Lp-mixed geominimal surface area Gp(K1, . . . ,Kn), the introduction of such a compact
convex set is difficult but can also be done. However, here we will prove the following result on the
Lp-mixed geominimal surface area not introducing the compact convex set but using a new technique.

Theorem 1. If K1, . . . ,Kn ∈ Kn
o , p ≥ 1, then there exists a unique body K̄ ∈ Kn

o such that

Gp(K1, · · · ,Kn) = nVp(K1, · · · ,Kn−1, K̄,Kn) and V (K̄∗) = ωn. (41)

Proof. From (36), there exists a sequence Mi ∈ Kn
o such that V (M∗

i ) = ωn with

Vp(K1, · · · ,Kn−1, B,Kn) ≥ Vp(K1, · · · ,Kn−1,Mi,Kn)

for all i, and

nVp(K1, · · · ,Kn−1,Mi,Kn) → Gp(K1, · · · ,Kn).

Suppose that Ri = R(Mi) = ρ(Mi, ui) = max{ρ(Mi, u) : u ∈ Sn−1}. The convex set

ei = {λui : 0 ≤ λ ≤ Ri} ⊆ Mi, where ui ∈ Sn−1,

is such that ρ(Mi, ui) = Ri, whence

h(ei, u) =
1

2
Ri(|〈ui, u〉|+ 〈ui, u〉).

From the well-known Jensen’s inequality, and choosing c such that h(Π(K1, · · · ,Kn−1), u) ≥ c > 0
on Sn−1, we obtain

Vp(K1, · · · ,Kn−1, B,Kn) ≥ Vp(K1, · · · ,Kn−1,Mi,Kn)

=
1

n

ˆ
Sn−1

(
h(Mi, u)

h(Kn, u)

)p

h(Kn, u) dS(K1, . . . ,Kn−1;u)

≥ V (K1, · · · ,Kn)
1−p

(
1

n

ˆ
Sn−1

h(Mi, u) dS(K1, · · · ,Kn−1;u)

)p

≥ V (K1, · · · ,Kn)
1−p

(
1

n

ˆ
Sn−1

h(ei, u) dS(K1, · · · ,Kn−1;u)

)p

= V (K1, · · · ,Kn)
1−p

×
(
Ri

2n

ˆ
Sn−1

(|〈ui, u〉|+ 〈ui, u〉) dS(K1, · · · ,Kn−1;u)

)p

.

Note that the mixed area measure, when considered as defining a mass distribution on the sphere,
always has centroid at the origin (see [15, p. 281]),ˆ

Sn−1

u dS(K1, · · · ,Kn−1;u) = o.
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Hence

Vp(K1, · · · ,Kn−1, B,Kn) ≥ V (K1, · · · ,Kn)
1−p ·

(
Ri · v(K1|u⊥, · · · ,Kn−1|u⊥)

n

)p

≥ n−pcpV (K1, · · · ,Kn)
1−pRp

i .

Noting that Mi are uniformly bounded, the Blaschke selection theorem guarantees the existence of a
subsequence of the Mi, which will also denote by Mi, and a compact convex L ∈ Sn such that Mi → L.
In view of V (M∗

i ) = ωn, Lemma 6 gives L ∈ Kn
o . Hence Mi → L implies that M∗

i → L∗, and since
V (M∗

i ) = ωn, it follows that V (L∗) = ωn. Lemma 2 can now be used to conclude that L will serve as
the desired body K̄.

The uniqueness of the minimizing body is proved as follows: let L1, L2 ∈ Kn
o satisfy V (L∗

1) =
V (L∗

2) = ωn, and let

Vp(K1, · · · ,Kn−1, L1,Kn)V (L∗
1)

p/n = inf{Vp(K1, · · · ,Kn−1, Q,Kn)V (Q∗)p/n : Q ∈ Kn
o }

= Vp(K1, · · · ,Kn−1, L2,Kn)V (L∗
2)

p/n.

Let L ∈ Kn
o be defined by

L =
1

2
· L1 +p

1

2
· L2.

Using (9) and (29) and noticing that ϕ is convex and strictly increasing on [0,∞), we have

Vp(K1, · · · ,Kn−1, L,Kn) =
1

n

ˆ
Sn−1

(
h(L, u)

h(Kn, u)

)p

h(Kn, u) dS(K1, · · · ,Kn−1;u)

=
1

2n

ˆ
Sn−1

(
h(L1, u)

h(Kn, u)

)p

h(Kn, u) dS(K1, · · · ,Kn−1;u)

+
1

2n

ˆ
Sn−1

(
h(L2, u)

h(Kn, u)

)p

h(Kn, u) dS(K1, · · · ,Kn−1;u)

=
1

2
Vp(K1, · · · ,Kn−1, L1,Kn) +

1

2
Vp(K1, · · · ,Kn−1, L2,Kn)

= Vp(K1, · · · ,Kn−1, L1,Kn)

= Vp(K1, · · · ,Kn−1, L2,Kn).

