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Abstract—A D(2)-vertex-distinguishing total coloring of a graph G is a proper total coloring
such that no pair of vertices, within distance two, has the same set of colors, and the minimum
number of colors required for such a coloring is calledD(2)-vertex-distinguishing total chromatic
number of G, and denoted by χ2vt(G). In this paper, we prove that χ2vt(G) ≤ 11 for any graph G
with Δ(G) = 3.
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1. INTRODUCTION

All graphs considered in this paper are simple, finite, and undirected. Let G = (V (G), E(G)) be a
graph with vertex set V (G) and edge set E(G). Let dG(x) (denote by d(x) for short) be the degree of a
vertex x in G, and Δ(G) = max{d(x)|x ∈ V (G)} the maximum degree of G. Let Pn and Cn(n ≥ 3)
be the path and the cycle of order n, respectively, and Km,n be a complete bipartite graph with
bipartition (X,Y ), where |X| = m and |Y | = n. We call a path Pn+1 = u0u1 · · · un an internal path of
G if d(u0) ≥ 3, d(un) ≥ 3, and d(ui) = 2, i = 1, 2, · · · , n− 1. Let G−{v} be the subgraph ofG obtained
by deleting the vertex v and its incident edges. Let G− {uv} and G+ {uv} be the graphs obtained from
G by deleting the edge uv and by adding a new edge uv, respectively. A cut edge of G is an edge uv
such that ω(G− {uv}) > ω(G), where ω(G) refers to the number of components in G. The disjoint
union G1∪̇G2 of G1 and G2 is the graph with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2).
A vertex of degree one is called a pendent vertex. The distance between two vertices u and v in G,
denoted by dG(u, v), is the length of a shortest (u, v)-path in G. A graph G is r-regular if d(u) = r for
all u ∈ V (G). Especially, if a graph G has a 1-regular spanning subgraph, then the spanning subgraph
is called a perfect matching of G. The square G2 of a graph G can be obtained from G by adding all
edges between two vertices of distance two in G. For two sets A and B, A\B represents the difference
set of A and B. The terminologies and notations used but undefined in this paper can be found in [1].

A proper k-total coloring of G is a mapping f : V (G) ∪E(G) → {1, 2, · · · , k} such that any two
adjacent or incident elements in V (G) ∪ E(G) receive different colors. We use

Sf (x) = {f(x)} ∪ {f(xy)|xy ∈ E(G)}
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D(2)-VERTEX DISTINGUISHING COLORING OF GRAPHS 143

to denote the set of colors assigned to a vertex x and those edges incident with x. A proper
k-total coloring f of G is said to be a k-D(β)-vertex distinguishing total coloring [2] (write as
k-D(β)-VDTC for short) if Sf (u) �= Sf (v) for any two vertices u, v ∈ V (G) with d(u, v) ≤ β, and

denote by χβvt(G) = min
{
k|G has a k-D(β)-VDTC

}
the D(β)-vertex distinguishing total chromatic

number of G. Especially, if β = 1, then a D(1)-vertex distinguishing total coloring is just the adjacent
vertex distinguishing total coloring of G (see [3]); if β = 2, then D(β)-vertex distinguishing total col-
oring is also called D(2)-vertex distinguishing total coloring of G, and the corresponding chromatic
number is written as χ2vt(G). Besides, let f be a total coloring of G. If any two vertices u, v ∈ V (G)
with d(u, v) ≤ 2 satisfy Sf (u) �= Sf (v), then we call that u and v are D(2)-vertex distinguishable.

Graph coloring has always been classic topic in graph theory, and it’s widely applied in practice (see
[1]). In recent decades, many scholars have conducted a series of researches around it [4]–[7]. The
adjacent vertex distinguishing total coloring of graphs was first introduced by Zhang et al. in [3]. They
conjectured that the adjacent vertex distinguishing total chromatic number χat(G) of any graph G, with
order at least 2, satisfies χat(G) ≤ Δ(G) + 3, and further showed that the conjecture holds for complete
graph, complete bipartite graph, tree, and so on. After then, scholars have carried out a lot of research
to the conjecture. Wang [8] and Chen [9] independently proved that if G is a graph with maximum
degree Δ(G) = 3, then χat(G) ≤ 6. Cheng et al. [10] showed that for a planar graph G with Δ(G) ≥ 10,
χat(G) ≤ Δ(G) + 3. Huang et al. [11] verified that χat(G) ≤ 2Δ(G) for any graph G with Δ(G) ≥ 3.
Later, B. Vučković [12] improved this bound, and got that χat(G) ≤ 2Δ(G)− 1 if Δ(G) ≥ 4.

