On the D(2)**-Vertex Distinguishing Total Coloring** of Graphs with $\Delta = 3^*$

Fei Wen^{1**}, Xiuqing Jia^{1***}, Zepeng Li^{2****}, and Muchun Li^{1*****}

¹ Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou, 730070 China

² School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000 China

Received November 5, 2021; in final form, December 20, 2021; accepted December 23, 2021

Abstract—A D(2)*-vertex-distinguishing total coloring* of a graph G is a proper total coloring such that no pair of vertices, within distance two, has the same set of colors, and the minimum number of colors required for such a coloring is called D(2)*-vertex-distinguishing total chromatic number* of G, and denoted by $\chi_{2vt}(G)$. In this paper, we prove that $\chi_{2vt}(G) \leq 11$ for any graph G with $\Delta(G)=3$.

DOI: 10.1134/S000143462207015X

Keywords: *total coloring,* D(2)*-vertex-distinguishing total coloring,* D(2)*-vertex-distinguishing total chromatic number.*

1. INTRODUCTION

All graphs considered in this paper are simple, finite, and undirected. Let $G = (V(G), E(G))$ be a graph with vertex set $V(G)$ and edge set $E(G)$. Let $d_G(x)$ (denote by $d(x)$ for short) be the *degree* of a vertex x in G, and $\Delta(G) = \max\{d(x)|x \in V(G)\}\$ the maximum degree of G. Let P_n and $C_n(n \geq 3)$ be the *path* and the *cycle* of order n, respectively, and $K_{m,n}$ be a *complete bipartite graph* with bipartition (X, Y) , where $|X| = m$ and $|Y| = n$. We call a path $P_{n+1} = u_0u_1 \cdots u_n$ an *internal path* of G if $d(u_0) \geq 3$, $d(u_n) \geq 3$, and $d(u_i) = 2$, $i = 1, 2, \dots, n - 1$. Let $G - \{v\}$ be the subgraph of G obtained by deleting the vertex v and its incident edges. Let $G - \{uv\}$ and $G + \{uv\}$ be the graphs obtained from G by deleting the edge uv and by adding a new edge uv, respectively. A *cut edge* of G is an edge uv such that $\omega(G - \{uv\}) > \omega(G)$, where $\omega(G)$ refers to the number of components in G. The disjoint union $G_1 \dot{\cup} G_2$ of G_1 and G_2 is the graph with vertex set $V(G_1) \cup V(G_2)$ and edge set $E(G_1) \cup E(G_2)$. A vertex of degree one is called a *pendent vertex*. The *distance* between two vertices u and v in G, denoted by $d_G(u, v)$, is the length of a shortest (u, v) -path in G. A graph G is r-regular if $d(u) = r$ for all $u \in V(G)$. Especially, if a graph G has a 1-regular *spanning subgraph*, then the spanning subgraph is called a *perfect matching* of G. The *square* G^2 of a graph G can be obtained from G by adding all edges between two vertices of distance two in G. For two sets A and B, $A \setminus B$ represents the difference set of A and B. The terminologies and notations used but undefined in this paper can be found in [1].

A proper k-total coloring of G is a mapping $f : V(G) \cup E(G) \rightarrow \{1, 2, \cdots, k\}$ such that any two adjacent or incident elements in $V(G) \cup E(G)$ receive different colors. We use

 $S_f(x) = \{f(x)\} \cup \{f(xy)|xy \in E(G)\}\$

[∗]The article was submitted by the authors for the English version of the journal.

 $\mathrm{^{**}E}\text{-mail:}$ wenfei@lzjtu.edu.cn

^{***}E-mail: 759338867@qq.com

^{****}E-mail: lizp@lzu.edu.cn

^{*****}E-mail: limuchunmath@163.com

to denote the set of colors assigned to a vertex x and those edges incident with x. A proper k-total coloring f of G is said to be a k*-*D(β)*-vertex distinguishing total coloring* [2] (write as k-D(β)-VDTC for short) if $S_f(u) \neq S_f(v)$ for any two vertices $u, v \in V(G)$ with $d(u, v) \leq \beta$, and denote by $\chi_{\beta vt}(G)=\min\Big\{k|G \text{ has a }k\text{-}D(\beta)\text{-}\text{VDTC}\Big\}$ the $D(\beta)$ -vertex distinguishing total chromatic number of G. Especially, if $\beta = 1$, then a $D(1)$ -vertex distinguishing total coloring is just the *adjacent vertex distinguishing total coloring* of G (see [3]); if $\beta = 2$, then $D(\beta)$ -vertex distinguishing total coloring is also called D(2)*-vertex distinguishing total coloring* of G, and the corresponding chromatic number is written as $\chi_{2vt}(G)$. Besides, let f be a total coloring of G. If any two vertices $u, v \in V(G)$ with $d(u, v) \leq 2$ satisfy $S_f(u) \neq S_f(v)$, then we call that u and v are $D(2)$ -vertex distinguishable.

