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Abstract—We study the existence of solutions to the Kantorovich optimal transportation problem
with a nonlinear cost functional generated by a cost function depending on the transport plan. We
also consider the case of a cost function depending on the conditional measures of the transport
plan. Broad sufficient conditions are obtained for the existence of optimal plans for Radon marginal
distributions on completely regular spaces and a lower semicontinuous cost function.
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1. INTRODUCTION

It is well known that in the classical Kantorovich problem of minimizing the integral of a nonnegative
Borel cost function h on the product of completely regular topological spaces X and Y with Radon
probability measures μ and ν with respect to measures σ from the set Π(μ, ν) of Radon probability
measures on X × Y with projections μ and ν on the factors (such measures are called plans), a solution
exists if the function h is lower semicontinuous (or at least lower semicontinuous on compact sets). A
minimizing measure is called an optimal measure or an optimal Kantorovich plan, and the measures μ
and ν are called marginals or marginal distributions. About this problem see [1]–[5]. In the general case,
there exists an infimum

Kh(μ, ν) = inf
σ∈Π(μ,ν)

ˆ
X×Y

hdσ.

In the recent works [6]–[10] the Kantorovich problem has been considered with a more general,
nonlinear in σ, cost functional given by a nonlocal cost function that depends on the plan. The cost
function considered in these papers has the form

h(x, y, σ) = H(x, σx), (1.1)

where σx are the conditional measures on Y with respect to the projection of σ (which equals μ) on X.
The existence of a solution is proved in [8] in the case of Polish spaces and a lower semicontinuous
function h on X × P(Y ), where the function σ �→ h(x, σ) is convex, and P(Y ) is the space of Borel
probability measures on Y equipped with the weak topology. The goal of this paper is to extend this
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370 BOGACHEV, REZBAEV

existence theorem to a wider class of functionals and spaces. We consider nonlinear functionals of the
form

Jh(σ) =

ˆ
X×Y

h(x, y, σ)σ(dx dy), (1.2)

where the cost function h : X × Y ×P(X × Y ) → [0,+∞) is lower semicontinuous. For Radon
marginal distributions, we prove the existence of an optimal plan minimizing this functional. However,
the very natural requirement of lower semicontinuity does not enable one to cover cost functions of the
form h(x, σx), since conditional measures can depend on σ only in a Borel way. Therefore, functionals
of type (1.2) are considered separately and under the more restrictive condition that the cost function is
convex with respect to the measure argument.

2. EXISTENCE THEOREM FOR NONLINEAR FUNCTIONALS

For a completely regular space X we denote by Pr(X) the space of Radon probability measures on X,
i.e., Borel measures μ such that, for every Borel set B and every ε > 0, there exists a compact set K ⊂ B
such that μ(B \K) ≤ ε. We equip Pr(X) with the weak topology, which on the whole space of signed
measures is generated by the family of seminorms

pf (μ) =

∣
∣
∣
∣

ˆ
X
f dμ

∣
∣
∣
∣
,

where f is a continuous bounded function on X. If X is a complete metrizable space, then so is Pr(X),
and if X is a Souslin space, i.e., the image of a complete separable metric space under a continuous
mapping, then Pr(X) is also a Souslin space.

A family of measures M ⊂ Pr(X) is said to be uniformly tight if, for every ε > 0, there exists a
compact set K ⊂ B such that μ(B \K) ≤ ε for all μ ∈ M . By Prohorov’s theorem (see [11, Chap. 8])
such a set has compact closure in the weak topology. For Polish spaces, the converse is true, but in the
general case this is false (even for the set of rational numbers, see [12, Sec. 4.8]).

Lemma 1. Let X be a completely regular space, let Π be a uniformly tight compact subset in
Pr(X), and let a function h : X ×Π → [0,+∞) be lower semicontinuous on all sets of the form
K ×Π, where K is compact in X. Then, the following function is lower semicontinuous:

Jh(σ) =

ˆ
X
hdσ, Π → [0,+∞].

Proof. The values Jmin(h,n)(σ) are increasing to Jh(σ). Therefore, we can consider only bounded
functions h. We can assume that h ≤ 1.