In 2006, Zhang et al. [2] proposed the concept entitled D(β)-vertex distinguishing total coloring
of graphs, and got the D(β)-vertex distinguishing total chromatic number of some simple graphs such
as path, cycle, and complete graph for β ≥ 2. Based on the above, they presented the conjecture given
below:

Conjecture 1 (see [2]). Let G be a connected graph on n ≥ 2 vertices. Then

χβvt(G) ≤ μβ(G) + 1.

where μβ(G) = min
{
θ :

( θ
i+1

)
≥ ni, δ ≤ i ≤ Δ

}
, ni = max

{
|S| : S ⊆ V (G)

}
, and S is composed

of the vertices with degree i and their distance is no more than β.

From conjecture 1, if β = 2, then we see that the following conjecture.

Conjecture 2 (see [2]). Let G be a connected graph on n ≥ 2 vertices. Then

χ2vt(G) ≤ μ2(G) + 1.

Meanwhile, Zhang et al.[2] also showed that the conjecture holds for some simple graphs. In this
paper, we aim at Conjecture 2 to consider the D(2)-vertex distinguishing total coloring of a graph G,
and prove that χ2vt(G) ≤ 11 for any graph G with maximum degree Δ(G) = 3.

2. PRELIMINARIES

Lemma 1 (see [2, Theorem 2.2]). Let G be a graph with n components, i.e., G = G1 ∪G2 ∪ · · · ∪Gn.
Then χ2vt(G) = max

{
χ2vt(Gi)|i = 1, 2, · · · , n

}
.

Lemma 2 (see [2, Theorem 2.4]). For a path Pn with order n ≥ 2, χ2vt(Pn) ≤ 4.

Lemma 3 (see [2, Theorems 2.7, 2.8, 2.9]). Let Cn be a cycle on n ≥ 3 vertices. Then χ2vt(Cn) ≤ 5.

Lemma 4 (see [13, pp.243], [14, Lemma 2.4.6]). For a 3-regular graph G, if G contains no perfect
matching, then G has at least 3 cut edges.
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A list assignment of G is a function L which assigns to each vertex x ∈ V (G) a list L(x) of colors. A
list coloring ofGwith list assignment L is a mapping f : V (G) →

⋃
x∈V (G) L(x) such that f(x) ∈ L(x)

for all x ∈ V (G) and f(u) �= f(v) for any adjacent vertices u and v, and we say that G is L-colorable.
A graph is called k-choosable if G is L-colorable whenever all lists have size k. The list chromatic
number χl(G) is the minimum k such that G is k-choosable. In [15], the list chromatic number of the
square G2 of a graph G with Δ(G) ≤ 3 is given in the following.

Lemma 5 (see [15, Theorem 1]). For a graphGwith Δ(G) ≤ 3, ifG is not isomorphic to the Petersen
graph, then χl(G

2) ≤ 8.

A proper vertex coloring of G is a mapping f : V (G) → {1, 2, · · · , k} such that for any two
adjacent vertices u and v, f(u) �= f(v), and denote by χ(G) the proper vertex chromatic number of G.
By the definition of list-coloring of G, we can see that a list-coloring of G is also a proper vertex coloring
of the graph, and χ(G) ≤ χl(G). A 2-distance coloring of a graph G is a proper vertex coloring such
that no two vertices, within distance 2 in G, are assigned the same color, and we denote by χ2(G) the
2-distance chromatic number of G. It is obvious that for any a simple graph G and its square graph
G2, χ2(G) = χ(G2). Hence, we can deduce that χ2(G) = χ(G2) ≤ χl(G

2). Furthermore, the following
corollary can be deduced by Lemma 5.

