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Abstract—The geometric properties of the Maslov index on symplectic manifolds are discussed.
The Maslov index is constructed as a homological invariant on a Lagrangian submanifold of a
symplectic manifold. In the simplest case, a Lagrangian submanifold Λ ⊂ R

2n ≈ R
n ⊕ R

n is a
submanifold in the symplectic space R

n ⊕ R
n, in which the symplectic structure is given by the

nondegenerate form ω =
∑n

i=1 dx
i ∧ dyi and Λ ⊂ R

2n is a submanifold, dimΛ = n, on which the
form ω is trivial. In the general case, a symplectic manifold (W,ω) and the bundle of Lagrangian
Grassmannians LG(TW ) is considered. The question under study is as follows: when is the Maslov
index, given on an individual Lagrangian manifold as a one-dimensional cohomology class, the
image of a one-dimensional cohomology class of the total space LG(TW ) of bundles of Lagrangian
Grassmannians? An answer is given for various classes of bundles of Lagrangian Grassmannians.
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1. STATEMENT OF THE PROBLEM

1.1. Consistent Structures

Let W be a symplectic manifold given by the symplectic structure ω, which is a (nondegenerate)
symplectic form on the manifold W , dimW = 2n, dω = 0. With a symplectic structure one can
associate the following additional consistent structures:

• The Euclidean structure E(u, v) on W , u, v ∈ Γ(TW ), E(u, u) > 0.

• The almost complex structure J : J : TW → TW , J2 = −1.

• The Hermitian structure H(u, v) = E(u, v) + iω(u, v) on W ,

H(Ju, v) = iH(u, v), H(u, v) = H(v, u).

These structures have the following additional coordination between themselves:
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698 MISHCHENKO

• ω(Ju, Jv) = ω(u, v);

• E(u, v) = ω(u, Jv);

• H(u, v) = E(u, v) + iE(u, Jv) is the Hermitian structure.

All these structures can be constructed starting from a given symplectic form ω. See, e.g., [1, Part V,
Compatible Almost Complex Structures, p. 84].

1.2. Bundle of Lagrangian Grassmannians

By definition, the bundle of Lagrangian Grassmannians is constructed in the form of the total space
LG(TW ) of the bundle

LG(TW )

πLG

��
W

with fibers π−1
LG(x) = LG(TW )x over points x ∈ W . The fiber LG(TW )x is the Lagrangian Grassman-

nian

π−1
LG(x) = LG(TW )x = LG(TxW )

of the symplectic space TxW , which is a manifold consisting of all Lagrangian planes in the tangent
space TxW :

LG(TxW ) = {L ⊂ TxW : dimR L = n, ω|L = 0},

which are conveniently expressed as the diagram

π−1
LG(x)

��

LG(TxW )

��

π−1
LG(x)

��
LG(TW )

πLG

��

LG(TW )x� ��

��

π−1
LG(x)

��
W x� �� x.

2. DEFINITION OF CHARACTERISTIC CLASSES OF LAGRANGIAN MANIFOLDS

The differential Dh generates the commutative diagram

TΛ
Dh ��

πTΛ

��

TW

πTW

��
Λ � � h �� W.

A Lagrangian submanifold h : Λ → W is a submanifold for which Dh(TxΛ) ⊂ Th(x)W is a Lagrangian
plane. The differential Dh generates the fibered map Lh of the Lagrangian manifold into the total space
LG(TW ) of the bundle of Lagrangian Grassmannians,

Λ � �

h ��

Lh �� LG(TW )

πLG

��
W.
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MASLOV INDEX ON SYMPLECTIC MANIFOLDS 699

We obtain the following map on cohomology:

H∗(LG(TW )
(Lh)∗ �� H∗(Λ).

If α ∈ H∗(LG(TW ), then the cohomology class

α(Λ) = (Lh)∗(α) ∈ H∗(Λ)

will be called the characteristic class of the Lagrangian submanifold

Λ � �

h
�� W,

generated by the universal characteristic class α ∈ H∗(LG(TW ).

