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1. INTRODUCTION

The second-order nonlinear difference equation

dPII xn+1 + xn−1 =
nxn

ν(x2n − 1)
, n ∈ N, (1.1)

is called the discrete Painlevé equation of second type (see [1]–[3]).
It is easy to show [3] that this equation goes over into the Painlevé II differential equation in the limit

ν → ∞. Indeed, introducing a continuous variable t and a function u(t), we perform the scaling

t = (n− 2ν) ν−1/3, xn = (−1)nν−1/3u(t). (1.2)

Then

xn±1 = (−1)n+1ν−1/3

(
u(t)± ν−1/3u′(t) +

1

2
ν−2/3u′′(t) +O(ν−1)

)
,

nxn
ν(x2n − 1)

= (−1)n+1

(
2 + ν−2/3t+

1

2
ν−1

)
ν−1/3u(t)

(
1 + ν−2/3u2(t) +O(ν−4/3)

)

= (−1)n+1

(
2ν−1/3u(t) + ν−1(tu(t) + 2u3(t)) +O(ν−4/3)

)
.

Substituting this into (1.1) and passing to the limit ν → ∞, we obtain

u′′(t) = tu(t) + 2u3(t),

which is a special case of the classical Painlevé equation II [4].
Asymptotic solutions of equation dPII as n → ∞ are usually studied in the above limit [3]. Nonethe-

less, asymptotics for large n and finite ν are of considerable interest in connection with various
applications. For example, such solutions are used in the theory of matrix models in physics [5], [6],
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ASYMPTOTIC SOLUTIONS OF THE PAINLEVÉ EQUATION 599

in calculations of zero-probabilities of eigenvalues of random matrices [7], and in symmetric group
representations [8].

We will consider the Cauchy problem for equation (1.1) with initial conditions

x0 = a, x1 = b. (1.3)

The existence and uniqueness of the solution of problem (1.1), (1.3) are obvious, because equation dPII
can be regarded as an iteration of the mappings of the plane into itself. Indeed, denoting yn = xn − xn−1,
we write this mapping in the following form:

S : R2 → R
2,

where

(
xn+1

yn+1

)
= S

(
xn
yn

)
, S =

⎛
⎜⎝

n

ν(x2n − 1)
− 1 1

n

ν(x2n − 1)
− 2 1

⎞
⎟⎠ . (1.4)

In the case of real xn, the mapping S is exponentially unstable, i.e., is ether an extension or a contracting,
depending on the sign of the quantity n/ν(x2n − 1). The Julia set of the mapping S, i.e., the closure of the
set of unstable periodic points [9], constitutes the domain bounded by the straight lines x = 0, x = y, and
the hyperbole y = x− 1/x. Therefore, a priori one would expect the chaotic behavior of the point (xn, yn)
for large n [10]. However, in this case, the mapping (1.4) possesses conservation laws, and equation dPII
is completely integrable. In [8], it was integrated by the method of isomonodromic deformations and the
corresponding Riemann problem was presented, which, in this case, is also discrete. Thus, in this case,
there always exists a regular asymptotics of the solution.

In Secs. 2 and 3, we calculate the formal asymptotics of solutions of dPII for real and complex
initial conditions. In Sec. 4, we consider the class of real initial conditions providing an exponentially
decreasing asymptotics as n → ∞. It turns out that these solutions describe the distribution function of
permutations of a symmetric group. This property can be used to justify the asymptotics and single out
the transition domain from oscillations to an exponential decrease.

Just as other discrete integrable equations, dPII can be regarded as a chain of Bäcklund transforma-
tions of solutions of certain differential equations. In Sec. 5, we consider these equations as special cases
of classical Painlevé equations of third and fifth type. The latter equation is used to justify the passage
to the limit of the solution of dPII to the Hastings–McLeod solution of the Painlevé equation of second
type.

2. ASYMPTOTICS OF REAL SOLUTIONS

In this section, we will consider the initial conditions (1.3) and the coefficient ν to be real. Replacing
the dependent variable xn:

xn =

√
n

ν
un, (2.1)

we rewrite equation (1.1) as √
n+ 1

n
un+1 +

√
n− 1

n
un−1 =

un
u2n − ν/n

. (2.2)

As n → ∞, equation (2.2) in the leading order takes the form

un+1 + un−1 =
1

un
. (2.3)