Corollary 1. If G is a graph with Δ(G) ≤ 3, but not isomorphic to the Petersen graph, then

χ2(G) ≤ 8.

Lemma 6. If G is the Petersen graph, then χ2vt(G) = 6.

Proof. Suppose that G has vertex-set V (G) = {u1, u2, u3, u4, u5, v1, v2, v3, v4, v5} and edge-set
E(G) = {uiui+1, uivi, vivi+2}, where i = 1, 2, · · · , 5. According to the definition of D(2)-VDTC,
χ2vt(G) ≥ 6 due to

(6
4

)
= 15 > 10 and

(5
4

)
= 5 < 10. Let f : V (G) ∪ E(G) → {1, 2, · · · , 6} be a total

coloring of G. Suppose f(uivi) = 6 for i = 1, 2, 3, 4, 5. Then we color the vertices u1, u2, u3, u4, and
u5 with 1, 2, 3, 4, and 5 respectively, and color the vertices v1, v2, v3, v4, and v5 with 5, 1, 2, 3, and
4 respectively. Meanwhile, the edges u1u2, u2u3, u3u4, u4u5, and u5u1 are colored by 3, 4, 5, 1, and
2 respectively. After that, the edges v1v3, v2v4, v3v5, v4v1, and v5v2 are colored by 3, 4, 5, 1, and 2
respectively. Clearly, f is a proper total coloring of G, and it is easy to see that

S(u1) = {1, 2, 3, 6}, S(u2) = {2, 3, 4, 6}, S(u3) = {3, 4, 5, 6},
S(u4) = {1, 4, 5, 6}, S(u5) = {1, 2, 5, 6}, S(v1) = {1, 3, 5, 6},
S(v2) = {1, 2, 4, 6}, S(v3) = {2, 3, 5, 6}, S(v4) = {1, 3, 4, 6}, and

S(v5) = {2, 4, 5, 6}.

Therefore, f is a 6-D(2)-VDTC of G, and thus χ2vt(G) = 6.

Lemma 7. For a 3-regular graph G with a perfect matching, χ2vt(G) ≤ 11.

Proof. If G is the Petersen graph, then χ2vt(G) = 6 < 11 by Lemma 6. Otherwise, we consider that
G is a 3-regular graph but not isomorphic to the Petersen graph. We decompose G as a perfect

matching M and a union of some cycles, denoted by C
(i)
ni = xi1x

i
2 · · · xini

xi1 for i = 1, 2, · · · , t, where ni

is the length of C(i)
ni . According to Corollary 1, one can see that G has a 2-distance vertex coloring

with 8 colors, suppose that f1 : V (G) → {1, 2, · · · , 8} is a 2-distance vertex coloring of G. Let
f2 : E(G) → {1, 2, · · · , 11} be a proper edge coloring ofG. Without loss of generality, we may suppose

that all the edges in M are colored by 9. Then we will color the edges of cycles C(i)
ni where i = 1, 2, · · · , t.

For clarity, we may suppose that C(1)
n1 , C(2)

n2 , · · · , C(r)
nr are even cycles, and C

(r+1)
nr+1 , C(r+2)

nr+2 , · · · , C(s)
ns ,

C
(s+1)
ns+1 , · · · , C(t)

nt are odd cycles, in which C
(r+1)
nr+1 , C(r+2)

nr+2 , · · · , C(s)
ns satisfy that each vertex of one odd

cycle is not adjacent to any vertex of the others, meanwhile, C(s+1)
ns+1 , C(s+2)

ns+2 , · · · , C(t)
nt satisfy that some

vertices of one cycle are adjacent to some vertices of the others, where r ≤ s ≤ t.
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Suppose that the edges of C(1)
n1 , C(2)

n2 , · · · , C(r)
nr are colored by 10 and 11 alternately. Now we color the

edges of the cycles C
(r+1)
nr+1 , C(r+2)

nr+2 , · · · , C(s)
ns . For each cycle C

(i)
ni with i = r + 1, r + 2, · · · , s, the edges

xi1x
i
2, xi2x

i
3, · · · , xini−1x

i
ni

of C(i)
ni are colored alternately by 10 and 11, and the edge xini

xi1 is colored by a
color α, where α ∈ {1, 2, · · · , 8}\{f1(xi1), f1(xini

)}.