Assume first that the function h is lower semicontinuous on the whole product X ×Π. Suppose
that a net σα converges weakly in Π to a measure σ. Then the Dirac measures δσα on Π converge
weakly to the Dirac measure δσ. Therefore, the products σα ⊗ δσα on Π× Pr(Π) converge weakly to
the product σ ⊗ δσ, see [12, Theorem 4.3.18]. Hence, due to the lower semicontinuity of h we have
(see [11, Corollary 8.2.5] or [12, Corollary 4.3.5])

lim inf
α

ˆ
Π

ˆ
X
h(x, p)σα(dx) δσα (dp) ≥

ˆ
Π

ˆ
X
h(x, p)σ(dx) δσ(dp);

in other words,

lim inf
α

ˆ
X
h(x, σα)σα(dx) ≥

ˆ
X
h(x, σ)σ(dx),

which is equivalent to the lower semicontinuity of the function Jh.
We now consider the general case, still assuming that h ≤ 1. Fix ε > 0. By assumption, there exists

a compact set K ⊂ X such that σ(K) > 1− ε for all σ ∈ Π. It is known (see [13, 1.7.15 (c)]) that one
can find a family of continuous functions hα ≥ 0, on K ×Π for which

h(x, σ) = sup
α

hα(x, σ) ∀x ∈ K, σ ∈ Π.
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EXISTENCE OF SOLUTIONS TO THE NONLINEAR KANTOROVICH PROBLEM 371

Each function hα extends to a continuous function gα : X ×Π → [0, 1]. The function g(x, σ) =
supα gα(x, σ) is lower semicontinuous on the entire product X ×Π and coincides with h on K ×Π and
the corresponding function Jg, according to what has been proved above, is also lower semicontinuous.
It remains to note that

|Jg(σ)− Jh(σ)| ≤ 2ε ∀σ ∈ Π,

since g = h on K ×Π, and the integrals of h(x, σ) and g(x, σ) over the complement of K with respect
to any measure σ ∈ Π do not exceed ε. Thus, the function Jh is uniformly approximated by lower
semicontinuous functions and therefore it is also lower semicontinuous.

Remark 1. It is seen from the proof that if the function h is bounded and continuous on the whole
product X × Pr(X), then the function Jh is continuous on the space Pr(X).

Theorem 1. Let h be lower semicontinuous on all sets of the form K ×Π(μ, ν), where K is compact
in X × Y . Then there exists an optimal plan.

Proof. Since the set of plans Π(μ, ν) is uniformly tight and weakly compact, by Lemma 1, the
function Jh is lower semicontinuous on Π(μ, ν). Now the existence of an optimal plan follows from
the fact that a lower semicontinuous function on a compact set attains its minimum on this compact
set.

3. COST FUNCTIONS WITH CONDITIONAL MEASURES

In this section we assume that X and Y are completely regular spaces, μ ∈ Pr(X) and ν ∈ Pr(Y ).
Let B(T ) denote the Borel σ-algebra of a topological space T and let Ba(T ) denote the Baire σ-algebra
that is generated by all continuous functions on T . In the case of a completely regular Souslin space,
the equality Ba(T ) = B(T ) holds, see [11, Theorem 6.7.7]. If T = Pr(Y ) with the weak topology,
then Ba(T ) is generated by all functions on T of the form

p �→
ˆ
Y
ϕ(y) p(dy),

where ϕ is a continuous bounded function on Y , see [11, Theorem 6.10.6].
We additionally require from the set Π(μ, ν) that, for every measure σ ∈ Π(μ, ν), there exist unique

μ-a.e. conditional measures σx ∈ Pr(Y ) with respect to the projection of σ on X (that equals μ).
This means that σ has the form σ(dx dy) = σx(dy)μ(dx), the function x �→ σx(B) is measurable with
respect to μ for all B ∈ B(Y ) and, for every bounded function f on X × Y , measurable with respect to
B(X)⊗ B(Y ), the equality ˆ

X×Y
f dσ =

ˆ
X

ˆ
Y
f(x, y)σx(dy)μ(dx)

holds. It is clear that it suffices to have this equality for all functions of the form IA(x)IB(y), where
A ∈ B(X), B ∈ B(Y ).

We assume in addition that the mapping x �→ σx, X �→ Pr(Y ) is measurable with respect to the
σ-algebras B(X) and Ba(Pr(Y )). Then the mapping

x �→ (x, σx), X → X × Pr(Y )

is measurable with respect to the σ-algebras B(X) and B(X)⊗Ba(Pr(Y )). Hence, for any function H
on X × Pr(Y ) that is measurable with respect to B(X)⊗ Ba(Pr(Y )), the function

x �→ H(x, σx)

is Borel on X.
Finally, we assume that, for every measure P ∈ Pr(X × Pr(Y )) with the projection μ on X, there

exist conditional measures P x ∈ Pr(Pr(Y )). This is automatically fulfilled if the set {(x, p, x) : x ∈ X,
p ∈ Pr(Y )}, which is closed, belongs to B(X × Pr(Y ))⊗ B(X), see [11, Corollary 10.5.7].
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372 BOGACHEV, REZBAEV