2.1. Maslov Class for the Case of W = T
∗(Rn)

There are at least three examples of characteristic classes of Lagrangian manifolds. One of them,
the simplest, is the one-dimensional Maslov characteristic class whose value on a closed curve γ ⊂ Λ
coincides with the Maslov index of the curve γ (see the book by Trofimov and Fomenko [2, Sec. 63,
Subsec. 3, p. 400]). The Maslov class is defined for Lagrangian manifolds in the symplectic space
W = R

2n,

R
2n = T

∗(Rn) = R
n(pk)⊕ R

n(xk) = C
n(zk), zk = xk + ipk,

whose symplectic form ω is

ω =
∑

dpk ∧ dxk,

and let the complex coordinates (zk) constitute the complex basis (τ1, . . . , τn) in the space Cn(zk).

Let Λ ⊂ R
2n be a Lagrangian submanifold, let h : Λ ⊂ R

2n be an embedding, and let Lh : Λ →
LG(R2n) take each point x ∈ Λ to the tangent (Lagrangian) plane Lh(x) = Tx(Λ) ∈ LG(R2n) as a point
in the Lagrangian Grassmannian LG(R2n) of all Lagrangian planes. We obtain the following map on
cohomology:

H∗(LG(R2n)
(Lh)∗ �� H∗(Λ).

If α ∈ H∗(Λ(n)), then the cohomology class

α(Λ) = (Lh)∗(α) ∈ H∗(Λ)

is the characteristic class of the Lagrangian submanifold Λ ⊂ R
2n. An example of a universal character-

istic class (the Maslov class) is the generating element Ma ∈ H1(LG(R2n)) ≈ Z; i.e., Ma(Λ) ∈ H1(Λ).

The Maslov class Ma ∈ H1(LG(R2n)) ≈ Z can be computed using a differential form on the manifold
LG(R2n). The manifold LG(R2n) is diffeomorphic to the homogeneous space U(n)/O(n) by means of
the diffeomorphism

u : LG(R2n) → U(n)/O(n)

that takes each Lagrangian plane

L ⊂ R
2n = C

n, dimR L = n,

to the orthonormal real basis (e1, . . . , en) ⊂ L. The same basis is a complex basis in the spaceR2n = C
n,

because

H(ek, el) = E(ek, el) + iω(ek, el) = δk,l.

Therefore,

(e1, . . . , en) = (τ1, . . . , τn)U, U ∈ U(n),
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700 MISHCHENKO

for a unitary matrix U ∈ U(n). The basis (e1, . . . , en) ⊂ L can be replaced by another orthonormal real
basis

(e′1, . . . , e
′
n) = (e1, . . . , en)O ⊂ L, O ∈ O(n);

i.e.,

(e′1, . . . , e
′
n) = (τ1, . . . , τn)UO, U ∈ U(n), O ∈ O(n),

and the coset class u(L) ∈ U(n)/O(n) is well defined.
The composition f of the maps

f : LG(R2n)
u−→ U(n)/O(n)

det2−−→ S
1

defines a one-dimensional cohomology class, the Maslov class

Ma ∈ H1(LG(R2n)), Ma = f∗
(

dz

2πiz

)

∈ H1(LG(R2n)).

2.2. Generalized Maslov Class for the Case of W = T
∗(M)

The construction of a generalized Maslov class is described in the book of Trofimov and Fomenko
(1995) [2].

Let M be a smooth manifold, and let ω be a symplectic structure on the total space T
∗M . Each

tangent space Tz(T
∗M), z ∈ T

∗M , is a symplectic vector space and in it we can take the Lagrangian
subspace Vz tangent to the vertical, i.e., consisting of tangent vectors ξ such that dπzξ = 0, where
the letter π denotes the standard projection π : T∗M → M . The choice of a Riemannian metric
on M induces the positive definite inner product on Vz, which allows identifying LG(Tz(T

∗M)) with
U(n)/O(n). This identification is ambiguous but allows us to find the well-defined differential form
(det2)∗(dz/2πiz) on the total space of the bundle LG(T∗M) over T∗M , whose fiber above, the point
z ∈ T

∗M , consists of all Lagrangian subspaces in Tz(T
∗M).

If N is a Lagrangian submanifold in T
∗M , then, for any curve γ on N , the curve on LG(T∗M) is

defined naturally. In this case, using the formula

l =

˛
γ
(det2)∗

dz

2πiz
,

we define an integer; thus, we obtain an element in H1(N ;Z), which is called a generalized Maslov
class of submanifolds N . This class does not depend on the choice of the Riemannian metric.