After that, we will color the edges of cycles C
(s+1)
ns+1 , C(s+2)

ns+2 , · · · , C(t)
nt . We construct a new graph

H with vertex set V (H) = {C(s+1)
ns+1 , C

(s+2)
ns+2 , · · · , C(t)

nt } and edge set E(H), where E(H) equals to

the set of all edges which connect the vertices of C(i)
ni with the vertices of C(j)

nj in G, where i �= j and
i, j = s+ 1, s + 2, · · · , t. It is easy to see that H may be disconnected. Let H = H1 ∪H2 ∪ · · · ∪Hm,
where Hi(i = 1, 2, · · · ,m) are components of H .

We first color the edges of odd cycles corresponding to the vertices of H1. For any y ∈ V (H1),

let C(y)
ny = xy1x

y
2 · · · x

y
nyx

y
1 be the odd cycle corresponding to y in G. Given a vertex v ∈ V (H1), then

the corresponding odd cycle is C
(v)
nv = xv1x

v
2 · · · xvnv

xv1. We alternately color the edges xv1x
v
2, xv2x

v
3, · · · ,

xvnv−1x
v
nv

by 10 and 11, and color the edge xvnv
xv1 by the color α. For any uv ∈ E(H1), we also color the

edges xu1x
u
2 , xu2x

u
3 , · · · , xunu−1x

u
nu

of C(u)
nu by 10 and 11 alternately, and color xunu

xu1 by a color β, where
β ∈ {1, 2, · · · , 8}\{f1(xunu

), f1(x
u
1), f1(x

v
nv
), f1(x

v
1), α}. For any w ∈ V (H1) with dH1(v,w) ≥ 2, if

dH1(v,w) = 2, then we color the edges of C(w)
nw by the coloring function that has dyed the edges of C(v)

nv ;

if dH1(v,w) = 3, then we color the edges of C(w)
nw by the coloring function that has dyed the edges of

C
(u)
nu . As an analogy, all edges of C(w)

nw , with dH1(v,w) ≥ 4, can be colored in the same way, meanwhile,
one can color the edges of odd cycles corresponding to the vertices of H2, H3, · · · , Hm by the coloring

function which has dyed the edges of H1. So far, all the edges of cycles C
(s+1)
ns+1 , C(s+2)

ns+2 , · · · , C(t)
nt have

been colored.
Thus, for any vertex of G, there are 5 color sets under f2, that is, {9, 10, 11}, {α, 9, 10}, {α, 9, 11},

{β, 9, 10}, and {β, 9, 11}, respectively.
Finally, we construct a total coloring f : V (G) ∪ E(G) → {1, 2, · · · , 11} of G as follows:

f(z) =

{
f1(z), z ∈ V (G),

f2(z), z ∈ E(G).
(1)

Obviously, f is a proper total coloring of G. Under the coloring f , we show that any two vertices of
G with distance no more than 2 are D(2)-vertex distinguishable.

Let xik ∈ V (C
(i)
ni ) and xjl ∈ V (C

(j)
nj ) be two vertices with d(xik, x

j
l ) ≤ 2, where i and j are not

necessary distinct, and i, j = 1, 2, · · · , t. Let Sf (x
i
k) and Sf (x

j
l ) be the color sets that correspond to xik

and xjl , respectively. It is evident that Sf (x
i
k) = {f1(xik)} ∪ Sf2(x

i
k) and Sf (x

j
l ) = {f1(xjl )} ∪ Sf2(x

j
l ).

