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Abstract—A weak conical greedy algorithm is introduced with respect to an arbitrary positive
complete dictionary in a Hilbert space; this algorithm gives an approximation of an arbitrary space
element by a combination of dictionary elements with nonnegative coefficients. The convergence of
this algorithm is proved and an estimate of the convergence rate for the elements of the convex hull
of the dictionary is given.
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Let H be a real Hilbert space with norm ‖ · ‖ and inner product 〈 · , ·〉. The set C is called a cone in H
if, for any v,w ∈ C and λ1,2 ≥ 0, the inclusion λ1v + λ2w ∈ C is valid.

For any set C ⊂ H , its polar cone is defined as follows:

C0 = {w ∈ H : 〈v,w〉 ≤ 0 ∀ v ∈ C}.

Let ρ(x,A) = inf{‖x− v‖ : v ∈ A} be the distance from the point x ∈ H to the set A ⊂ H , and let
PAx = {y ∈ A : ‖x− y‖ = ρ(x,A)} be the metric projection of a point x ∈ H to a set A ⊂ H .

It is well known that, in a Hilbert space, the metric projection on a closed convex set is a singleton.
Metric projections on mutually polar cones are related by the following statement.

Theorem A (Moro [1]). Let C be a closed convex cone in H , and let C0 be its polar cone, x, y, z ∈ H .
Then the following conditions are equivalent:

1) z = x+ y, x ∈ C, y ∈ C0 and 〈x, y〉 = 0;

2) x = PCz and y = PC0z.

A subset D of the unit sphere S(H) is called a dictionary if linear combinations of D elements are
dense in H . If linear combinations of D elements with nonnegative coefficients are dense in H , then we
will call D a positive complete dictionary.

For each x = x0 ∈ H and dictionary D ⊂ S(H), the pure greedy algorithm inductively defines the
subsequence

xn+1 = xn − 〈xn, gn〉gn, n = 0, 1, . . . ,

where the element gn ∈ D is chosen so that

〈xn, gn〉 = max{|〈xn, g〉| : g ∈ D}. (∗)

For each x = x0 ∈ H , the orthogonal greedy algorithm with respect to the dictionary D defines
the subsequence

xn+1 = x− Pspan{g0,...,gn}x, n = 0, 1, . . . ,

where the element gn ∈ D is also selected from condition (∗).
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In both algorithms, the maximum attainability condition max{|〈x, g〉| : g ∈ D} for each x ∈ H is an
additional condition imposed on the dictionary.

A greedy algorithm is said to converge if the residuals xn converge to 0 in norm as n → ∞. It is
known [2, Chap. 2] that pure greedy and orthogonal greedy algorithms converge for any dictionary that
satisfies the existence condition for a maximum and, for any initial element x ∈ H , estimates of the
convergence rate are also known.

The problem of approximating an element of a Hilbert space by linear combinations of elements of
a dictionary with nonnegative coefficients was considered by Livshits in [3], [4]. He proposed a special
recursive greedy algorithm providing such approximations. A natural generalization of the pure greedy
algorithm is a positive greedy algorithm in which the next element gn is chosen from the maximization
condition for the inner product 〈xn, g〉, not its module, but this algorithm may diverge for a positive
complete dictionary [5].

In this paper, we propose a natural modification of the orthogonal greedy algorithm, namely, the
conical greedy algorithm approximating an arbitrary element of the space by a linear combination
of dictionary elements with nonnegative coefficients. Its convergence was proved for each positive
complete dictionary D and any initial element; also the convergence rate for elements of special form
was estimated.

Let cone{g0, g1, . . . , gn} denote the minimal (with respect to inclusion) cone containing elements
g0, g1, . . . , gn, i.e., the following set{

x ∈ H : x =
n∑

k=0

λkgk, λk ≥ 0

}
.

For each x = x0 ∈ H and any positive complete dictionary D ⊂ S(H), the conical greedy algo-
rithm inductively defines the sequence

xn+1 = x− Pcone{g0,...,gn}x, n = 0, 1, . . . ,

where the element gn ∈ D is chosen so that

〈xn, gn〉 = max{〈xn, g〉 : g ∈ D}.

At the same time, the requirement is also imposed on the dictionary that max{〈x, g〉 : g ∈ D} exist
for all x ∈ H .

We also define the more general weak conical greedy algorithm. Let us fix the sequence {tn}∞n=0,
0 < tn ≤ 1. For each x = x0 ∈ H , the weak conical greedy algorithm with weakness parame-
ters {tn}∞n=0 inductively defines the sequence

xn+1 = x− Pcone{g0,...,gn}x, n = 0, 1, . . . ,

where the element gn ∈ D is chosen to satisfy the condition

〈xn, gn〉 ≥ tn sup{〈xn, g〉 : g ∈ D}.
For tn < 1, the weak conical greedy algorithm works for any positive complete dictionary.