If K,L ∈ Sn
o and λ, μ ≥ 0 (not both zero), then, for p ≥ 1, the harmonic p-combination λ ◦

K+̂pμ ◦ L ∈ Sn
o is defined as (see [10]–[11])

ρ(λ ◦K+̂pμ ◦ L, ·)−p = λρ(K, ·)−p + μρ(L, ·)−p.

Hence

L∗ =
1

2
◦ L∗

1+̂p
1

2
◦ L∗

2,

and V (L∗
1) = ωn = V (L∗

2).
Suppose that K,L ∈ Sn

o and λ, μ ≥ 0. If p ≥ 1, then (see [3])

V (λ ◦K+̂pμ ◦ L)−p/n ≥ λV (K)−p/n + μV (L)−p/n,

with equality if and only if K and L are dilates. This yields that

V (L∗) ≤ ωn,

with equality if and only if L1 = L2. Thus,

Vp(K1, · · · ,Kn−1, L,Kn)V (L∗)p/n < Vp(K1, · · · ,Kn−1, L1,Kn)V (L∗
1)

p/n.

This is a contradiction if L1 �= L2.
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The unique body whose existence is guaranteed by Theorem 1 will be denoted by Tp(K1, . . . ,Kn)
and called the Lp-mixed Petty body of K1, . . . ,Kn. Thus, for K1, . . . ,Kn ∈ Kn

o and p ≥ 1, the body
Tp(K1, . . . ,Kn) is defined so as

Gp(K1, . . . ,Kn) = nVp(K1, · · · ,Kn−1, Tp(K1, . . . ,Kn),Kn), V (T ∗
p (K1, . . . ,Kn)) = ωn,

where T ∗
p (K1, . . . ,Kn) denotes the polar body of Tp(K1, . . . ,Kn). That is,

Tp(K1, . . . ,Kn) := {K̄ ∈ Kn
o : Gp(K1, . . . ,Kn) = nVp(K1, . . . ,Kn−1, K̄,Kn), V (K̄∗) = ωn}.

(42)

Lemma 7. If K1, . . . ,Kn ∈ Kn
o , p ≥ 1, then, for A ∈ SL(n),

Tp(AK1, · · · , AKn) = Tp(K1, · · · ,Kn). (43)

Proof. Let K̄ ∈ Tp(K1, · · · ,Kn); from the definition of Tp(K1, . . . ,Kn), Lemma 4, Lemma 5 and
Theorem 1, we have

Gp(AK1, · · · , AKn) = Gp(K1, · · · ,Kn)

= nVp(K1, . . . ,Kn−1, K̄,Kn)

= nVp(AK1, . . . , AKn−1, AK̄,AKn).

Observe that

V ((AK̄)∗) = V (K̄∗) = ωn.

So

AK̄ ∈ Tp(AK1, · · · , AKn).

On the other hand, let K̄ ∈ Tp(AK1, · · · , AKn); from Lemma 1, Lemma 5, and Theorem 1, we obtain

Gp(K1, · · · ,Kn) = Gp(AK1, · · · , AKn)

= nVp(AK1, . . . , AKn−1, K̄, AKn)

= nVp(K1, . . . ,Kn−1, A
−1K̄,Kn).

Note that

V ((A−1K̄)∗) = V (K̄∗) = ωn.

Hence

A−1K̄ ∈ Tp(K1, · · · ,Kn).

This completes the proof.

In much the same way as before, here we do not introduce the compact convex set PpK and do not
estimate the relevant lower boundary either. By using a new technique, we will prove the following bound
on the size of Lp-mixed geominimal surface area Tp(K1, . . . ,Kn).

Lemma 8. Suppose that p ≥ 1 and K1, . . . ,Kn ∈ Kn
o . If r,R > 0 are such that

rB ⊂ Ki ⊂ RB, i = 1, 2, . . . , n,

then, for all u ∈ Sn−1,

h(Tp(K1, . . . ,Kn), u) ≤
nωn

ωn−1
(R/r)n. (44)
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Proof. It follows from (29) that

Vp(K1, · · · ,Kn−1, B,Kn) ≤ r−pV (K1, · · · ,Kn) ≤ r−pωnR
n. (45)

Let K̄ = Tp(K1, . . . ,Kn). Then

Vp(K1, · · · ,Kn−1, K̄,Kn) ≤ Vp(K1, · · · ,Kn−1, B,Kn). (46)

Let u0 be a point in Sn−1 such that

ρ(K̄, u0) = max{ρ(K̄, u) : u ∈ Sn−1} = R(K̄).