For an accurate proof of the well-posedness of the definition of the generalized Maslov class for the
total space of the cotangent bundle of an arbitrary manifold, see the Supplement kindly provided by
A. T. Fomenko.

2.3. Maslov–Trofimov Class. The Case of an Arbitrary Symplectic Manifold (W,ω)

Consider an arbitrary symplectic manifold (W,ω). Let ∇ be a connection consistent with the
symplectic form ω (or an almost symplectic connection), i.e., a connection such that ∇ω = 0. It was
shown in the book [2, Sec. 63, Sec. 9, p. 402] that, on a symplectic manifold (W,ω), dω = 0, there exists
an almost symplectic connection ∇ with zero torsion. In this case, the almost symplectic connection ∇
is called a symplectic connection.

Theorem 1. The connection ∇ can be chosen to be complex linear and preserving the Hermitian
structure H . The connection ∇ is given by the Christoffel symbols

2Γj;ik =
∂Hij

∂ek
+

∂Hki

∂ej
− ∂Hjk

∂ei
,

where ej ∈ Γ(T(W )) is the set of basic sections in the space Γ(T(W )).

MATHEMATICAL NOTES Vol. 112 No. 5 2022



MASLOV INDEX ON SYMPLECTIC MANIFOLDS 701

The parallel translation operation specifies a unitary linear transformation ptr(γ) : Tx0(W ) →
Tx1(W ), γ ∈ Π(x0, x1,W ),

ptr : Π(x0, x1,W ) → U(Tx0(W ),Tx1(W )).

Let Π(x0,W ) be the set of all closed paths with origin and end at a point x0 ∈ W , Π(x0,W ) =
Π(x0, x0,W ). The parallel translation operation along paths γ ∈ Π(x0,W ) generates the group of
unitary transformations of the tangent space Tx0W of the manifold W at the point x0 ∈ W :

ptr : Π(x0,W ) → U(Tx0(W )).

The image group Im(ptr) ⊂ U(Tx0(W )) is denoted by Hol∇(x0,W )) and called the holonomy
group of the connection ∇ on the manifold W . Since ∇ω = 0, we see that the holonomy group
Πh

∇(x0,W ) is naturally extended by the action on the Lagrangian Grassmannian LG(TxW ),

Hol∇(x0,W )× LG(TxW ) → LG(TxW ).

With this action, we can define the so-called reduced Lagrangian Grassmannian as the quotient space

ΠLG(TxW ) = LG(TxW )/Hol∇(x0,W )

and hence also the map of the Lagrangian submanifold Nn ⊂ W 2n,

ptr : Nn → ΠLG(TxW ),

which defines a homomorphism on cohomology

(ptr)∗ : H∗(ΠLG(TxW )) → H∗(Nn),

i.e., the Maslov–Trofimov characteristic class

α(Nn) = (ptr)∗(α) ∈ H∗(Nn), α ∈ H∗(ΠLG(TxW )).

3. DESCRIPTION OF BUNDLES OF LAGRANGIAN GRASSMANNIANS

Taking into account the existence of consistent structures, we assume that the manifold W is
provided with an almost complex structure (W,J); i.e., the tangent bundle TW is a complex vector
bundle with structure group U(n). The bundle of Lagrangian Grassmannians LG(TW ) is constructed
as follows:

1) We take the principal bundle with structure group U(n) associated with the tangent bundle TW .
This bundle is denoted by

PU(n)(TW )

πP
U(n)

��
W.

The total space of this bundle can be described explicitly as the set of orthonormal complex bases
(e1, . . . , en) in the fibers of the tangent bundle

PU(n)(TW ) = {(e1, . . . , en) ⊂ TxW : x ∈ W, H(ei, ej) = δi,j}.

Set πPU(n)
(e1, . . . , en) = x ∈ W . The group U(n) acts on the right freely along fibers on the

space PU(n)(TW ) by the formula

PU(n)(TW )× U(n) → PU(n)(TW ),

(e1, . . . , en) ⊂ TxW, U ∈ U(n), U =

⎛

⎜
⎝

u11, · · · , u1n
...

...
un1 , · · · , unn

⎞

⎟
⎠ ,
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702 MISHCHENKO

((e1, . . . , en), U) 
→ (e1, . . . , en)

⎛

⎜
⎝

u11, · · · , u1n
...

...
un1 , · · · , unn

⎞

⎟
⎠ .