Theorem 1. Let D ⊂ S(H) be a positive complete dictionary in H . Then the weak conical greedy
algorithm with weakness parameters {tn}∞n=0 converges for any initial element x ∈ H if

∞∑
k=0

t2k = ∞. (1)

This theorem is analogous to Theorem 2.1 from [2, Chap. 2] on the convergence of a weak orthogonal
greedy algorithm.

Proof. Let Cn = cone{g0, . . . , gn}. By Theorem A, we have

xn = x− PCn−1x = PC0
n−1

x,

and C0
0 ⊃ C0

1 ⊃ C0
2 ⊃ · · · . We will need the following result.

MATHEMATICAL NOTES Vol. 112 No. 2 2022



CONICAL GREEDY ALGORITHM 173

Lemma 1. Let K1 ⊃ K2 ⊃ K3 ⊃ · · · be decreasing (with respect to inclusion) closed cones in H ,
and let x ∈ H . Then the sequence {xn = PKnx} is fundamental.

Proof. For an arbitrary y ∈ Kn, by Theorem A, we have 〈x− xn, y〉 ≤ 0 and 〈x− xn, xn〉 = 0. There-
fore,

‖x− y‖2 = ‖x− xn‖2 + ‖xn − y‖2 + 2〈x− xn, xn − y〉
= ‖x− xn‖2 + ‖xn − y‖2 − 2〈x− xn, y〉 ≥ ‖x− xn‖2 + ‖xn − y‖2.

Substituting y = xm, m > n, we obtain

‖xn − xm‖2 ≤ ρ(x,Km)2 − ρ(x,Kn)
2;

since the sequence ρ(x,Kn) is nondecreasing and bounded (ρ(x,Kn) ≤ ‖x‖), it follows that xn is
fundamental. The lemma is proved.

By Lemma 1, we have xn → z for some z ∈ H .

If z = 0, then the theorem is proved.

If z �= 0, then the positive completeness condition for the dictionary implies that there exists an
element g ∈ D, such that 〈z, g〉 > δ > 0. Therefore, there exists an m such that, for each n ≥ m, the
inequality 〈xn, g〉 > δ holds. The further proof requires the following technical lemmas.

Lemma 2. Let C ⊂ H be a closed convex cone, and let x, y ∈ H . Then

‖PC(x+ y)‖ ≤ ‖PCx‖+ ‖PCy‖.

Proof. By Theorem A, for any z ∈ H , we have

‖PCz‖ = ‖z − PC0z‖ = ρ(z, C0).

Therefore,

‖PC(x+ y)‖ = ρ(x+ y,C0) = inf
w∈C0

‖x+ y − w‖ = inf
v,u∈C0

‖x+ y − (v + u)‖

= inf
v,u∈C0

‖(x− v) + (y − u)‖ ≤ inf
v,u∈C0

(‖x− v‖+ ‖y − u‖)

= inf
v∈C0

‖x− v‖+ inf
u∈C0

‖y − u‖ = ρ(x,C0) + ρ(y,C0)

= ‖PC(x)‖ + ‖PC(y)‖.

The lemma is proved.

Lemma 3. Let C1, C2 ⊂ H be closed convex cones, and let C1 ⊂ C2. Then

‖PC1(z)‖ ≤ ‖PC1PC2(z)‖

for each z ∈ H .

Proof. By Theorem A, we have z = PC2z + PC0
2
z. Also note that if C1 ⊂ C2, then C0

1 ⊃ C0
2 , which

means PC1v = 0 for any v from C0
2 .

Applying Lemma 2, we obtain

‖PC1z‖ = ‖PC1(PC2z + PC0
2
z)‖ ≤ ‖PC1PC2z‖+ ‖PC1PC0

2
z‖ = ‖PC1PC2z‖.

The lemma is proved.
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Let us return to the proof of the theorem.
Applying Lemma 3 and taking n large enough, we obtain a contradiction, namely,

0 ≤ ‖xn+1‖2 = ‖PC0
n
x‖2 ≤ ‖PC0

n
PC0

n−1
x‖2

= ‖PC0
n
xn‖2 = ‖xn‖2 − ‖PCnxn‖2 ≤ ‖xn‖2 − 〈gn, xn〉2

≤ ‖xn‖2 − t2nδ
2 ≤ · · · ≤ ‖xm‖2 − δ2

n∑
k=m

t2k < 0,

because the series
∑∞

k=0 t
2
k diverges. Theorem 1 is proved.

Let us show that equality (1) is also necessary for the convergence of the weak conical greedy
algorithm for any positive complete dictionary D.