Moreover, we notice that d(xik, x
j
l ) ≤ 2, from the coloring function f2, one can see that

Sf2(x
i
k), Sf2(x

j
l ) ∈

{
{9, 10, 11}, {α, 9, 10}, {α, 9, 11}, {β, 9, 10}, {β, 9, 11}

}
,

but Sf2(x
i
k) = Sf2(x

j
l ) �∈

{
{α, 9, 10}, {α, 9, 11}, {β, 9, 10}, {β, 9, 11}

}
. Now we consider four

cases in the following:

• for Sf2(x
i
k) = {9, 10, 11}, if Sf2(x

j
l ) = {9, 10, 11}, then one can see that Sf (x

i
k) �= Sf (x

j
l )

since f1(xik) �= f1(x
j
l ); ifSf2(x

j
l ) ∈

{
{α, 9, 10}, {α, 9, 11}, {β, 9, 10}, {β, 9, 11}

}
, then we

obtain {f1(xik)} ∪ Sf2(x
i
k) �= {f1(xjl )} ∪ Sf2(x

j
l ) since {α, β, f1(xik), f1(x

j
l )} ⊂ {1, 2, · · · , 8}

and, consequently, Sf (x
i
k) �= Sf (x

j
l );
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• for Sf2(x
i
k) = {α, 9, 10}, if Sf2(x

j
l ) = {α, 9, 11}, then {f1(xik), α, 9, 10} �= {f1(xjl ), α,

9, 11} due to {f1(xik), f1(x
j
l )} ⊂ {1, 2, · · · , 8}, i.e., Sf (x

i
k) �= Sf (x

j
l ); if

Sf2(x
j
l ) ∈

{
{β, 9, 10}, {β, 9, 11}

}
,

since β ∈ {1, 2, · · · , 8}\{f1(xik), α} we see that β �∈ Sf (x
i
k), and thus Sf (x

i
k) �= Sf (x

j
l );

• for Sf2(x
i
k) = {α, 9, 11}, if Sf2(x

j
l ) ∈

{
{β, 9, 10}, {β, 9, 11}

}
then Sf (x

i
k) �= Sf (x

j
l ) as

β �∈ Sf (x
i
k);

• for Sf2(x
i
k) = {β, 9, 10}, if Sf2(x

j
l ) = {β, 9, 11}, then we see that

{f1(xik), β, 9, 10} �= {f1(xjl ), β, 9, 11}

because {f1(xik), f1(x
j
l )} ⊂ {1, 2, · · · , 8}, and hence, Sf (x

i
k) �= Sf (x

j
l ).

Therefore, f is an 11-D(2)-VDTC of G. The proof completes.

3. MAIN RESULTS

Theorem 1. Let G be a graph with maximum degree Δ(G) ≤ 3. Then χ2vt(G) ≤ 11.

Proof. Let G be a graph with Δ(G) ≤ 3. If Δ(G) ≤ 2, then G is a path, or a cycle, or a union of paths
and cycles. From Lemmas 2 and 3, both the path and the cycle have a 5-D(2)-VDTC, and it follows
from Lemma 1 that the union of paths and cycles also has a 5-D(2)-VDTC; if Δ(G) = 3, without loss
of generality, by Lemma 1, we may suppose that G is connected. Then we will prove that G has an
11-D(2)-VDTC by induction on |E(G)|.

When |E(G)| = 3, then G ∼= K1,3, it is easy to see that G has a 7-D(2)-VDTC, however 7 < 11,
the conclusion holds; when |E(G)| ≥ 4, suppose that for any connected graph G

′
with Δ(G

′
) ≤ 3 and

|E(G
′
)| < |E(G)|, G′

has an 11-D(2)-VDTC. Now we consider two cases as follows.

Case 1. G has a cut edge uv. Since G is a connected graph with Δ(G) = 3, there is at most one pendant
vertex in {u, v}. Thus, the following two subcases are considered.

Subcase 1.1. There is just one pendant vertex in u and v. We may suppose that dG(v) = 1. Then
2 ≤ dG(u) ≤ 3. Let u1 and u2 (if exists) be the neighbors of u different from v, and ui1 and ui2 (if exists)
be the neighbors of ui different from u. Let G

′
= G− {v}. Then G

′
has an 11-D(2)-VDTC f

′
by

induction. We will construct an 11-D(2)-VDTC f of G by coloring uv and v.