Graph coloring has always been classic topic in graph theory, and it's widely applied in practice (see [1]). In recent decades, many scholars have conducted a series of researches around it [4]–[7]. The adjacent vertex distinguishing total coloring of graphs was first introduced by Zhang et al. in [3]. They conjectured that the adjacent vertex distinguishing total chromatic number $\chi_{at}(G)$ of any graph G, with order at least 2, satisfies $\chi_{at}(G) \leq \Delta(G) + 3$, and further showed that the conjecture holds for *complete graph*, *complete bipartite graph*, *tree*, and so on. After then, scholars have carried out a lot of research to the conjecture. Wang $[8]$ and Chen $[9]$ independently proved that if G is a graph with maximum degree $\Delta(G)=3$, then $\chi_{at}(G)\leq 6$. Cheng et al. [10] showed that for a planar graph G with $\Delta(G)\geq 10$, $\chi_{at}(G) \leq \Delta(G) + 3$. Huang et al. [11] verified that $\chi_{at}(G) \leq 2\Delta(G)$ for any graph G with $\Delta(G) \geq 3$. Later, B. Vučković [12] improved this bound, and got that $\chi_{at}(G) \leq 2\Delta(G) - 1$ if $\Delta(G) \geq 4$.

In 2006, Zhang et al. [2] proposed the concept entitled D(β)*-vertex distinguishing total coloring of graphs*, and got the D(β)-vertex distinguishing total chromatic number of some simple graphs such as *path*, *cycle*, and *complete graph* for $\beta \geq 2$. Based on the above, they presented the conjecture given below:

Conjecture 1 (see [2]). Let G be a connected graph on $n \geq 2$ vertices. Then

$$
\chi_{\beta vt}(G) \leq \mu_{\beta}(G) + 1.
$$

 $\text{where}\,\, \mu_\beta(G)=\min\Big\{\theta:\,\, \binom{\theta}{i+1}\geq n_i,\,\, \delta\leq i\leq \Delta\Big\},\, n_i=\max\Big\{|S|:\,\, S\subseteq V(G)\Big\},\, and\,\, S\,\, is \, composed of the coefficients of the coefficients.$ *of the vertices with degree* i *and their distance is no more than* β*.*

From conjecture 1, if $\beta = 2$, then we see that the following conjecture.

Conjecture 2 (see [2]). Let G be a connected graph on $n \geq 2$ vertices. Then

 $\chi_{2vt}(G) \leq \mu_2(G) + 1.$

Meanwhile, Zhang et al.[2] also showed that the conjecture holds for some simple graphs. In this paper, we aim at Conjecture 2 to consider the $D(2)$ -vertex distinguishing total coloring of a graph G, and prove that $\chi_{2vt}(G) \leq 11$ for any graph G with maximum degree $\Delta(G)=3$.

2. PRELIMINARIES

Lemma 1 (see [2, Theorem 2.2]). *Let* G *be a graph with n components, i.e.,* $G = G_1 \cup G_2 \cup \cdots \cup G_n$. *Then* $\chi_{2vt}(G) = \max \{ \chi_{2vt}(G_i) | i = 1, 2, \dots, n \}.$

Lemma 2 (see [2, Theorem 2.4]). *For a path P_n with order* $n \geq 2$, $\chi_{2vt}(P_n) \leq 4$.

Lemma 3 (see [2, Theorems 2.7, 2.8, 2.9]). *Let* C_n *be a cycle on* $n \geq 3$ *vertices. Then* $\chi_{2vt}(C_n) \leq 5$ *.*

Lemma 4 (see [13, pp.243], [14, Lemma 2.4.6])**.** *For a* 3*-regular graph* G*, if* G *contains no perfect matching, then* G *has at least* 3 *cut edges.*

MATHEMATICAL NOTES Vol. 112 No. 1 2022

A *list assignment* of G is a function L which assigns to each vertex $x \in V(G)$ a list $L(x)$ of colors. A *list coloring* of G with list assignment L is a mapping $f: V(G) \to \bigcup_{x \in V(G)} L(x)$ such that $f(x) \in L(x)$ for all $x \in V(G)$ and $f(u) \neq f(v)$ for any adjacent vertices u and v, and we say that G is L-colorable. A graph is called k*-choosable* if G is L-colorable whenever all lists have size k. The *list chromatic number* $\chi_l(G)$ is the minimum k such that G is k-choosable. In [15], the list chromatic number of the square G^2 of a graph G with $\Delta(G) \leq 3$ is given in the following.

Lemma 5 (see [15, Theorem 1]). *For a graph G with* $\Delta(G) \leq 3$, *if G is not isomorphic to the Petersen graph, then* $\chi_l(G^2) \leq 8$.