Thus,

PU(n)(TW )

πP
U(n)

��

PU(n)(TW )

πP
U(n)

��
W PU(n)(TW )/U(n).

On each map Uα ⊂ W , we have the following trivialization of the bundle PU(n)(TW ):

Uα × U(n) �
�ϕ
P
U(n)

α ��

��

PU(n)(TW )

��
Uα

� � �� W,

which is generated by the trivialization of the tangent bundle TW :

Uα × C(n) �
�ϕT

α ��

��

T(W )

��
Uα

� � �� W,

while the matching functions ϕ
PU(n)

αβ on the intersection of two maps Uαβ = Uα ∩ Uβ take values in the

group U(n), ϕ
PU(n)

αβ (x) ∈ U(n), and are the multiplication on the left:

Uαβ ×U(n)

��

� � ��

ϕ
P
U(n)

αβ =(ϕ
P
U(n)

α )−1ϕ
P
U(n)

β

��
Uβ × U(n)

��

ϕ
P
U(n)

β �� PU(n)(TW )

��

Uα × U(n)

��

ϕ
P
U(n)

α�� Uαβ × U(n)� ���

��
[2mm]Uαβ

� � �� Uβ
� � �� W Uα

� ��� Uαβ
� ���

ϕ
PU(n)

αβ (x,A) = (x, ϕ
PU(n)

αβ (x) · A), x ∈ Uαβ , ϕ
PU(n)

αβ (x), A ∈ U(n);

ϕ
PU(n)

αβ (x) = ϕT

αβ(x), x ∈ Uαβ.

2) Further, we use the right action of the group U(n) in the total space PU(n)(TW ) and factor the
space PU(n)(TW ) with respect to the subgroup O(n) ⊂ U(n). We obtain the bundle isomorphism

(PU(n)(TW ))/O(n)
f ��

��

LG(TW )

��
W W

by the following formula: for (e1, . . . , en) ⊂ TxW , H(ei, ej) = δi,j , we set

f(e1, . . . , en) = LR(e1, . . . , en) ⊂ TxW,
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and ω|LR(e1,...,en) = 0.
Since f is a bundle isomorphism, it follows that there exists an inverse mapping

LG(TW )

��

u=f−1
�� (PU(n)(TW ))/O(n)

��
W W,

which takes each Lagrangian plane L ∈ LG(TW ) such that L ⊂ TxW to a basis (e1, . . . , en) ⊂ L,

u(L) = (e1, . . . , en).

The map u is explicitly given by the differential of the embedding h : Λ → LG(TW ). In each chart
Uα ⊂ W , this isomorphism f is of the form

eUα × U(n)/O(n) �
� ��

��

fα

��
(PU(n)(TW ))/O(n)

f ��

��

LG(TW )

��

LG(TUα)� ���

��
Uα

� � �� W W Uα.� ���

Since the complex basis (e1, . . . , en) is orthonormal, it follows that, in particular, the subspace
LR(e1, . . . , en) is a Lagrangian plane independent of the choice of the real basis in it. In the chart Uα, we
set the function

det2α : LG(TUα) → C \ {0} ∼ S
1

by the formula

det2α(LR(e1, . . . , en)) = det2(f−1
α (LR(e1, . . . , en))).

The value of the function det2α coincides with the Maslov index on each Lagrangian manifold lying in the
space TUα (see Vasiliev [3, Theorem 6.2.4, p. 72] (2000)).

It is also useful to consider the function

det2kα : ΛGr(TUα) → C

using the formula

det2kα (LR(e1, . . . , en)) = (det2(f−1(LR(e1, . . . , en))))
k.

The corresponding Maslov class is written as the one-dimensional cohomology class generated by
the differential form Ma ∈ H1(LG(R2n)),

Ma = f∗
(

dzk

2πizk

)

= kf∗
(

dz

2πiz

)

∈ H1(LG(R2n)).

4. CONSTRUCTION OF THE MASLOV INDEX ON THE TOTAL SPACE OF BUNDLES
OF LAGRANGIAN GRASSMANNIANS

The problem is to find conditions on the symplectic manifold W under which the Maslov index can
be constructed on the whole symplectic manifold W , i.e., under which the function det2α is independent
of the choice of the chart Uα.