The mapping (1.4) in this limit lets any initial condition u0 = a, u0 = b tend to zero and to infinity.
Indeed, the terms of the sequence un are of the form

u2n = b
(ab)n−1

(1− ab)n−1
, u2n+1 = a

(1− ab)n

(ab)n
,
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600 NOVOKSHENOV

so that u2n → ∞ and u2n+1 → 0 for ab > 1/2. To these limits corresponds the one-parameter family of
solutions of equation (2.3)

un =
(−1)n√

2
tan

(
πn

2
+ φ

)
, φ = const . (2.4)

as φ → π/2 and φ → 0.
The choice of the leading term of a real asymptotics of the form (2.4) is discussed below in Sec. 5,

remark 1.
By analogy with the asymptotics of the classical Painlevé II equation [4, Chap. 6], we will search for

corrections to the main term in the form

un =
(−1)n√

2

(
1 +

κ

n

)
tan

(
πn

2
+ α

√
n+ β ln(n) + γ

)
. (2.5)

Denote the phase of the tangent by

φn =
πn

2
+ α

√
n+ β ln(n) + γ

and calculate the left-hand side of (2.2) up to O(n−3/2). We have√
n+ 1

n
un+1 +

√
n− 1

n
un−1

=
(−1)n√

2

(
2 cot φn +

4κ + α2

2n
cot φn +

α2

2n
cot3 φn

)
+O(n−3/2).

Compare this expression with the right-hand side of (2.2), obtaining

un
u2n − ν/n

=
1

un
+

ν

nu3n
+O(n−2) =

(−1)n√
2

(
2 cot φn +

2ν

n
cot φn +

4ν

n
cot3 φn

)
+O(n−2).

This expression yields the following formulas for the first corrections for the amplitude and phase:

κ = −ν, α =
√
8ν .

The phase correction β for the logarithm in (2.5) is defined together with the following lower terms of the
asymptotics:

un =
(−1)n√

2

(
1 +

κ

n
+

ε

n3/2

)(
tanφn +

η

n3/2
tan2 φn +

ζ

n3/2

)
,

φn =
πn

2
+ α

√
n+ β ln(n) + γ +

δ√
n
.

(2.6)

Then the asymptotic term of order O(n−3/2) on the left-hand side of equation (2.2) is of the form

n−3/2

4
√
2
(8η − α+ 8αβ(cot φn + cot3 φn) + (8η − α) cot φn).

Since there exist no terms of this order on the right-hand side of equation (2.2), the term indicated above
must be set to zero. Then we obtain

β = 0, η =
α

8
=

√
ν

8
.

The remaining coefficients in the asymptotics (2.6) are obtained by comparing the terms of order O(n−2):

ζ =

√
ν

8
, ε = 0, δ = −2

3
ν3/2.

Note that the final phase shift γ cannot be found from equation (1.1). Since the constant φ in formula
(2.4) for the exact solution of equation (2.2) is arbitrary, it follows that the formal asymptotics (2.5) is
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invariant under the shift γ. Just as in the case of the classical Painlevé II equation, this shift must be
determined from the initial condition (1.3) or from the conservation laws (integrals of motion) of a given
solution. To calculate such shifts, one must apply the method of isomonodromic deformations, which is
beyond the scope of this paper.

This proves the following theorem.

Theorem 1. For real solutions of equation (1.1) with initial conditions (1.3) in the case of general
position, the following formal asymptotics as n → ∞ holds:

un =
(−1)n√

2

√
n

ν

(
1− ν

n
+O(n−2)

)(
tan φn + n−3/2

√
ν

8
tan2 φn + n−3/2

√
ν

8

)
, (2.7)

where

φn =
πn

2
+

√
8νn+ γ − 2

3
√
n
ν3/2,

and the constant γ is determined from the initial condition (1.3).

The case of special initial conditions leading to a different asymptotics than (2.7) is discussed below
in Sec. 5.

The solution of equation (1.1) with its asymptotics (2.7) is compared in Fig. 1.

Fig. 1. The real solution of dPII for ν = 1.5 corresponding to the initial conditions x0 = −1, x1 = 2 (small dots) and
the asymptotics (2.7) (large dots).

3. ASYMPTOTICS OF COMPLEX SOLUTIONS

In the case of the complex initial data (1.3), one can expect that the denominator of the right-hand
side of the equation dPII does not vanish, and hence there will not be infinitely many poles, as in the real
case.

To construct the asymptotics of the solution of dPII with complex initial conditions, again replacing
the variable xn (2.1), we pass to equation (2.2). Now we will search the solution of the equation in the
leading order (2.3) in the form

un =
i√
2k′

dn(n(K + 2iK ′) + φ | k), (3.1)
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where dn(x | k) is the Jacobi elliptic function of the modulus of k with primitive periods 2K and 4iK ′,
where

K =

ˆ π/2

0

dϕ√
1− k2 sinϕ

, K ′ =

ˆ π/2

0

√
1− k2 sinϕdϕ, k′ =

√
1− k2 .