Setting f(x) = f
′
(x) for ∀x ∈ V (G

′
) ∪ E(G

′
), we first color the edge uv. We notice that the color

set of u should be distinguished from the color sets of vertices within distance 2, there are 6 vertices at
most, that is, {u1, u2, u11, u12, u21, u22} (if exists). In addition, by the definition of proper total coloring
of graphs, there are at least 8 colors in {1, 2, · · · , 11} which can be used to color uv. Since 8 > 6 we
can select one color from {1, 2, · · · , 11}\{f(u), f(uu1), f(uu2)} to dye uv so that Sf (u) �= Sf (ui)
and Sf (u) �= Sf (uij), where i, j = 1, 2. Next, we color the vertex v. Since there are 9 colors which can
be used to dye v properly, and the color set of v should be distinguished from the color sets of 3 vertices
at most, that is, {u, u1, u2} (if exists), there exists one color in {1, 2, · · · , 11}\{f(u), f(uv)} for v,
such that Sf (v) �= Sf (u) and Sf (v) �= Sf (ui) for i = 1, 2. Besides those, the other vertices of G are
D(2)-vertex distinguishable. Thus, f is an 11-D(2)-VDTC of G.

Subcase 1.2. There is no pendent vertex in u and v. Clearly, 2 ≤ dG(u) ≤ 3 and 2 ≤ dG(v) ≤ 3. Let
u1 and u2 (if exists) be the neighbors of u different from v, and v1 and v2 (if exists) be the neighbors
of v different from u. We suppose that G− {uv} = G1∪̇G2, where u ∈ V (G1) and v ∈ V (G2). Let
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D(2)-VERTEX DISTINGUISHING COLORING OF GRAPHS 147

G
′
= G1 + {uv} and G

′′
= G2 + {uv}. Then by the induction hypothesis, G

′
has an 11-D(2)-VDTC

f1, and G
′′

has an 11-D(2)-VDTC f2.
Without loss of generality, we let f1(u) = f2(u) = 1, f1(uv) = f2(uv) = 2, and f1(v) = f2(v) = 3.

Note that if f1(v) ∈ Sf1(u), then one can recolor v ∈ V (G
′
) to yield f1(v) �∈ Sf1(u) since there are

at least 7 colors in {1, 2, · · · , 11}\Sf1(u) which can be used to dye v so that the color set of v is
distinguished from the color sets of 3 vertices at most, that is, {u, u1, u2} (if exists); if f2(u) ∈ Sf2(v),
similarly, the vertex u ∈ V (G

′′
) can also be recolored with f2(u) �∈ Sf2(v), and thus, we may sup-

pose that f1(v) �∈ Sf1(u) and f2(u) �∈ Sf2(v). Hence, we can assume that the colors assigned on
uu1, uu2 ∈ E(G

′
) are 4 and 5, respectively, and the colors assigned on vv1, vv2 ∈ E(G

′′
) are 6 and 7,

respectively.
Now, we construct a proper total coloring f∗ of G as follows: for any z ∈ V (G) ∪ E(G), define

f∗(z) =

{
f1(z), z ∈ V (G

′
) ∪ E(G

′
),

f2(z), z ∈ V (G
′′
) ∪ E(G

′′
).

(2)

Since 6 �∈ Sf∗(u), 7 �∈ Sf∗(u), 6 ∈ Sf∗(v) ∩ Sf∗(v1), and 7 ∈ Sf∗(v) ∩ Sf∗(v2), we see that

Sf∗(u) �= Sf∗(v) and Sf∗(u) �= Sf∗(vi) for i = 1, 2.

Since 4 �∈ Sf∗(v), 5 �∈ Sf∗(v), 4 ∈ Sf∗(u) ∩ Sf∗(u1), and 5 ∈ Sf∗(u) ∩ Sf∗(u2), we obtain

Sf∗(v) �= Sf∗(ui), where i = 1, 2.

Besides these relations, it is clear that the other vertices of G are D(2)-vertex distinguishable. Therefore,
f∗ is an 11-D(2)-VDTC of G.

Case 2. G has no cut edge. It follows that G has no pendent vertex, that is, 2 ≤ d(x) ≤ 3 for any
x ∈ V (G). If G doesn’t contain vertex of degree-2, then G should be a 3-regular graph. Since G has
no cut edge, by Lemma 4, G must have a perfect matching. Therefore, it follows from Lemma 7 that
χ2vt(G) ≤ 11; if G contains vertex of degree-2, let’s consider the following two subcases in terms of the
distance between any two such vertices in G.