If the matching functions of the tangent bundle TW take values in an orthogonal subgroup
ϕT

αβ(w) ∈ O(n), then, in each fiber of the bundle ΛGr(TW ), the function det2α does not depend on the
choice of trivialization:

det2(ϕT

αβ(x) ·A) = det2(ϕT

αβ(x)) · det2(A) = det2(A).

MATHEMATICAL NOTES Vol. 112 No. 5 2022



704 MISHCHENKO

In fact, for the definition of det2α to be independent of the trivialization, the constraint ϕT

αβ(w) ∈ O(n)

is too burdensome. It suffices to assume that the structure group U(n) reduces to the subgroup
SU(n) ⊂ U(n). Certainly, the subgroup O(n) ⊂ SU(n) creeps a little out of the subgroup SU(n). But
this is easy to fix: consider the group homomorphism

det : U(n) → S
1 ≈ U(1)

and the finite subgroup H ⊂ S
1 giving the exact sequence

1 �� H �� S1 �� SH �� 1.

Set

S
H
U(n) = det−1(H) ⊂ U(n).

In the case where H = 1, we obtain SU(1). In the case where H = {0, 1} = Z2, we obtain the
subgroup S

Z2U(n) ⊃ O(n). Therefore, the problem of constructing the function det2α independent of
the choice of trivialization, reduces to the following theorem.

Theorem 2. The function det2kα is well defined on the total space of the bundle of Lagrangian
Grassmannians, i.e., it is independent of the choice of the chart Uα, if the structure group of the
complex tangent bundle TW reduces to the subgroup S

H
U(n) ⊂ U(n), where H ⊂ U(1) is a finite

subgroup of order k.

Proof. If the matching functions of the tangent bundle TW take values in the subgroup S
H
U(n) ⊂

U(n), ϕT

αβ(w) ∈ S
H
U(n), then, in each fiber of the bundle ΛGr(TW ), the function det2kα is independent

of the choice of trivialization:

det2k(ϕT

αβ(x) · A) = (det(ϕT

αβ(x)))
2k · (det(A))2k = det2k(A),

because det(ϕT

αβ(x)) ⊂ H , and therefore, (det(ϕT

αβ(x)))
2k = 1.

When does the structure group U(n) reduce to the subgroup S
H
U(n) = det−1(H) ⊂ U(n)? The

answer to this question is as follows.

Theorem 3. The structure group U(n) of the complex tangent bundle TW reduces to the sub-
group S

H
U(n) = det−1(H) ⊂ U(n) when the first Chern class c1(TW ) ∈ H2(W,Z) is of finite order

k = #(H).

Proof. Consider the composition of the maps

ϕH : U(n)
det−−→ S

1 → S
1/H ≈ S

H ≈ S
1,

We obtain the exact sequence

1 �� SHU(n) �
� �� U(n)

ϕH �� SH �� 1.

Since the tangent bundle T(W ) admits the structure of a complex bundle with structure group U(n), it
follows that the principal bundle St(TW ) associated with the bundle T(W ) is the inverse image of the
canonical bundle classifying the space of the structure group U(n):

St(TW )

/U(n)

��

f∗
�� EU(n)

/U(n)

��
W

f
�� BU(n).
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If the structure group U(n) reduces to the subgroup S
H
U(n) ⊂ U(n), then this means that the map f

rises to the map g:

St(TW )

/U(n)

��

f∗
�� EU(n)

/SHU(n)

��
/U(n)

��

BSHU(n)

/SH

��
W

f
��

s
		

�
�
�
� �

BU(n).

This diagram expands to the following diagram:

St(TW ) = f∗(EU(n))

/SHU(n)
��

/U(n)

��

f∗
�� EU(n)

/SHU(n)

��
/U(n)





f∗(EU(n))/S
H
U(n)

f ′
��

/SH

��

BSHU(n)

/SH

��
W

f
��

s

����������

s′

��

�
�
	

BU(n).

The condition for the existence of the map s is equivalent to the existence of the section s′ in the principal
bundle ξW ,

ξW :
f

��





 ξBU(n)
: g

��


 ξB
SH

:

f∗(EU(n))/S
H
U(n)

/SH

��

f ′
�� BSHU(n)

/SH

��

g′ �� ESH

/SH

��
W

s′

��

�
�
	

f
�� BU(n). g

�� BSH .