Equation (2.3) un+1 + un−1 = u−1
n holds for the elliptic function (3.1) due to the periodicity rela-

tions [11, Chap. 13, Table 7]

dn(nK + φ | k) = k′

dn(φ | k) , dn(nK + 2imK ′ + φ | k) = − k′

dn(φ | k) , n,m ∈ Z.

We will search for the asymptotic solution in the form similar to (2.6):

un =
i√
2k′

(
1 +

κ

n
+

ε

n2

)
φn | k)

×
(
dn(n(K + 2iK ′) +

η

n3/2
sn(nK + φn | k) cn(nK + φn | k) + ζ

n3/2

)
, (3.2)

φn = α
√
n+ β lnn+ χ+

γ√
n
,

where α, β, γ, ε, χ are constants and sn, cn are Jacobi elliptic sine and cosine. For brevity, in
these functions, we will omit the modulus of k and the index n in the argument, dn(φ) = dn(φn | k).
Substituting the asymptotic ansatz (3.2) into equation (2.2) and expanding in a Taylor series as n → ∞,
we obtain the remainders of order O(n−1) on the right-hand side:

n−1
{
16κ dn2(φ) + α2k2 cn2(φ) + α2(k2 − 1)k2 sn2(φ) − 16

√
1− k2 ν

}
.

Equating this expression to zero, we use the well-known relations for the Jacobi functions

sn2(φ) + cn2(φ) = 1 and k2 sn2(φ) + dn2(φ) = 1.

Then

α =

√
8ν

4
√
1− k2

, κ = −(k2 − 2)ν

2
√
1− k2

. (3.3)

Equating to zero the next correction term of order O(n−3/2), we can write

8ζ(
√

1− k2 − 1) + 4αβk2
√

1− k2
cn2(φ) + (k2 − 1) sn2(φ)

dn(φ)

+
√

1− k2(αk2 + 16η) cn(φ) sn(φ) = 0,

whence we obtain the expressions for the following coefficients (3.2):

η = −αk2

16
, ζ = 0, β = 0. (3.4)

Finally, we write out terms of order O(n−2). We have

n−2
{
(k2 cn2(φ)(α(ακ + 4γ) + 4β2) + (k2 − 1)k2 sn2(φ)(α(ακ + 4γ) + 4β2) + 8ε− 1)

+ 4βk2 cn2(φ) sn2(φ)− 8(δ2 − ε) dn2(φ) + 48κ
√

1− k2 ν
}
. (3.5)

Substitute here the values of α, β, and κ already found in (3.3) and (3.4). Then (3.5) simplifies to the
form

n−2
{
− 8

√
k2 − 1 ε+ 16

√
2(1− k2)5/4γ

√
ν +

√
k2 − 1 (1 + 32(k2 − 2)ν2)

+ 2
(
4(k2 − 1)3/2ε+ (k2 − 2)

√
ν (4

√
2 (1− k2)5/4γ

+ 3(k2 − 2)
√

k2 − 1 ν3/2)
)
dn2(φ)

}
.
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Again equating this expression to zero, we obtain the following formulas for γ and ε:

γ =
k2 + 88ν2 − 120k2ν2 + 38k4ν2 − 1

8
√
2 (1− k2)3/4(3k2 − 4)

√
ν

, ε =
(k2 − 2)(1 + 20(k2 − 2)ν2)

8(3k2 − 4)
. (3.6)

Note that, just as above, in the real case, the constant χ in the phase remains undefined. The modulus
of the elliptic function k also remains indefinite. These complex parameters correspond to the choice of
a specific solution. of the equation dPII and are calculated from the initial condition or the invariants of
the solution.

This proves the following theorem.

Theorem 2. For the complex solutions of equation (1.1) with initial conditions (1.3), the formal
asymptotics (3.2) as n → ∞ holds.

The solution of equation (1.1) is compared with its asymptotics (3.2) in Fig. 2 and Fig. 3. The points
x2n are connected sequentially by segments, and the odd points x2n+1 are not shown; they form n graphs
symmetric with respect to the axis, because x2n+1 ∼ −x2n.

Fig. 2. The complex solution of dPII for ν = 1.5 corresponding to the initial conditions x0 = 1, x1 = 0.3 + 0.3i. The
real part of the solution (solid line) and its asymptotics (dotted line) corresponds to k = 0.50, χ = 5.4 + 4.6i.

Fig. 3. The complex solution of dPII for ν = 1.5 corresponding to the initial conditions x0 = 1, x1 = 0.3 + 0.3i. The
pure imaginary part of the solution (solid line) and its asymptotics (dotted line) corresponds to k = 0.50, χ = 5.4+ 4.6i.