These requirements are natural for a correct setting of the nonlinear Kantorovich problem and are
satisfied, for example, when the measures μ and ν are concentrated on Souslin sets (see [11, Sec. 10.4]).
Moreover, it is sufficient that only the space Y be Souslin, since for every topological space T and every
completely regular Souslin space E, one has

B(T × E) = B(T )⊗ B(E)

(see [14], [15, Sec. 4A3X]), and the Borel σ-algebra of any Souslin space is countably generated (see [11,
Corollary 6.7.5]).

For a Radon probability measure Q on the space of measures Pr(Y ), the barycenter is given by

βQ :=

ˆ
Pr(Y )

pQ(dp),

where the vector integral with values in the space of measures is understood as the equality

βQ(A) =

ˆ
Pr(Y )

p(A)Q(dp)

for all Borel sets A ⊂ Y . It is a well known fact that the measure βQ is τ-additive (see [11, Corol-
lary 8.9.9]), but we are interested in Radon barycenters. The Radon property holds if all τ-additive
measures on Y are Radon (say, in the case of a Souslin space Y ), and also if the measure Q is
concentrated on the countable union of some uniformly tight compact set Sn ⊂ Pr(Y ). Indeed, the
barycenters of the measures ISn ·Q converge in variation to βQ, and for each ε > 0 there exists a compact
set Kε ⊂ Y such that p(Kε) ≥ 1− ε for all p ∈ Sn,

βISn ·Q(Kε) ≥ (1− ε)Q(Sn),

i.e., the measures βISn ·Q are tight, hence they are Radon. Below, barycenters will be considered for
measures concentrated on countable unions of uniformly tight compact sets and, therefore, they will
be Radon measures. It is worth noting that if all τ-additive measures are Radon on Y , then every
Radon measure on Pr(Y ) is concentrated on a countable union of uniformly tight compact sets, see [11,
Theorem 8.10.6].

Lemma 2. (i) Suppose that E is a completely regular space, a net Pα ∈ Pr(E) is uniformly tight
and converges weakly to a measure P ∈ Pr(E) and H : E → [0, 1] is a function such that, for each
ε > 0, there exists a compact set Kε ⊂ E for which Pα(E \Kε) < ε for all α and the restriction
of H to Kε is lower semicontinuous. Thenˆ

E
H dP ≤ lim inf

α

ˆ
E
H dPα. (3.1)

(ii) Suppose that Y is a completely regular space, a measure Q ∈ Pr(Pr(Y )) is concentrated
on a countable union of uniformly tight sets and a bounded function H on Pr(Y ) is convex and
lower semicontinuous on uniformly tight sets. Then

H

(ˆ
Pr(Y )

pQ(dp)

)

≤
ˆ
Pr(Y )

H(p)Q(dp). (3.2)

Proof. (i) Fix ε > 0. By assumption, there exists a compact set K ⊂ E, such that Pα(K) ≥ 1− ε
for all α and the restriction of H to K is lower semicontinuous. By weak convergence, we have
P (K) ≥ 1− ε. As above, one can find a family of continuous functions Hα ≥ 0 on E, such that
H(x) = supαHα(x) for x ∈ K. We can assume that Hα ≤ 1 for all α passing to min(Hα, 1). The
function G(x) = supαHα(x) is lower semicontinuous on the whole space E and equal to H on K.
By weak convergence of the measures Pα and the lower semicontinuity of G, we have (see [11,
Corollary 8.2.5])

lim inf
α

ˆ
E
GdPα ≥

ˆ
E
GdP.
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Using the inequalities ˆ
E
H dPα ≥

ˆ
K
H dPα =

ˆ
K
GdPα ≥

ˆ
E
GdPα − ε,

we obtain the estimates

lim inf
α

ˆ
E
H dPα ≥

ˆ
E
GdP − ε ≥

ˆ
E
H dP − 3ε.

Since ε is arbitrary, we arrive at (3.1).
(ii) By the convexity of H the indicated inequality holds for any convex combinations of Dirac

measures. Let us extend it to measures Q with compact uniformly tight supports. Since the convex
hull of a uniformly tight set is uniformly tight, we can assume that the measure Q is concentrated on
a set C ⊂ Pr(Y ) that is convex, compact, and uniformly tight. Let us find a net of discrete probability
measures Qt on C that converges weakly to Q and has the propertyˆ

Pr(Y )
H dQt →

ˆ
Pr(Y )

H dQ.