The existence of the section s′ in the principal bundle ξW implies that the principal bundle ξW is
trivial. This means that the map g ◦ f is homotopic to the trivial map. The spectral sequences for the
bundles ξW , ξBU(n)

, and ξB
SH

are of the form

• for ξW ,

Ep,q
2 (ξW ) = Hp(W ;Hq(SH;Z)), dW2 : E0,1

2 (ξW ) → E2,0
2 (ξW ),

E0,1
2 (ξW ) = H1(SH;Z) = Z � aH, E2,0

2 (ξW ) = H2(W ;Z) � dW2 (aH);

• for ξBU(n)
,

Ep,q
2 (ξBU(n)

) = Hp(BU(n);H
q(SH;Z)), d

BU(n)

2 : E0,1
2 (ξBU(n)

) → E2,0
2 (ξBU(n)

),

E0,1
2 (ξBU(n)

) = H1(SH;Z) = Z � aH, E2,0
2 (ξBU(n)

) = H2(BU(n);Z) � d
BU(n)

2 (aH);

• for ξB
SH

,

Ep,q
2 (ξB

SH
) = Hp(BSH ;H

q(SH;Z)), d
B

SH

2 : E0,1
2 (ξB

SH
) → E2,0

2 (ξB
SH
),

E0,1
2 (ξB

SH
) = H1(SH;Z) = Z � aH, E2,0

2 (ξB
SH
) = H2(BSH ;Z) = Z � d

B
SH

2 (aH).
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The commutativity of the diagrams of the bundles ξW , ξBU(n)
, and ξB

SH
implies

dW2 (aH) = f∗(g∗(d
B

SH

2 (aH))) = (g ◦ f)∗(dBSH

2 (aH)) = 0.

Therefore,

f∗(d
BU(n)

2 (aH)) = 0.

Thus, the cohomology class

d
BU(n)

2 (aH) ∈ H2(BU(n);Z)

is expressed in terms of the first Chern class as follows:

d
ξB

U(n)

2 (aH) = λH · c1 ∈ H2(BU(n);Z).

Therefore, dξW2 (aH) = λH · c1(TW ).
This implies that the structure group U(n) reduces to the subgroup

S
H
U(n) = det−1(H) ⊂ U(n)

if the first Chern class c1(TW ) ∈ H2(W,Z) is of finite order λH.
It remains to verify that λH = k = #(H).
To this end, consider two bundles

EU(n)

/SU(n)

��

EU(n)

/SHU(n)

��
ξ1 :

�
�
�


�
�

�
� � 
 � �

�
�

�
�
�
�
�

BSU(n)

/S1

��

h′
�� BSHU(n)

/SH

��

: ξBU(n)

BU(n)
h=Id

BU(n).

and the corresponding spectral sequences

ξ1 :

Ep,q
2 (ξ1) = Hp(BU(n);H

q(S1;Z)), dξ12 : E0,1
2 (ξ1) → E2,0

2 (ξ1),

E0,1
2 (ξ1) = H1(S1;Z) = Z � a1, E2,0

2 (ξ1) = H2(BU(n);Z) � dξ12 (a1) = c1,

ξBU(n)
:

Ep,q
2 (ξBU(n)

) = Hp(BU(n);H
q(SH;Z)), d

BU(n)

2 : E0,1
2 (ξBU(n)

) → E2,0
2 (ξBU(n)

),

E0,1
2 (ξBU(n)

) = H1(SH;Z) = Z � aH, E2,0
2 (ξBU(n)

) = H2(BU(n);Z) � d
ξB

U(n)

2 (aH).

The map S
1 h′
−→ S

H gives (h′)∗(aH) = k · a1. Since the diagrams of two bundles ξ1 and ξBU(n)
are

commutative, it follows that their spectral sequences commute, and hence

h∗(d
ξB

U(n)

2 (aH)) = dξ12 ((h′)∗(aH)),

d
ξB

U(n)

2 (aH) = dξ12 (k · a1) = k · dξ12 (a1) = k · c1.

Thus, dξW2 (aH) = k · c1(TW ), i.e., λH = k = #(H).
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SUPPLEMENT BY A. T. FOMENKO. “CONSTRUCTING THE GENERALIZED MASLOV
CLASS FOR THE TOTAL SPACE W = T

∗(M) OF THE COTANGENT BUNDLE”

The construction of the generalized Maslov class was presented in the book of Trofimov and Fomenko
(1995) [2].