4. EXPONENTIALLY DECREASING SOLUTIONS. SYMMETRIC GROUP
REPRESENTATION

Equation dPII has an identically zero solution xn ≡ 0. Accordingly, the mapping S (1.4) of the plane
R
2 has the origin (x, y) = (0, 0) as a stationary point, and, for |xn| < 1, this mapping is contractive.

Therefore, one can expect that there exist solutions tending to the limit xn → 0 as n → ∞.
It turns out that such solutions arise in applications of the equation dPII related to the calculation

of the null probabilities of the distribution of eigenvalues of random matrices [12] and to symmetric
group representations [7]. Let us briefly present these results and derive formulas for the exponentially
decreasing solutions of (1.1).
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Let Sn be a symmetric group of degree n, i.e., the permutation group of a set of n elements, denoted
usually by the natural numbers 1, 2, . . . , n. Denote by ln(σ) the length of the largest increasing sequence
of the substitution σ ∈ Sn and through | · | is the number of elements in the set. Let us put

pnk =
1

n!
|{σ ∈ Sn | ln(σ) ≤ k}|

and introduce the generating function

pk(ν) = e−ν2
∞∑
n=0

ν2n

n!
pnk ,

where ν is a complex parameter. Another equivalent definition follows from the Robinson–Schoensted
algorithm [13]. Take all partitions of the permutation

λ = (λ1, λ2, . . . , λl) ∈ S|λ|

such that |λ1| ≥ · · · ≥ |λl| > 0, |λ1| ≤ k and |λ| = |λ1|+ · · ·+ |λl|. Denote by dimλ the dimension of
the irreducible representation symmetric group S|λ|; then

pk(ν) = e−ν2
∑

|λ1|≤k

(
dimλ

|λ|! ν |λ|
)2

,

where the summation is taken over all such partitions of λ.
Calculating the function pk(ν) is an important problem in the theory of symmetric group representa-

tions. It was proved in [14] that this function can be expressed in terms of the Toeplitz determinant:

pk(ν) = e−ν2 det[fi−j]
k
i,j=1 ,

+∞∑
m=−∞

fmζm = eν(ζ+ζ−1). (4.1)

The connection between the function pk(ν) and the solution of equation dPII was first established
in [12]. Define a sequence {xn}∞n=0 by the initial conditions

x0 = ∓1, x1 = ±f1
f0

(4.2)

with fi from (4.1) and the recurrence relation

xn+1 + xn−1 =
nxn

ν(x2n − 1)
, n ≥ 1.

Then, for any k ≥ 1 and ν, in general position, the following recursive relations are valid:

pk+1(ν)pk−1(ν)

p2k(ν)
= 1− x2k. (4.3)

Here the words “in general position” mean that ν does not belong to the set of poles of the meromorphic
function xk = xk(ν).

Another derivation of this result using a discrete Riemann problem was given later in [7].
Equality (4.3) can be used to estimate the solution xn with initial conditions (4.2). Let us note in

passing that f0 = I0(2ν) and f1 = I1(2ν) in view of the well-known decomposition [11]

eν(ζ+ζ−1) =
+∞∑

m=−∞
Im(2ν)ζm,

where the Im are the modified Bessel functions of the first kind.
For Toeplitz determinants (4.1), Szegö’s limit theorem s k → ∞ holds [15]:

lim
k→∞

det[Ii−j(2ν)]
k
i,j=1 = eν

2
.
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Thus, pk(ν) → 1 and xk → 0 as k → ∞. From a probabilistic point of view, the asymptotics as
pk(ν) → 1 corresponds to the total probability that an increasing subsequence ln of the permutation
σ ∈ Sn is of length at most n.

To estimate the decay rate of the solution, we use the corresponding result from [16], where the
quantity pk+1(ν)/pk(ν) was esimated. Let γ = 2ν/(n − 1), and let γ < 1. Then there exist positive
constants c and C depending on γ and such that∣∣∣∣pn+1(ν)

pn(ν)
− 1

∣∣∣∣ < Ce−cn, n > 2ν + 1.

It follows that the solution xn is exponentially small in the domain n > 2ν. Figure 4 illustrates the
behavior of the functions xn also pn for ν = 15 and n ≤ 60.

Fig. 4. The special the solution of dPII corresponding to ν = 15 and the initial conditions (4.2) (small dots) and the
values of the Toeplitz determinant pn(ν) (large dots).

Thus, the following theorem holds.