This can be done similarly to the standard proof of the density of discrete measures in the space of Baire
measures (see [11, Example 8.1.6]). Let us recall the construction. The indices t of the directed set
indexing the selected measures are taken in the form of collections f1, . . . , fk, r, where fi are bounded
continuous functions on Pr(Y ) and r ∈ N, and the partial order on collections is introduced as follows:

(f1, . . . , fk, r) ≤ (g1, . . . , gm, s),

if {f1, . . . , fk} ⊂ {g1, . . . , gm} and r ≤ s. A discrete measure Qf1,...,fk,r with support in C is found in
such a way that the difference between the integrals of f1, . . . , fk,H with respect to Qf1,...,fk,r and Q is
not greater than 1/r. The barycenters of the measures Qt belong to C. The following equality holds:ˆ

C
pQ(dp) = lim

t

ˆ
C
pQt(dp),

because by the definition of the weak topology this equality is equivalent to the fact that, for every
bounded continuous function f on Y , we haveˆ

C

ˆ
Y
f(y) p(dy)Q(dp) = lim

t

ˆ
C

ˆ
Y
f(y) p(dy)Qt(dp),

but the latter is true by weak convergence of Qt to Q and the continuity of the inner integral in p. Thus,
by the lower semicontinuity of H on C, we have

H

(ˆ
C
pQ(dp)

)

≤ lim inf
t

H

(ˆ
C
pQt(dp)

)

≤ lim inf
t

ˆ
C
H(p)Qt(dp) =

ˆ
C
H(p)Q(dp).

In the general case, the measure Q is concentrated on the union of increasing sets Cn of the considered
form. This measure is the limit in variation of the normalized restrictions Qn = Q(Cn)

−1Q|Cn . The
barycenters βQn of these measures converge in variation to the barycenter βQ of the measure Q, becauseˆ

Pr(Y )\Cn

p(A)Q(dp) ≤ Q(Pr(Y ) \ Cn)

for any Borel set A ⊂ Pr(Y ). Therefore, the sequence βQn is uniformly tight, and due to the lower
semicontinuity of H on uniformly tight sets we have the estimate

H(βQ) ≤ lim inf
n→∞

H(βQn).

For the measure Qn the required inequality has already been established, so it holds for the measure Q,
since by convergence in variation the integral of H with respect to the measure Qn tends to the integral
with respect to the measure Q.
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Note that this step of justification is omitted in [8], but it is also necessary in the case of lower
semicontinuity on the whole space considered there.

Lemma 3. Suppose that a function H : X × Pr(Y ) → [0,+∞) is measurable with respect to
B(X)⊗Ba(Pr(Y )) and lower semicontinuous on the sets of the form K ×S, where K is a compact
set in X and S ⊂ Pr(Y ) is uniformly tight and convex in the second argument. Then the function

JH(σ) =

ˆ
X
H(x, σx)μ(dx) (3.3)

is lower semicontinuous on Π(μ, ν).

Proof. 1. We use slightly modified and partially simplified arguments from [8], in which we consider
nets instead of sequences. For every measure σ ∈ Π(μ, ν) we introduce the mapping

Fσ(x) = (x, σx), X → X × Pr(Y ).

By our assumption, this mapping is μ-measurable if the space X × Pr(Y ) is equipped with the product
of the σ-algebras B(X) and Ba(Pr(Y )) on the factors. Therefore, on Ba(X)⊗ Ba(Pr(Y )) ⊂ B(X)⊗
Ba(Pr(Y )) the measure

Pσ = μ ◦ F−1
σ

is defined, i.e., the image of the measure μ under the indicated mapping given by the formula

(μ ◦ F−1
σ )(B) = μ(x : (x, σx) ∈ B).