Let M be a smooth manifold, and let ω be a symplectic structure on the total space T
∗M . Every

tangent space Tz(T
∗M), z ∈ T

∗M , is a symplectic vector space, and in it we can take the Lagrangian
subspace Vz tangent to the vertical, i.e., consisting of tangent vectors ξ such that dπzξ = 0, where
the letter π denotes the standard projection π : T∗M → M . The choice of the Riemannian metric
on M induces a positive definite inner product on Vz , making it possible to identify LG(Tz(T

∗M))
with U(n)/O(n). This identification is ambiguous but allows us to find the well defined differential form
(det2)∗(dz/2πiz) on the total space of the bundle LG(T∗M) over T∗M , whose fiber above over the point
z ∈ T

∗M consists of all Lagrangian subspaces in Tz(T
∗M).

If N is a Lagrangian submanifold in T
∗M , then, for any curve γ on N , the curve on LG(T∗M) is

defined naturally. In this case, using the formula

l =

˛
γ
(det2)∗

dz

2πiz
,

we define an integer; thus, we obtain an element in H1(N ;Z), which is called a generalized Maslov
class of submanifolds N . This class does not depend on the choice of the Riemannian metric.

In fact, the space LG(T∗M) can be represented as the total space of the principal bundle with
structure group U(n), right factored with respect to the subgroup O(n).

Let W = T(M). We introduce a natural almost-complex structure J on the manifold W as follows:

J : T(T∗(M)) → T(T∗(M)).

The local coordinates on the manifold W = T(M) are of the form

(xα, p
α) = (xjα, p

α
k )

n
j,k=1.

The symplectic structure is given by the differential form

ω = dpα ∧ dxα =
∑

dpαj ∧ dxjα.

See [1] for details.
The Euclidean structure is given by the Euclidean form

G = gαj,k dx
j
α dx

k
α + gj,kα dpαj dp

α
k .

The almost complex structure J is given by the formula

J

(
∂

∂xjα

)

=
∂

∂pαj
, J

(
∂

∂pαj

)

= − ∂

∂xjα
.

Under the change of coordinates, the components of the tangent space T(T∗(M)) change by the
tensor law:

∂

∂xjα
=

∂xkβ

∂xjα

∂

∂xkβ
,

∂

∂pαj
=

∂xjα

∂xkβ

∂

∂pβk
.

Then

J

(
∂

∂xjα

)

=
∂xkβ

∂xjα
J

(
∂

∂xkβ

)

=
∂xkβ

∂xjα

∂

∂pβk
=

∂

∂pαj
;

i.e., the operator J is independent of the choice of the chart. This means that the bundle T(T∗(M)) is a
complex bundle with structure group U(n), which reduces to the subgroup O(n) ⊂ U(n).
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We replace the bundle T(T∗(M)) by the principal U(n)-bundle PU(n)(T
∗M) with fiber U(n). On the

total space of the principal U(n)-bundle PU(n)(T
∗M), the group U(n) acts freely on the right; in partic-

ular, the subgroup O(n) ⊂ U(n) acts freely on the right as well. Factoring the total space PU(n)(T
∗M)

by the right action of the group O(n), we obtain the bundle PU(T∗M)/O(n) with fiber U(n)/O(n)
and structure group U(n), which acts on the fiber U(n)/O(n) by left multiplication. The bundle of
Lagrangian Grassmannians LG(T∗M) is isomorphic to the principal bundle (PU(n)(T

∗M))/O(n):

LG(T∗M)

��

u �� (PU(n)(T
∗M))/O(n)

��
T
∗M T

∗M.

The map u is given by the equivariant map of one fiber:

u : Λ(n) → U(n)/O(n),

where Λ(n) is a Lagrangian Grassmannian, Λ(n) = {L ⊂ C
n : ω|L = 0}.

The structure group U(n) of the bundle (PU(n)(T
∗M))/O(n) reduces to a subgroup O(n) ⊂ U(n),

and hence the map

det2 : U(n)/O(n) → S
1

extends to the map of the total spaces of bundles

LG(T∗M)

��

u ��

det2 ·u

��
�

�
� � � � 
 � �  � !

�
"

(PU(n)(T
∗M))/O(n)

��

det2 �� S1

T
∗M T

∗M.

.

The generalized Maslov class is constructed as an inverse image by the mapping:

(det2 ·u)∗(dz/2πiz) ∈ H1(LG(T∗M)).
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