Theorem 3. Equation (1.1) with initial conditions (4.2)

x0 = ∓1, x1 = ±I1(2ν)

I0(2ν)

has exponentially decreasing solutions such that

|xn| = o(e−cn), n > 2ν + 1, n → ∞.

5. EQUATION DPII AND OTHER PAINLEVÉ EQUATIONS

Equation dPII can be regarded as the Bäcklund transformation, connecting various solutions xn(ν)
of some nonlinear differential equations with respect to the variable ν. This approach, which is common
in the theory of solitons, can also be used to calculate the asymptotics of the solutions of equation dPII
itself. It turns out that the nonlinear equations with respect to ν, to which dPII corresponds, are the
classical Painlevé equations of third (PIII) and fifth (PV). type. Let us briefly summarize this conclusion
following the paper [12] and then prove the validity of the scaling (1.2) mentioned in the Introduction as
n, ν → ∞.

Let use the following notation for the derivative with respect to ν: f ′ = df/dν. The derivatives of xn
with respect to ν from equation (1.1) are expressed as follows:

x′n =
n

ν
xn + 2xn+1(1− x2n), (5.1)

x′n =
n

ν
xn − 2xn−1(1− x2n). (5.2)

Obviously, equalities (5.1) and (5.2) are consistent with equation (1.1).
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We find xn+1 from equality (5.1) and substitute it into (5.2), replacing n by n+ 1. Then we obtain the
following second-order equation for the function vn = 1− x2n:

v′′n =
1

2

(
1

vn − 1
+

1

vn

)
(v′n)

2 − v′n
ν

− 8vn(vn − 1) + 2
n2

ν2
vn − 1

vn
. (5.3)

Equation (5.3) becomes the classical equation PV [4] if we replace ν = t2 and vn �→ v/v − 1 with
coefficients α = 0, β = −n2/2, γ = 2, and δ = 0.

The third Painlevé equation is also derived from relations (5.1) and (5.2). Putting wn = xn/xn−1, we
express the derivative of wn from (5.1), replacing n by n− 1:

w′
n = −2n− 1

ν
wn − 2 + 4x2n − 2w2

n. (5.4)

Further, using (5.2), we finally obtain

w′′
n =

1

wn
(w′

n)
2 − 1

ν
w′
n + 4

n− 1

ν
w2
n − 4n

ν
+ 4w3

n − 4

wn
, (5.5)

which coincides with equation PIII with coefficients α = 4(n − 1), β = −4n, γ = 4, and δ = −4 [4].

Let the real solution in equation (5.3) tend to to 1 at infinity with respect to ν. We also put n � 1 and
consider the behavior of the solution in a neighborhood of the point ν = n/2. Let us introduce the new
variables

t = (n− 2ν)n−1/3, vn = 1− n−2/3u2(t);

then equation (5.3) expands in powers of the small parameter n−1/3. At the highest power n−2/3, we will
have the identity 8u2 = 8u2, and, at the next power n−4/3, we will have the following equation for the
function u(t):

utt = tu+ 2u3. (5.6)

Recalling the replacement vn = 1− x2n, we conclude that, in the leading order, for large n, the solution
of dPII is the same up to sign with the solution of equation PII (5.6).

The choice of the solution of equation (5.6) is dictated here by the asymptotics of the real solution xn
decreasing for n > 2ν. Theorem 3 implies that such a solution decreases exponentially, so that
u(t) = o(e−ct) as t → +∞. It is known that this solution of equation PII exists and is unique [4,
Chap. 10]. This is the Hastings–McLeod solution, for large negative t with the asymptotics

u(t) =

√
− t

2
+O((−t)−1/4).

Thus, the passage to the limit (1.2) is valid only in the transition domain n ∼ 2ν, where does the
oscillating mode of xn is sewn to the exponentially decreasing mode (see Fig. 4). In this case, the
square x2n does not contain the multiplier (−1)n and is a smooth function of u2(t).

Remark 1. The real solutions of equation (5.6) in the case of general position have simple poles on the
real axis. Their distribution as t → +∞ is described by the asymptotics

u(t) = ±
√
2t tan

(√
2

3
t3/2 +

1

2
c1 ln t+ c2

)
+O(t−3/2), (5.7)

where the constants c1 and c2 are explicitly expressed in terms of the monodromy data of the Painlevé II
equation (5.6) [4, Chap. 10, Theorem 10.1]. The asymptotics (5.7), in turn, is consistent with the
representation of the solution un of dPII (2.7) for t = (n− 2ν)n−1/3 � 1. This fact explains the choice
of the leading term of the real asymptotics of un in the form of a tangent, but not as another solution of
the discrete equation (2.3).
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