In the case of Souslin spaces, the measures Pα are automatically Radon. But in the general case, the
existence of their Radon extensions requires verification. We will keep the same notation for these
extensions. It is known (see [11, Corollary 7.3.5]) that a Radon extension exists if each measure Pσ

is tight on Ba(X)⊗ Ba(Pr(Y )), i.e., for every ε > 0 here exists a compact set C in X ×Pr(Y ) such
that Pσ(D) ≤ ε, whenever a set D ∈ Ba(X)⊗ Ba(Pr(Y )) is disjoint C. Since the projection of the
measure Pσ on X equals μ on Baire sets and hence is tight, it suffices to verify that the projection of Pσ

on Pr(Y ) is tight. We will show that in fact the set of measures {Pσ : σ ∈ Π(μ, ν)} on X × Pr(Y ) is
uniformly tight. Moreover, the set Λ of their projections on Pr(Y ) not only is uniformly tight, but is
concentrated on a countable union of compact uniformly tight sets from Pr(Y ) in the sense that there
exists a sequence of uniformly tight compact sets Mn ⊂ Pr(Y ), for which supλ∈Λ λ∗(Mn) ≥ 1− 1/n,
where the outer measure is taken with respect to Ba(Pr(Y )) (recall that compact sets in Pr(Y ) are
not necessarily uniformly tight). It suffices to verify the latter. Indeed, let ε > 0. For every δ > 0 there
exists a compact set Cδ ⊂ Y such that ν(Cδ) > 1− δ2. By the Chebyshev inequality, for every measure
σ ∈ Π(μ, ν), we obtain

μ(x : σx(Cδ) ≤ 1− δ) = μ(x : 1− σx(Cδ) ≥ δ) ≤ δ−1

ˆ
X
(1− σx(Cδ))μ(dx)

= δ−1(1− σ(X × Cδ)) = δ−1(1− ν(Cδ)) ≤ δ.

For δ we take the numbers ε2−n. Let

Sε = {p ∈ Pr(Y ) : p(C2−nε) ≥ 1− 2−nε ∀n ≥ 1}.
The set Sε is closed in the weak topology and uniformly tight by definition. Hence it is compact in Pr(Y ).
Moreover, for every measure σ ∈ Π(μ, ν), we have

μ(x : σx ∈ Sε) ≥ 1− ε,

since

μ(x : σx(C2−nε) < 1− 2−nε) ≤ 2−nε.

Now for the required sets Mn we can take S1/n. Indeed, suppose that a set E ∈ Ba(Pr(Y )) is disjoint
with S1/n. Let πσ be the projection of the measure Pσ on Pr(Y ). Then by definition

πσ(E) = μ(x : σx ∈ E) ≤ μ(x : σx ∈ Pr(Y ) \ S1/n) ≤ 1/n.
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Hence π∗
σ(S1/n) ≥ 1− 1/n. The necessity to use the outer measure is explained by the fact that the

measure Pσ is initially defined not on the whole Borel σ-algebra, but only on Ba(X)⊗ Ba(Pr(Y )). By
the established tightness, it has an extension, but its values on compact sets need not be calculated
according to the formula by which they are defined on Ba(X)⊗ Ba(Pr(Y )).

2. Note that so far we have not used the function H . Since the quantities Jmin(H,n)(σ) increase
to JH(σ), the assertion reduces to the case of a bounded function H , so one can assume that H ≤ 1.
Suppose that a net of measures σα converges weakly to a measure Π(μ, ν). We prove the inequality

lim inf
α

ˆ
X
H(x, σx

α)μ(dx) ≥
ˆ
X
H(x, σx)μ(dx), (3.4)

which implies the lower semicontinuity of the cost functional in (3.3).

We set Pα := μ ◦ F−1
σα

, where the Radon extensions mentioned above are used. According to what
has been proved above, the family of measures Pα is uniformly tight, therefore, by the Prokhorov
theorem, it has compact closure (see [11, Theorem 8.6.7]). Passing to a subnet, we can assume that
the measures Pα converge weakly to a measure P ∈ Pr(X × Pr(Y )). Moreover, one can assume that

lim inf
α

ˆ
X
H(x, σx

α)μ(dx) = lim
α

ˆ
X
H(x, σx

α)μ(dx).

Note that by the definition of the image of the measure and due to the measurability of H with respect to
Ba(X)⊗ Ba(Pr(Y )), the following equality holds:ˆ

X
H(x, σx

α)μ(dx) =

ˆ
X×Pr(Y )

H(x, p)Pα(dx dp).

According to the previous lemma

lim inf
α

ˆ
X×Pr(Y )

H(x, p)Pα(dx dp) ≥
ˆ
X×Pr(Y )

H(x, p)P (dx dp).

3. The projection of the measure P on X equals the limit of the projections of the measures Pα which
are equal toμ, hence it also coincides with μ. The conditional measures P x with respect to this projection
belong to Pr(Pr(Y )). The barycenter of the measure P x (as explained above, it is μ-almost everywhere
included in Pr(Y ) namely for those x for which the measure P x is concentrated on the countable union
of compact uniformly tight sets) is defined by the equality

βx :=

ˆ
Pr(Y )

pP x(dp).