Consider the space �2 with orthonormal basis {e, e0, e1, . . . }. Let
∞∑
k=0

t2k < ∞.

Consider the weak conical greedy algorithm for the element

x0 = e+
∞∑
k=0

tkek

with respect to the symmetric positive complete dictionary D = {±e,±e0,±e1, . . . }.
It is easy to prove by induction that, for the next gn in the weak conical greedy algorithm, we can take

the element gn = en. In this case, the current residual can be expressed as xn = e+
∑∞

k=n tkek, and the
algorithm does not converge.

Theorem 2. Let

x0 ∈ A+
1 (M,D) =

{ N∑
k=0

λkgk : gk ∈ D, N ∈ N, λk ≥ 0,
N∑
k=0

λk ≤ M

}
.

Then, for the sequence {xn} of residuals of the weak conical greedy algorithm with weakness
parameters {tn}∞n=0, the following inequalities hold:

‖xn‖ ≤ M√
1 +

∑n−1
k=0 t

2
k

, n = 1, 2, . . . . (2)

This assertion is an analogue of Theorem 2.20 from [2, Chap. 2] on the convergence rate of a weak
orthogonal greedy algorithm for elements of the convex hull of a symmetric dictionary.

Proof. Let Cn = cone{g0, . . . , gn}. As already noted, we have C0
n−1 ⊃ C0

n for each n ≥ 1. Using
Lemma 3, we obtain

‖xn+1‖2 = ‖PC0
n
x‖2 ≤ ‖PC0

n
PC0

n−1
x‖2 = ‖PC0

n
xn‖2 = ‖xn‖2 − ‖PCnxn‖2

≤ ‖xn‖2 − ‖〈gn, xn〉gn‖2 = ‖xn‖2 − 〈gn, xn〉2 ≤ ‖xn‖2 − t2n

(
sup
g∈D

〈g, xn〉
)2

.

Lemma 4. Let D be a positive complete dictionary, and let x ∈ A+
1 (D,M). Then, for each z ∈ H

such that 〈x− z, z〉 = 0, the following inequality holds:

sup
g∈D

〈z, g〉 ≥ ‖z‖2
M

.
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Proof. It suffices to prove the lemma for

x =

N∑
k=0

λkgk, where g0, . . . , gN ∈ D, λk ≥ 0,

N∑
k=0

λk ≤ M.

We have

‖z‖2 = 〈z, z〉 = 〈x, z〉 − 〈x− z, z〉 = 〈x, z〉 =
N∑
k=0

λk〈gk, z〉

≤ sup
g∈D

〈g, z〉
N∑
k=0

λk ≤ M sup
g∈D

〈g, z〉.

The lemma is proved.

Applying Lemma 4 to z = xn = PC0
n−1

x0, we obtain

‖xn+1‖2 ≤ ‖xn‖2 − t2n

(
sup
g∈D

〈g, xn〉
)2

≤ ‖xn‖2 − t2n
‖xn‖4
M2

= ‖xn‖2
(
1− t2n‖xn‖2

M2

)
.

Now we need the following numerical lemma.

Lemma A [6]. Let {cn}∞n=0 be a sequence such that

c0 ≤ A, cn ≥ 0, cn+1 ≤ cn

(
1− αncn

A

)
, n = 0, 1, 2, . . . ,

for some sequence {αn}∞n=0 of positive numbers and some number A > 0. Then

cn ≤ A

1 +
∑n−1

k=0 αk

, n = 1, 2, . . . .

Obviously, 0 ≤ ‖xn‖ ≤ ‖x0‖ ≤ M for each natural n. This allows us to apply Lemma A to the
sequences

cn = ‖xn‖2, αn = t2n, A = M2,

so that we obtain

‖xn‖2 ≤
M2

1 +
∑n−1

k=0 t
2
k

, n = 1, 2, . . . .

Theorem 2 is proved.

For the conical greedy algorithm in Theorem 2, we obtain an estimate for the norm of the residuals
‖xn‖ ≤ M(n+ 1)−1/2 and the exponent −1/2 in this estimate is sharp.

Indeed, taking H = �2, D = {±e0,±e1,±e2, . . . } and

x0 =

∞∑
k=0

1

(k + 1)(1+ε)
ek ∈ A1(D,M),

where

M =
∞∑
k=0

1

(k + 1)(1+ε)

MATHEMATICAL NOTES Vol. 112 No. 2 2022



176 VALOV

for an arbitrary ε > 0, we obtain

‖xn‖ =

√√√√ ∞∑
k=n

1

(k + 1)(2+2ε)
≥ 1√

1 + 2ε (n+ 1)1/2+ε
.

Note that, for initial elements from A+
1 (1,D), there exists a so-called incremental algorithm having

convergence rate of the same order [2, Chap. 6, Sec. 6].
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