Since the support function of K̄ majorizes that of the convex set e0 = {λu0 : 0 ≤ λ ≤ R(K̄)} ⊂ K̄, from
the proof of Theorem 1, it follows that

Vp(K1, · · · ,Kn−1, K̄,Kn) ≥ V (K1, · · · ,Kn)
1−p ·

(
R(K̄) · v(K1|u⊥0 , · · · ,Kn−1|u⊥0 )

n

)p

.

Hence

rnωn ≤ V (K1, · · · ,Kn) ≤ Rnωn and v(K1|u⊥0 , · · · ,Kn−1|u⊥0 ) ≥ rn−1ωn−1.

So

Vp(K1, · · · ,Kn−1, K̄,Kn) ≥
R(K̄)p(Rnωn)

1−p(rn−1ωn−1)
p

np
. (47)

From (45), (46) and (47), (44), the desired result easily follows.

This completes the proof.

Lemma 9. Let p ≥ 1. If Kij ∈ Kn
o (j = 1, 2, . . . , n) is a family of bodies for which there exist

r,R > 0 such that

rB ⊂ Ki1, · · · ,Kin ⊂ RB for all i,

then there exist r′, R′ > 0 such that

r′B ⊂ Tp(Ki1, · · · ,Kin) ⊂ R′B for all i. (48)

Proof. Let K̄i = Tp(Ki1, · · · ,Kin). The existence of R′ > 0, implying that the K̄i are uniformly
bounded, is contained in Lemma 8. Let ri = r(K̄i) denote the inner radius of K̄i. Thus,

ri = min
u∈Sn−1

h(K̄i, u) = h(K̄i, ui),

where ui ∈ Sn−1 is any point where this minimum is attained. Suppose that inf{ri} = 0. Thus, there
exists a subsequence of the K̄i, which will not be relabeled, such that

h(K̄i, ui) → 0.

The Blaschke selection theorem, in conjunction with Lemma 6, demonstrates the existence of M ∈ Kn
o

such that, for a subsequence of the K̄i, which will also not be relabeled,

K̄i → M.

But h(K̄i, ui) → 0, and max |hKi − hM | → 0, so that h(M,ui) → 0, which is impossible, because the
continuous function hM is positive.

This completes the proof.

Theorem 2. If p ≥ 1, then Gp : Kn
o × · · · × Kn

o︸ ︷︷ ︸
n

→ (0,∞) is continuous.

MATHEMATICAL NOTES Vol. 112 No. 6 2022



THE Lp-MIXED GEOMINIMAL SURFACE AREAS 1055

Proof. First, we show that Gp is upper semicontinuous. If p ≥ 1 and Kij ∈ Kn
o , j = 1, 2, . . . , n, such

that Kij → K0j ∈ Kn
o , then S(Ki1, . . . ,Kin; ·) → S(K01, . . . ,K0n; ·), weakly on Sn−1. Hence for

L ∈ Sn
o we have

Vp(·, . . . , ·, L∗, ·) : Kn
o × · · · × Kn

o︸ ︷︷ ︸
n

→ (0,∞) is continuous.

Therefore, the Lp-mixed geominimal surface area ω
p/n
n Gp : Kn

o × · · · × Kn
o︸ ︷︷ ︸

n

→ (0,∞) is defined by the

infimum of the continuous functions nVp(K1, . . . ,Kn−1, Q
∗, ·)V (Q)p/n : Kn

o × · · · × Kn
o︸ ︷︷ ︸

n

→ (0,∞) as

Q ranges over Kn
o .

To see that Gp is lower semicontinuous at K01, . . . ,K0n ∈ Kn
o , let Kij ∈ Kn

o be a sequence of
bodies such that Kij → K0j (j = 1, 2, . . . , n) with Gp(Ki1, . . . ,Kin) → l ∈ R. We will show that
l ≥ Gp(K01, . . . ,K0n), and thus

lim
k→∞

inf
i>k

Gp(Ki1, . . . ,Kin) ≥ Gp(K01, . . . ,K0n).