It is easily seen that

βx = σx μ-a.e.

Indeed, for any bounded continuous functions f on X and g on Y , the following equalities hold:ˆ
X

ˆ
Y
f(x)g(y)βx(dy)μ(dx) =

ˆ
X

ˆ
Pr(Y )

ˆ
Y
f(x)g(y) p(dy)P x(dp)μ(dx)

=

ˆ
X×Pr(Y )

ˆ
Y
f(x)g(y) p(dy)P (dx dp)

= lim
α

ˆ
X×Pr(Y )

ˆ
Y
f(x)g(y) p(dy)Pα(dx dp) = lim

α

ˆ
X

ˆ
Y
f(x)g(y)σx

α(dy)μ(dx)

= lim
α

ˆ
X×Y

f(x)g(y)σα(dx dy) =

ˆ
X×Y

f(x)g(y)σ(dx dy).

By virtue of the supposed uniqueness of conditional measures for σ ∈ Π(μ, ν) this implies that βx
coincides with σx.
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376 BOGACHEV, REZBAEV

4. According to the previous lemma, due to the convexity of the function H in the second argument,
for each x for which there also is the lower semicontinuity in the second argument on uniformly tight
sets from Pr(Y ), and the measure P x is concentrated on a countable union of compact uniformly tight
sets, the following inequality holds:

H

(

x,

ˆ
Pr(Y )

pP x(dp)

)

≤
ˆ
Pr(Y )

H(x, p)P x(dp).

5. Finally, we find a compact set K ⊂ X such that μ(K) > 1− ε and for each x ∈ K the functions
p �→ H(x, p) are lower semicontinuous on uniformly tight sets from Pr(Y ), while the measure P x is
concentrated on a countable union of uniformly tight sets. The latter can be achieved according to what
has been proved at the first step.

Applying the above inequality, we obtainˆ
X×Pr(Y )

H(x, p)P (dx, dp) =

ˆ
X

ˆ
Pr(Y )

H(x, p)P x(dp)μ(dx)

≥
ˆ
K
H

(

x,

ˆ
Pr(Y )

pP x(dp)

)

μ(dx) ≥
ˆ
X
H

(

x,

ˆ
Pr(Y )

pP x(dp)

)

μ(dx)− ε.

Since ε is arbitrary, we haveˆ
X×Pr(Y )

H(x, p)P (dx, dp) ≥
ˆ
X
H

(

x,

ˆ
Pr(Y )

pP x(dp)

)

μ(dx),

which completes the proof.

The following fact follows from what has been proved and the weak compactness of the set of
plans Π(μ, ν).

Theorem 2. Suppose that the cost function H : X ×Pr(Y ) → [0,+∞) is measurable with respect
to Ba(X)⊗Ba(Pr(Y )), lower semicontinuous on all sets of the form K × S, where K is a compact
set in X and S ⊂ Pr(Y ) is uniformly tight, and convex in the second argument. Then

inf
σ∈Π(μ,ν)

ˆ
X
H(x, σx)μ(dx)

is attained, that is, an optimal plan exists.

Remark 2. (i) The statements obtained above remain valid in the situation where the functions H
and h take values in [0,+∞]. It suffices to apply the established facts to the functions min(h,N) and
min(H,N).

(ii) It is clear from the proof that it suffices to impose the measurability condition on the functionH on
the sets of the formK ×S with compact factors. For a broad class of spaces, the lower semicontinuity on
such sets implies theB(K)⊗Ba(S)-measurability. For example, this is true ifY is Souslin and the Borel
and Baire σ-algebras coincide on compact sets in X. In the case of general spaces (even Souslin spaces),
the condition of lower semicontinuity on compact sets is weaker than the global lower semicontinuity
(in the theorem, the condition is even slightly weaker, since we are speaking of uniformly tight compact
sets). In Souslin spaces, compact sets are metrizable, therefore, this condition can be verified by using
countable sequences.. Moreover, for such spaces, the lower semicontinuity on compact sets implies
the Borel measurability on compact sets, which coincides with the Ba(X)⊗ Ba(Pr(Y ))-measurability,
therefore, it need not be required additionally. On some sequential properties of spaces of measures,
see [16].

Nonlinear cost functionals can be also considered for the transport problem with constraints on the
densities of optimal plans in the spirit of the papers [17], [18]. This will be done in a separate paper. In
addition, the role of convexity of the cost function depending on conditional measures will be studied.
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