Subcase 2.1. There exist two vertices of degree-2 within distance 2 in G.

Subcase 2.1.1. The two vertices of degree-2 are adjacent in G. Let Pn+1 = u0u1 · · · un(n ≥ 3) be an
internal path in G including at least two vertices of degree-2. Let u

′
0 and u

′′
0 be the neighbors of u0

different from u1, and let u
′
n and u

′′
n be the neighbors of un different from un−1. Now, we suppose that G

′

is the graph obtained by contracting Pn+1(= u0u1 · · · un) to u0vun, see F1 in Fig. 1. By the induction
hypothesis, G

′
has an 11-D(2)-VDTC ϕ

′
. Without loss of generality, we suppose that ϕ

′
(u0v) = 1,

ϕ
′
(v) = 11, and ϕ

′
(unv) = 2. Next, we construct an 11-D(2)-VDTC ϕ of G.

For 3 ≤ n ≤ 4, let ϕ(u0u1) = 1, ϕ(u1) = 11, and ϕ(un−1un) = 2. If n = 3, we first color the edge
u1u2. Note that there are just 8 colors for u1u2 to obtain a proper total coloring, meanwhile, the color set
of u1 should be distinguished from the color sets of at most 4 vertices, that is, {u0, u

′
0, u

′′
0 , u3}. Since

8 > 4 we can select one color from {1, 2, · · · , 11}\{ϕ(u0u1), ϕ(u1), ϕ(u2u3)} to dye u1u2 such that
u1 and {u0, u

′
0, u

′′
0 , u3} are D(2)-vertex-distinguishable. Next, we color the vertex u2. Since there are

at least 7 colors in {1, 2, · · · , 11} which can be used to dye u2 properly, and the color set of u2 should
be distinguished from the color sets of at most 5 vertices, that is, {u0, u1, u3, u

′
3, u

′′
3}, we can select

one color from {1, 2, · · · , 11}\{ϕ(u1u2), ϕ(u2u3), ϕ(u1), ϕ(u3)} for u2, where ϕ(u3) = ϕ
′
(u3), such

that u2 and {u0, u1, u3, u
′
3, u

′′
3} are D(2)-vertex-distinguishable; if n = 4, by the same way, we can

color u1u2, u2, u2u3, and u3 such that the vertices u0, u1, u2, u3, u4, u
′
0, u

′′
0 , u

′
4, and u

′′
4 are D(2)-vertex

distinguishable.
For n ≥ 5, let ϕ(u0u1) = ϕ(un−2un−1) = 1, ϕ(u1) = ϕ(un−1) = 11, and let

ϕ(u1u2) = ϕ(un−1un) = 2.
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Fig. 1. The configuration in the proof of subcase 2.1, where “•” refers to the vertex whose degree is certain, and “◦”
refers to the vertex whose degree is uncertain and is at least 1.

We then circularly color u2, u2u3, u3, · · · , un−3un−2 and un−2 by 3, 4, 5, 6, and 7. It is ev-
ident that the vertices of degree-2 and the vertices of degree-3 are D(2)-vertex distinguishable.
Since Sϕ(u1) = Sϕ(un−1) = Sϕ′ (v) = {1, 2, 11} we see that Sϕ(u1) �= Sϕ(u

′
0), Sϕ(u1) �= Sϕ(u

′′
0),

Sϕ(un−1) �= Sϕ(u
′
n), and Sϕ(un−1) �= Sϕ(u

′′
n). Moreover, it follows from Lemma 2 that the vertices

of Pn+1 are also D(2)-vertex distinguishable. Therefore, ϕ is an 11-D(2)-VDTC of G.