A *proper vertex coloring* of G is a mapping $f: V(G) \to \{1, 2, \cdots, k\}$ such that for any two adjacent vertices u and v, $f(u) \neq f(v)$, and denote by $\chi(G)$ the proper vertex chromatic number of G. By the definition of *list-coloring* of G, we can see that a list-coloring of G is also a proper vertex coloring of the graph, and $\chi(G) \leq \chi_l(G)$. A 2-distance coloring of a graph G is a proper vertex coloring such that no two vertices, within distance 2 in G, are assigned the same color, and we denote by $\chi_2(G)$ the 2*-distance chromatic number* of G. It is obvious that for any a simple graph G and its square graph $G^2,\chi_2(G)=\chi(G^2).$ Hence, we can deduce that $\chi_2(G)=\chi(G^2)\leq \chi_l(G^2).$ Furthermore, the following corollary can be deduced by Lemma 5.

Corollary 1. *If* G is a graph with $\Delta(G) \leq 3$, but not isomorphic to the Petersen graph, then

 $\chi_2(G) \leq 8.$

Lemma 6. *If* G *is the Petersen graph, then* $\chi_{2vt}(G) = 6$ *.*

Proof. Suppose that G has vertex-set $V(G) = \{u_1, u_2, u_3, u_4, u_5, v_1, v_2, v_3, v_4, v_5\}$ and edge-set $E(G) = \{u_iu_{i+1}, u_iv_i, v_iv_{i+2}\},\$ where $i = 1, 2, \cdots, 5.$ According to the definition of $D(2)$ -VDTC, $\chi_{2vt}(G)\geq 6$ due to $\binom{6}{4}=15>10$ and $\binom{5}{4}=5< 10.$ Let $f:V(G)\cup E(G)\rightarrow \{1,\ 2,\ \cdots,\ 6\}$ be a total coloring of G. Suppose $f(u_i v_i)=6$ for $i = 1, 2, 3, 4, 5$. Then we color the vertices u_1, u_2, u_3, u_4 , and u_5 with 1, 2, 3, 4, and 5 respectively, and color the vertices v_1 , v_2 , v_3 , v_4 , and v_5 with 5, 1, 2, 3, and 4 respectively. Meanwhile, the edges u_1u_2 , u_2u_3 , u_3u_4 , u_4u_5 , and u_5u_1 are colored by 3, 4, 5, 1, and 2 respectively. After that, the edges v_1v_3 , v_2v_4 , v_3v_5 , v_4v_1 , and v_5v_2 are colored by 3, 4, 5, 1, and 2 respectively. Clearly, f is a proper total coloring of G , and it is easy to see that

> $S(u_1) = \{1, 2, 3, 6\}, S(u_2) = \{2, 3, 4, 6\}, S(u_3) = \{3, 4, 5, 6\},$ $S(u_4) = \{1, 4, 5, 6\}, S(u_5) = \{1, 2, 5, 6\}, S(v_1) = \{1, 3, 5, 6\},$ $S(v_2) = \{1, 2, 4, 6\}, S(v_3) = \{2, 3, 5, 6\}, S(v_4) = \{1, 3, 4, 6\}, \text{and}$ $S(v_5) = \{2, 4, 5, 6\}.$

Therefore, f is a 6-D(2)-VDTC of G, and thus $\chi_{2vt}(G)=6$.

Lemma 7. *For a* 3-*regular graph* G with a perfect matching, $\chi_{2vt}(G) \leq 11$.

Proof. If G is the Petersen graph, then $\chi_{2vt}(G) = 6 < 11$ by Lemma 6. Otherwise, we consider that G is a 3-regular graph but not isomorphic to the Petersen graph. We decompose G as a perfect matching M and a union of some cycles, denoted by $C^{(i)}_{n_i}=x_1^ix_2^i\cdots x_{n_i}^ix_1^i$ for $i=1,2,\cdots,t,$ where n_i is the length of $C_{n_i}^{(i)}$. According to Corollary 1, one can see that G has a 2-distance vertex coloring with 8 colors, suppose that $f_1 : V(G) \to \{1, 2, \cdots, 8\}$ is a 2-distance vertex coloring of G. Let $f_2: E(G) \to \{1, 2, \cdots, 11\}$ be a proper edge coloring of G. Without loss of generality, we may suppose that all the edges in M are colored by 9. Then we will color the edges of cycles $C_{n_i}^{(i)}$ where $i=1,2,\cdots,t.$ For clarity, we may suppose that $C_{n_1}^{(1)},$ $C_{n_2}^{(2)},$ \cdots , $C_{n_r}^{(r)}$ are even cycles, and $C_{n_{r+1}}^{(r+1)},$ $C_{n_{r+2}}^{(r+2)},$ \cdots , $C_{n_s}^{(s)},$ $C_{n_{s+1}}^{(s+1)},\,\cdots,\,C_{n_t}^{(t)}$ are odd cycles, in which $C_{n_{r+1}}^{(r+1)},\,C_{n_{r+2}}^{(r+2)},\,\cdots,\,C_{n_s}^{(s)}$ satisfy that each vertex of one odd cycle is not adjacent to any vertex of the others, meanwhile, $C_{n_{s+1}}^{(s+1)},$ $C_{n_{s+2}}^{(s+2)},$ $\cdots,$ $C_{n_t}^{(t)}$ satisfy that some vertices of one cycle are adjacent to some vertices of the others, where $r \leq s \leq t$.