By Lemma 9, the K̄i = Tp(Ki1, . . . ,Kin) are uniformly bounded. The Blaschke selection theorem, in
conjunction with Lemma 6, yields the existence of a body M ∈ Kn

o and a subsequence of the K̄i, which
will not be relabeled, such that K̄i → M and V (M∗) = ωn. By Lemma 2 and the facts that Kij → K0j

and K̄i → M , we have

Gp(Ki1, . . . ,Kin) = nVp(Ki1, . . . ,Ki,n−1, K̄i,Kin) → nVp(K01, . . . ,K0,n−1,M,K0n).

Since Gp(Ki1, . . . ,Kin) → l, we have nVp(K01, . . . ,K0,n−1,M,K0n) = l. But it follows from the
definition of Gp(K01, . . . ,K0n) that

ωp/n
n l = nVp(K01, . . . ,K0,n−1,M,K0n)V (M∗)p/n ≥ ωp/n

n Gp(K01, . . . ,K0n).

This completes the proof.

Lemma 10. If p ≥ 1, then Tp : Kn
o × · · · × Kn

o︸ ︷︷ ︸
n

→ (0,∞) is continuous.

Proof. Suppose that Kij ∈ Kn
o (j = 1, 2, . . . , n) such that Kij → K0j . Let K̄i = Tp(Ki1, . . . ,Kin)

denote a subsequence of K̄i. Lemma 9 shows that the K̄i are uniformly bounded. The Blaschke selection
theorem, in conjunction with Lemma 6, yields the existence of a body M ∈ Kn

o and a subsequence of
the K̄i, which will not be relabeled, such that K̄i → M and V (M∗) = ωn. Lemma 2 and the fact that
Kij → K0j and K̄i → M may be used to conclude that

Gp(Ki1, . . . ,Kin) = nVp(Ki1, . . . ,Ki,n−1, K̄i,Kin) → nVp(K01, . . . ,K0,n−1,M,K0n).

But, by Theorem 2,

Gp(Ki1, . . . ,Kin) → Gp(K01, . . . ,K0n).

Hence

Gp(K01, . . . ,K0n) = nVp(K01, . . . ,K0,n−1,M,K0n),

and the uniqueness part of Theorem 1 shows that K̄0 = M .
Hence every subsequence of K̄i has a subsequence converging to K̄0.
This completes the proof.

Petty [1] called a body K ∈ Kn self-minimal if TK and K are homothetic. Lutwak [3] called
a body K ∈ Kn

o p-self-minimal if TpK and K are dilates of each other, and showed that the class
of p-self-minimal bodies is a centro-affine invariant class of bodies. In this article, for some bodies
K1, . . . ,Kn ∈ Kn

o , we will say that K1, . . . ,Kn−1 and Kn are mixed p-self-minimal if Tp(K1, . . . ,Kn)
and Kn are dilates of each other.

MATHEMATICAL NOTES Vol. 112 No. 6 2022



1056 ZHAO

Lemma 11. If p ≥ 1, and K1, . . . ,Kn ∈ Kn
o , then

ωn

(
V (Kn)

pGp(K1, . . . ,Kn)
n

nnV (K1, . . . ,Kn)n

)1/p

≤ V (Kn)V (K∗
n), (49)

with equality if and only if K1, . . . ,Kn−1 and Kn are mixed p-self-minimal.

Proof. Putting Q = Kn in the definition of Lp-mixed geominimal surface area, we have

ωp/n
n Gp(K1, · · · ,Kn) = inf{nVp(K1, . . . ,Kn−1, Q,Kn)V (Q∗)p/n : Q ∈ Kn

o }
≤ nVp(K1, . . . ,Kn−1,Kn,Kn)V (K∗

n)
p/n

= nV (K1, . . . ,Kn)V (K∗
n)

p/n.

To obtain the equality conditions, let K̄ = Tp(K1, . . . ,Kn) and assume first that K1, . . . ,Kn are
mixed p-self-minimal. From K̄ = Tp(K1, . . . ,Kn) = δKn, δ > 0, we have

Gp(K1, · · · ,Kn) = nVp(K1, . . . ,Kn−1, K̄,Kn)

= nVp(K1, . . . ,Kn−1, δKn,Kn)

= nδpV (K1, · · · ,Kn).

Moreover, K̄ = δKn implies that δK̄∗ = K∗
n. Since V (K̄∗) = ωn, this yields δ = (V (K∗

n)/ωn)
1/n. This

shows that there is equality in the inequality.
Conversely, suppose that there is equality in the inequality

Gp(K1, · · · ,Kn)
n = nn

(
V (K∗

n)

ωn

)p

V (K1, · · · ,Kn)
n.

But

Gp(K1, · · · ,Kn) = nVp(K1, . . . ,Kn−1, K̄,Kn).