Subcase 2.1.2. The distance between any two vertices of degree-2 in G is equal to 2. Let u, v ∈ V (G),
d(u) = d(v) = 2, and d(u, v) = 2. Suppose that u1 and w are the neighbors of u, and v1 and w are the
neighbors of v. Then d(u1) = d(v1) = d(w) = 3. Let u

′
1 and u

′′
1 be the neighbors of u1 different from u,

and let v
′
1 and v

′′
1 be the neighbors of v1 different from v, and w1 the neighbor of w different from u and

v. Note that 2 ≤ d(w1) ≤ 3 (if exists), we may suppose that w
′
1 and w

′′
1 are the neighbors of w1 different

from w. Let G
′

be the graph obtained by contracting u1uwvv1 to u1wv1, see F2 in Figure 1. Then by
induction hypothesis, G

′
has an 11-D(2)-VDTC ψ

′
. Let ψ

′
(ww1) = 1, ψ

′
(wu1) = 2, ψ

′
(wv1) = 3, and

ψ
′
(w) = 4. Next, we will construct an 11-D(2)-VDTC ψ of G by coloring uu1, u, uw, wv, v, and vv1.
Let ψ(uu1) = 2 and ψ(vv1) = 3. We then color uw and wv in turn. By the definition of proper

total coloring of graphs, there are at least 8 colors which can be used to dye uw, and 7 colors that
can be used to dye wv. We notice that the color set of w should be distinguished from the color
sets of 7 vertices at most, that is, {u, u1, v, v1, w1, w

′
1, w

′′
1} (if exists). Since d(u) = d(v) = 2 and

d(w) = 3, any proper total coloring of uw and wv would enable that w and {u, v} are D(2)-vertex
distinguishable. Thus, we only consider the color set of w should be distinguished from the color
sets of at most 5 vertices, that is, {u1, v1, w1, w

′
1, w

′′
1} (if exists). Since there are 8× 7 assign-

ments that can be colored the edges uw and wv, and at most 5× 2! combinations of them such
that the color set of w equals to the color sets of the vertices in {u1, v1, w1, w

′
1, w

′′
1}, however

8× 7 > 5× 2!, we can select two colors in {1, 2, · · · , 11} to dye uw and wv in turn, such that w

and {u1, v1, w1, w
′
1, w

′′
1} are D(2)-vertex distinguishable. Then we color the vertex u. Note that

there are at least 7 colors which can be used to dye u properly, and the color set of u should be
distinguished from the color sets of 5 vertices, that is, {u1, u

′
1, u

′′
1 , w, w1} (if exists). Since 7 > 5

we can select one color from {1, 2, · · · , 11}\{ψ(uw), ψ(uu1), ψ(w), ψ(u1)} for u so that the vertex u

and {u1, u
′
1, u

′′
1 , w, w1} are D(2)-vertex distinguishable. We finally color the vertex v. Since there are

at least 7 colors which can be used to color v properly, and the color set of v should be distinguished
from the color sets of 6 vertices, that is, {u, w, w1, v1, v

′
1, v

′′
1} (if exists), there exists one color
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in {1, 2, · · · , 11}\{ψ(w), ψ(wv), ψ(vv1), ψ(v1)} (note that ψ(v1) = ψ
′
(v1)) for v such that v and

{u, w, w1, v1, v
′
1, v

′′
1} are D(2)-vertex distinguishable. Hence, we obtain an 11-D(2)-VDTC ψ of G.

Subcase 2.2. The distance between any two vertices of degree-2 in G is no less than 3. Let G
′

be the
graph obtained by taking two copies of G and joining their corresponding vertices of degree-2 by an
edge. Then G

′
is a 3-regular graph, and contains at most one cut edge. By Lemma 4, G

′
has a perfect

matching. Hence G
′

admits an 11-D(2)-VDTC φ
′

by Lemma 7. We construct a proper total coloring φ
of G. For any x ∈ V (G) ∪ E(G), set

φ(x) = φ
′
(x).

Obviously, the vertices of degree-2 and the vertices of degree-3 are D(2)-vertex distinguishable if their
distance is no more than 2. Since the distance between any two vertices of degree-2 in G is at least 3,
one doesn’t take the D(2)-vertex distinguishable of such vertices into account. In addition, for any two
vertices u and v of degree-3, since Sφ′ (u) �= Sφ′ (v) while d(u, v) ≤ 2, we get Sφ(u) �= Sφ(v). Thus, φ is
an 11-D(2)-VDTC of G, as required.

Summing up the discussions above, the proof is completed.
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