 \Box

Suppose that the edges of $C_{n_1}^{(1)}, C_{n_2}^{(2)}, \cdots, C_{n_r}^{(r)}$ are colored by 10 and 11 alternately. Now we color the edges of the cycles $C_{n_{r+1}}^{(r+1)},C_{n_{r+2}}^{(r+2)},\cdots,C_{n_s}^{(s)}.$ For each cycle $C_{n_i}^{(i)}$ with $i=r+1, r+2,\cdots,s,$ the edges $x_1^ix_2^i,x_2^ix_3^i,\cdots,x_{n_i-1}^ix_{n_i}^i$ of $C^{(i)}_{n_i}$ are colored alternately by 10 and 11, and the edge $x_{n_i}^ix_1^i$ is colored by a color α , where $\alpha \in \{1, 2, \cdots, 8\} \backslash \{f_1(x_1^i), f_1(x_{n_i}^i)\}.$

After that, we will color the edges of cycles $C_{n_{s+1}}^{(s+1)},\,C_{n_{s+2}}^{(s+2)},\,\cdots,\,C_{n_t}^{(t)}.$ We construct a new graph H with vertex set $V(H) = \{C_{n_{s+1}}^{(s+1)},\ C_{n_{s+2}}^{(s+2)},\ \cdots,\ C_{n_t}^{(t)}\}$ and edge set $E(H)$, where $E(H)$ equals to the set of all edges which connect the vertices of $C_{n_i}^{(i)}$ with the vertices of $C_{n_j}^{(j)}$ in $G,$ where $i\neq j$ and $i,j=s+1,s+2,\cdots,t.$ It is easy to see that H may be disconnected. Let $H=H_1\cup H_2\cup\cdots\cup H_m,$ where $H_i(i = 1, 2, \dots, m)$ are components of H.

We first color the edges of odd cycles corresponding to the vertices of H_1 . For any $y \in V(H_1)$, let $C_{n_y}^{(y)}=x_1^y x_2^y\cdots x_{n_y}^y x_1^y$ be the odd cycle corresponding to y in $G.$ Given a vertex $v\in V(H_1),$ then the corresponding odd cycle is $C^{(v)}_{n_v}=x_1^vx_2^v\cdots x_{n_v}^vx_1^v.$ We alternately color the edges $x_1^vx_2^v,$ $x_2^vx_3^v,\cdots,$ $x_{n_v-1}^vx_{n_v}^v$ by 10 and 11, and color the edge $x_{n_v}^vx_1^v$ by the color $\alpha.$ For any $uv\in E(H_1),$ we also color the edges $x_1^ux_2^u,$ $x_2^ux_3^u,$ \cdots , $x_{n_u-1}^u x_{n_u}^u$ of $C_{n_u}^{(u)}$ by 10 and 11 alternately, and color $x_{n_u}^ux_1^u$ by a color β , where $\beta \in \{1, 2, \dots, 8\} \setminus \{f_1(x_{n_u}^u), f_1(x_1^v), f_1(x_{n_v}^v), f_1(x_1^v), \alpha\}$. For any $w \in V(H_1)$ with $d_{H_1}(v, w) \ge 2$, if $d_{H_1} (v, w)=2,$ then we color the edges of $C^{(w)}_{n_w}$ by the coloring function that has dyed the edges of $C^{(v)}_{n_v};$ if $d_{H_1}(v,w)=3,$ then we color the edges of $C_{n_w}^{(w)}$ by the coloring function that has dyed the edges of $C_{n_u}^{(u)}$. As an analogy, all edges of $C_{n_w}^{(w)}$, with $d_{H_1} (v, w) \geq 4,$ can be colored in the same way, meanwhile, one can color the edges of odd cycles corresponding to the vertices of $H_2,\,H_3,\,\cdots,\,H_m$ by the coloring function which has dyed the edges of H_1 . So far, all the edges of cycles $C_{n_{s+1}}^{(s+1)},$ $C_{n_{s+2}}^{(s+2)},$ \cdots , $C_{n_t}^{(t)}$ have been colored.