Hence

Vp(K1, . . . ,Kn−1, K̄,Kn)
n =

(
V (K∗

n)

ωn

)p

V (K1, · · · ,Kn)
n

= Vp

(
K1, . . . ,Kn−1, [(V (K∗

n)/ωn)
1/n Kn],Kn

)n
.

Since

V ([(V (K∗
n)/ωn)

1/n Kn]
∗) = ωn,

it follows from the uniqueness of K̄ that

Tp(K1, . . . ,Kn) = (V (K∗
n)/ωn)

1/nKn.

Thus, K1, . . . ,Kn−1 and Kn are mixed p-self-minimal.
This completes the proof.

Theorem 3. If p ≥ 1 and K1, . . . ,Kn ∈ Kn
o , then

Gp(K1, . . . ,Kn)
n ≤ nnωp

nV (K1, . . . ,Kn)
n/V (Kn)

p, (50)

with equality if and only if K1, . . . ,Kn−1 and Kn = E are mixed p-self-minimal.

Proof. The inequality is immediate from Lemma 11 and the Blaschke–Santaló inequality.
From the equalities of Lemma 11 and the Blaschke–Santaló inequality, it follows that equality in (50)

holds if and only if K1, . . . ,Kn−1 and Kn are mixed p-self-minimal and Kn is an ellipsoid. This yields
that the equality in (50) holds if and only if K1, . . . ,Kn−1 and an ellipsoid E are mixed p-self-minimal.

This completes the proof.
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Remark 1. When K1 = · · · = Kn = K, (50) becomes Lutwak’s p-geominimal surface area inequality:
If p ≥ 1, and K ∈ Kn

o , then

Gp(K)n ≤ nnωp
nV (K)n−p,

with equality if and only if K is an ellipsoid.
The following mixed geominimal surface area inequality of K1, . . . ,Kn is also derived.
The mixed geominimal surface area inequality. If K1, . . . ,Kn ∈ Kn

o , then

G(K1, . . . ,Kn)
n ≤ nnωnV (K1, . . . ,Kn)

n/V (Kn), (51)

with equality if and only if K1, . . . ,Kn−1 and Kn = E are mixed p-self-minimal.
The following ith Lp-mixed geominimal surface area inequality is a special case of (50). If p ≥ 1,

0 ≤ i < n, and K ∈ Kn
o , then

Gp,i(K)n ≤ nnωp
nWi(K)n/V (K)p, (52)

with equality if and only if K is an ellipsoid.
The following ith mixed geominimal surface area inequality is also a special case of (52). If 0 ≤ i < n

and K ∈ Kn
o , then

Gi(K)n ≤ nnωnWi(K)n/V (K), (53)

with equality if and only if K is an ellipsoid.

Acknowledgments

The author expresses his thanks to the referee for his (her) excellent suggestions and comments, and
for reading the manuscript carefully and giving many wonderful suggestions about the language.

Funding

This research was supported by the National Natural Science Foundation of China (grant no.
11371334, grant no. 10971205).

REFERENCES
1. C. M. Petty, “Geominimal surface area,” Geom. Dedicata 3, 77–97 (1974).
2. Y. D. Burago and V. A. Zalgaller, Geometric Inequalities (Springer-Verlag, Berlin, 1988).
3. E. Lutwak, “The Brunn–Minkowski–Firey theory. II. Affine and geominimal surface areas,” Adv. Math. 118,

244–294 (1996).
4. B. Zhu, J. Zhou and W. Xu, “Lp-mixed geominimal surface area,” J. Math. Anal. Appl. 423, 1247–1263

(2015).
5. D. Ye, “New Orlicz affine isoperimetric inequalities,” J. Math. Anal. Appl. 427, 905–929 (2015).
6. W. Wang and B. He, “ Lp-dual affine surface area,” J. Math. Anal. Appl. 348, 746–751 (2008).
7. W. Wang and G. Leng, “ Lp-mixed affine surface area,” J. Math. Anal. Appl. 335, 341–354 (2007).
8. J. Guo and Y. Feng, “Lp-dual geominimal surface area and general Lp-centroid bodies,” J. Inequal. Appl.

2015, Article ID 358 (2015).
9. T. Ma, “The ith p-geominimal surface mixed area,” J. Inequal. Appl. 2014, Article ID 356 (2014).

10. H. Li, Y. Lin, W. Wang, and G. Leng, “The (q, ϕ)-dual Orlicz mixed affine surface areas,” Results Math. 73,
Article ID 131 (2018).

11. M. Ludwig, “General affine surface areas,” Adv. Math. 224, 2346–2360 (2010).
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