Thus, for any vertex of G, there are 5 color sets under f_2 , that is, $\{9, 10, 11\}$, $\{\alpha, 9, 10\}$, $\{\alpha, 9, 11\}$, $\{\beta, 9, 10\}$, and $\{\beta, 9, 11\}$, respectively.

Finally, we construct a total coloring $f : V(G) \cup E(G) \rightarrow \{1, 2, \cdots, 11\}$ of G as follows:

$$
f(z) = \begin{cases} f_1(z), & z \in V(G), \\ f_2(z), & z \in E(G). \end{cases}
$$
 (1)

Obviously, f is a proper total coloring of G . Under the coloring f , we show that any two vertices of G with distance no more than 2 are $D(2)$ -vertex distinguishable.

Let $x_k^i \in V(C_{n_i}^{(i)})$ and $x_l^j \in V(C_{n_j}^{(j)})$ be two vertices with $d(x_k^i,x_l^j) \leq 2,$ where i and j are not necessary distinct, and $i,j=1,2,\cdots,t.$ Let $S_f(x_k^i)$ and $S_f(x_l^j)$ be the color sets that correspond to x_k^i and x_l^j , respectively. It is evident that $S_f(x_k^i) = \{f_1(x_k^i)\} \cup S_{f_2}(x_k^i)$ and $S_f(x_l^j) = \{f_1(x_l^j)\} \cup S_{f_2}(x_l^j)$. Moreover, we notice that $d(x_k^i,x_l^j)\leq 2,$ from the coloring function $f_2,$ one can see that

$$
S_{f_2}(x_k^i), S_{f_2}(x_l^j) \in \left\{ \{9, 10, 11\}, \ \{\alpha, 9, 10\}, \ \{\alpha, 9, 11\}, \ \{\beta, 9, 10\}, \ \{\beta, 9, 11\} \right\},
$$

but $S_{f_2}(x_k^i)=S_{f_2}(x_l^j)\not\in\Big\{\{\alpha,\ 9,\ 10\},\ \{\alpha,\ 9,\ 11\},\ \{\beta,\ 9,\ 10\},\ \{\beta,\ 9,\ 11\}\Big\}.$ Now we consider four cases in the following:

• for $S_{f_2}(x_k^i) = \{9, 10, 11\}$, if $S_{f_2}(x_l^j) = \{9, 10, 11\}$, then one can see that $S_f(x_k^i) \neq S_f(x_l^j)$ since $f_1(x_k^i)\neq f_1(x_l^j);$ if $S_{f_2}(x_l^j)\in\Big\{\{\alpha,\ 9,\ 10\},\ \{\alpha,\ 9,\ 11\},\ \{\beta,\ 9,\ 10\},\ \{\beta,\ 9,\ 11\}\Big\},$ then we obtain $\{f_1(x_k^i)\}\cup S_{f_2}(x_k^i)\neq \{f_1(x_l^j)\}\cup S_{f_2}(x_l^j)$ since $\{\alpha, \beta, f_1(x_k^i), f_1(x_l^j)\}\subset \{1, 2, \cdots, 8\}$ and, consequently, $S_f(x_k^i) \neq S_f(x_l^j);$

MATHEMATICAL NOTES Vol. 112 No. 1 2022

146 FEI WEN et al.

• for $S_{f_2}(x_k^i) = \{\alpha, 9, 10\}$, if $S_{f_2}(x_l^j) = \{\alpha, 9, 11\}$, then $\{f_1(x_k^i), \alpha, 9, 10\} \neq \{f_1(x_l^j), \alpha,$ 9, 11} due to $\{f_1(x_k^i), f_1(x_l^j)\} \subset \{1, 2, \cdots, 8\}$, i.e., $S_f(x_k^i) \neq S_f(x_l^j)$; if

 $S_{f_2}(x_i^j) \in \Big\{\{\beta, 9, 10\}, \ \{\beta, 9, 11\}\Big\},$

since $\beta \in \{1, 2, \dots, 8\} \setminus \{f_1(x_k^i), \alpha\}$ we see that $\beta \notin S_f(x_k^i)$, and thus $S_f(x_k^i) \neq S_f(x_l^j)$;

- for $S_{f_2}(x_k^i) = \{\alpha, 9, 11\}$, if $S_{f_2}(x_l^j) \in \left\{\{\beta, 9, 10\}, \{\beta, 9, 11\}\right\}$ then $S_f(x_k^i) \neq S_f(x_l^j)$ as $\beta \notin S_f(x_k^i);$
- for $S_{f_2}(x_k^i) = \{\beta, 9, 10\}$, if $S_{f_2}(x_l^j) = \{\beta, 9, 11\}$, then we see that

$$
\{f_1(x_k^i),~\beta,~9,~10\}\neq\{f_1(x_l^j),~\beta,~9,~11\}
$$

because $\{f_1(x_k^i), f_1(x_l^j)\} \subset \{1, 2, \cdots, 8\}$, and hence, $S_f(x_k^i) \neq S_f(x_l^j)$.

Therefore, f is an 11- $D(2)$ -VDTC of G . The proof completes.

\Box

3. MAIN RESULTS

Theorem 1. Let G be a graph with maximum degree $\Delta(G) \leq 3$. Then $\chi_{2vt}(G) \leq 11$.

Proof. Let G be a graph with $\Delta(G) \leq 3$. If $\Delta(G) \leq 2$, then G is a path, or a cycle, or a union of paths and cycles. From Lemmas 2 and 3, both the path and the cycle have a $5-D(2)-VDTC$, and it follows from Lemma 1 that the union of paths and cycles also has a $5-D(2)-VDTC$; if $\Delta(G)=3$, without loss of generality, by Lemma 1, we may suppose that G is connected. Then we will prove that G has an 11-D(2)-VDTC by induction on $|E(G)|$.

When $|E(G)| = 3$, then $G \cong K_{1,3}$, it is easy to see that G has a 7-D(2)-VDTC, however $7 < 11$, the conclusion holds; when $|E(G)| \geq 4,$ suppose that for any connected graph $G^{'}$ with $\Delta(G^{'}) \leq 3$ and $|E(G')| < |E(G)|$, G' has an 11-D(2)-VDTC. Now we consider two cases as follows.

Case 1. G has a cut edge wv. Since G is a connected graph with $\Delta(G)=3$, there is at most one pendant vertex in $\{u, v\}$. Thus, the following two subcases are considered.

Subcase 1.1. There is just one pendant vertex in u and v. We may suppose that $d_G(v)=1$. Then $2 \leq d_G(u) \leq 3$. Let u_1 and u_2 (if exists) be the neighbors of u different from v, and u_{i1} and u_{i2} (if exists) be the neighbors of u_i different from u . Let $G^{'} = G - \{v\}$. Then $G^{'}$ has an 11-D(2)-VDTC $f^{'}$ by induction. We will construct an 11-D(2)-VDTC f of G by coloring uv and v.

Setting $f(x) = f'(x)$ for $\forall x \in V(G') \cup E(G')$, we first color the edge uv. We notice that the color set of u should be distinguished from the color sets of vertices within distance 2, there are 6 vertices at most, that is, $\{u_1, u_2, u_{11}, u_{12}, u_{21}, u_{22}\}$ (if exists). In addition, by the definition of proper total coloring of graphs, there are at least 8 colors in $\{1, 2, \dots, 11\}$ which can be used to color uv. Since $8 > 6$ we can select one color from $\{1, 2, \cdots, 11\} \setminus \{f(u), f(uu_1), f(uu_2)\}\$ to dye uv so that $S_f(u) \neq S_f(u_i)$ and $S_f(u) \neq S_f(u_{ij})$, where $i, j = 1, 2$. Next, we color the vertex v. Since there are 9 colors which can be used to dye v properly, and the color set of v should be distinguished from the color sets of 3 vertices at most, that is, $\{u, u_1, u_2\}$ (if exists), there exists one color in $\{1, 2, \cdots, 11\} \setminus \{f(u), f(uv)\}$ for v, such that $S_f(v) \neq S_f(u)$ and $S_f(v) \neq S_f(u_i)$ for $i = 1, 2$. Besides those, the other vertices of G are $D(2)$ -vertex distinguishable. Thus, f is an 11-D(2)-VDTC of G.

Subcase 1.2. There is no pendent vertex in u and v. Clearly, $2 \le d_G(u) \le 3$ and $2 \le d_G(v) \le 3$. Let u_1 and u_2 (if exists) be the neighbors of u different from v, and v_1 and v_2 (if exists) be the neighbors of v different from u. We suppose that $G - \{uv\} = G_1 \dot{\cup} G_2$, where $u \in V(G_1)$ and $v \in V(G_2)$. Let

 $G^{'}=G_{1}+\{uv\}$ and $G^{''}=G_{2}+\{uv\}.$ Then by the induction hypothesis, $G^{'}$ has an 11-D(2)-VDTC f_1 , and G'' has an 11-D(2)-VDTC f_2 .

Without loss of generality, we let $f_1(u) = f_2(u) = 1$, $f_1(uv) = f_2(uv) = 2$, and $f_1(v) = f_2(v) = 3$. Note that if $f_1(v) \in S_{f_1}(u)$, then one can recolor $v \in V(G')$ to yield $f_1(v) \notin S_{f_1}(u)$ since there are at least 7 colors in $\{1, 2, \cdots, 11\} \backslash S_{f_1} (u)$ which can be used to dye v so that the color set of v is distinguished from the color sets of 3 vertices at most, that is, $\{u, u_1, u_2\}$ (if exists); if $f_2(u) \in S_{f_2}(v)$, similarly, the vertex $u \in V(G'')$ can also be recolored with $f_2(u) \notin S_{f_2}(v)$, and thus, we may suppose that $f_1(v) \notin S_{f_1}(u)$ and $f_2(u) \notin S_{f_2}(v)$. Hence, we can assume that the colors assigned on $uu_1, uu_2\in E(G')$ are 4 and 5, respectively, and the colors assigned on $vv_1, vv_2\in E(G'')$ are 6 and 7, respectively.

Now, we construct a proper total coloring f^* of G as follows: for any $z \in V(G) \cup E(G)$, define

$$
f^*(z) = \begin{cases} f_1(z), & z \in V(G') \cup E(G'), \\ f_2(z), & z \in V(G'') \cup E(G''). \end{cases}
$$
 (2)

Since $6 \notin S_{f^*}(u)$, $7 \notin S_{f^*}(u)$, $6 \in S_{f^*}(v) \cap S_{f^*}(v_1)$, and $7 \in S_{f^*}(v) \cap S_{f^*}(v_2)$, we see that

$$
S_{f^*}(u) \neq S_{f^*}(v)
$$
 and $S_{f^*}(u) \neq S_{f^*}(v_i)$ for $i = 1, 2$.

Since $4 \notin S_{f^*}(v)$, $5 \notin S_{f^*}(v)$, $4 \in S_{f^*}(u) \cap S_{f^*}(u_1)$, and $5 \in S_{f^*}(u) \cap S_{f^*}(u_2)$, we obtain

$$
S_{f^*}(v) \neq S_{f^*}(u_i), \qquad \text{where} \quad i = 1, 2.
$$

Besides these relations, it is clear that the other vertices of G are $D(2)$ -vertex distinguishable. Therefore, f^* is an 11-D(2)-VDTC of G.

Case 2. G has no cut edge. It follows that G has no pendent vertex, that is, $2 \le d(x) \le 3$ for any $x \in V(G)$. If G doesn't contain vertex of degree-2, then G should be a 3-regular graph. Since G has no cut edge, by Lemma 4, G must have a perfect matching. Therefore, it follows from Lemma 7 that $\chi_{2vt}(G) \leq 11$; if G contains vertex of degree-2, let's consider the following two subcases in terms of the distance between any two such vertices in G.

Subcase 2.1. There exist two vertices of degree-2 within distance 2 in G.

Subcase 2.1.1. The two vertices of degree-2 are adjacent in G. Let $P_{n+1} = u_0u_1 \cdots u_n$ ($n \ge 3$) be an internal path in G including at least two vertices of degree-2. Let $u_{0}^{'}$ and $u_{0}^{''}$ be the neighbors of u_{0} different from u_1 , and let $u_n^{'}$ and $u_n^{''}$ be the neighbors of u_n different from $u_{n-1}.$ Now, we suppose that $G^{'}$ is the graph obtained by contracting $P_{n+1}(= u_0u_1\cdots u_n)$ to $u_0vu_n,$ see F_1 in Fig. 1. By the induction hypothesis, G' has an 11-D(2)-VDTC φ' . Without loss of generality, we suppose that $\varphi'(u_0v)=1,$ $\varphi^{'}(v)=11$, and $\varphi^{'}(u_nv)=2.$ Next, we construct an 11- $D(2)$ -VDTC φ of $G.$

For $3 \le n \le 4$, let $\varphi(u_0u_1) = 1$, $\varphi(u_1) = 11$, and $\varphi(u_{n-1}u_n) = 2$. If $n = 3$, we first color the edge u_1u_2 . Note that there are just 8 colors for u_1u_2 to obtain a proper total coloring, meanwhile, the color set of u_1 should be distinguished from the color sets of at most 4 vertices, that is, $\{u_0,\ u_0',\ u_0'',\ u_3\}.$ Since 8 > 4 we can select one color from $\{1, 2, \cdots, 11\} \setminus \{\varphi(u_0u_1), \varphi(u_1), \varphi(u_2u_3)\}\$ to dye u_1u_2 such that u_1 and $\{u_0,\ u_0',\ u_0''\}$ are $D(2)$ -vertex-distinguishable. Next, we color the vertex u_2 . Since there are at least 7 colors in $\{1, 2, \cdots, 11\}$ which can be used to dye u_2 properly, and the color set of u_2 should be distinguished from the color sets of at most 5 vertices, that is, $\{u_0,\ u_1,\ u_3,\ u_3',u_3''\},$ we can select one color from $\{1, 2, \cdots, 11\}\setminus\{\varphi(u_1u_2), \varphi(u_2u_3), \varphi(u_1), \varphi(u_3)\}$ for u_2 , where $\varphi(u_3) = \varphi^{'}(u_3)$, such that u_2 and $\{u_0,\ u_1,\ u_3,\ u_3',\ u_3''\}$ are $D(2)$ -vertex-distinguishable; if $n=4$, by the same way, we can color $u_1u_2, u_2, u_2u_3,$ and u_3 such that the vertices $u_0,u_1,u_2,u_3,u_4,u_0',u_0'',u_4',$ and u_4'' are $D(2)$ -vertex distinguishable.

For
$$
n \ge 5
$$
, let $\varphi(u_0 u_1) = \varphi(u_{n-2} u_{n-1}) = 1$, $\varphi(u_1) = \varphi(u_{n-1}) = 11$, and let

$$
\varphi(u_1 u_2) = \varphi(u_{n-1} u_n) = 2.
$$

MATHEMATICAL NOTES Vol. 112 No. 1 2022

Fig. 1. The configuration in the proof of subcase 2.1, where "•" refers to the vertex whose degree is certain, and "∘" refers to the vertex whose degree is uncertain and is at least 1.

We then circularly color u_2 , u_2u_3 , u_3 , \cdots , $u_{n-3}u_{n-2}$ and u_{n-2} by 3,4,5,6, and 7. It is evident that the vertices of degree-2 and the vertices of degree-3 are $D(2)$ -vertex distinguishable. Since $S_{\varphi}(u_1) = S_{\varphi}(u_{n-1}) = S_{\varphi'}(v) = \{1, 2, 11\}$ we see that $S_{\varphi}(u_1) \neq S_{\varphi}(u'_0)$, $S_{\varphi}(u_1) \neq S_{\varphi}(u''_0)$, $S_\varphi(u_{n-1})\neq S_\varphi(u_n'),$ and $S_\varphi(u_{n-1})\neq S_\varphi(u_n'').$ Moreover, it follows from Lemma 2 that the vertices of P_{n+1} are also $D(2)$ -vertex distinguishable. Therefore, φ is an 11-D(2)-VDTC of $G.$

Subcase 2.1.2. The distance between any two vertices of degree-2 in G is equal to 2. Let $u, v \in V(G)$, $d(u) = d(v) = 2$, and $d(u, v) = 2$. Suppose that u_1 and w are the neighbors of u, and v_1 and w are the neighbors of v. Then $d(u_1) = d(v_1) = d(w) = 3$. Let u'_1 and u''_1 be the neighbors of u_1 different from u , and let v_1' and v_1'' be the neighbors of v_1 different from $v,$ and w_1 the neighbor of w different from u and $v.$ Note that $2\leq d(w_1)\leq 3$ (if exists), we may suppose that w_1' and w_1'' are the neighbors of w_1 different from $w.$ Let $G^{'}$ be the graph obtained by contracting u_1uwvv_1 to $u_1wv_1,$ see F_2 in Figure 1. Then by induction hypothesis, $G^{'}$ has an 11- $D(2)$ -VDTC $\psi^{'}$. Let $\psi^{'}(ww_{1})=1,$ $\psi^{'}(wu_{1})=2,$ $\psi^{'}(wv_{1})=3,$ and $\psi^{'}(w)=$ 4. Next, we will construct an 11-D(2)-VDTC ψ of G by coloring $uu_1,$ $u,$ $uw,$ $wv,$ $v,$ and $vv_1.$

Let $\psi(uu_1)=2$ and $\psi(vv_1)=3$. We then color uw and wv in turn. By the definition of proper total coloring of graphs, there are at least 8 colors which can be used to dye uw, and 7 colors that can be used to dye wv . We notice that the color set of w should be distinguished from the color sets of 7 vertices at most, that is, $\{u, u_1, v, v_1, w_1, w_1', w_1''\}$ (if exists). Since $d(u) = d(v) = 2$ and $d(w)=3$, any proper total coloring of uw and wv would enable that w and $\{u, v\}$ are $D(2)$ -vertex distinguishable. Thus, we only consider the color set of w should be distinguished from the color sets of at most 5 vertices, that is, $\{u_1, v_1, w_1', w_1'', w_1''\}$ (if exists). Since there are 8×7 assignments that can be colored the edges uw and wv , and at most $5 \times 2!$ combinations of them such that the color set of w equals to the color sets of the vertices in $\{u_1, v_1, w_1', w_1'', w_1''\}$, however $8 \times 7 > 5 \times 2!$, we can select two colors in $\{1, 2, \cdots, 11\}$ to dye uw and wv in turn, such that w and $\{u_1, v_1, w_1, w_1', w_1''\}$ are $D(2)$ -vertex distinguishable. Then we color the vertex u . Note that there are at least 7 colors which can be used to dye u properly, and the color set of u should be distinguished from the color sets of 5 vertices, that is, $\{u_1, u_1', u_1'', w, w_1\}$ (if exists). Since $7 > 5$ we can select one color from $\{1,~2,~\cdots,~11\}\backslash\{\psi(uw),~\psi(uu_1),~\psi(w),~\psi(u_1)\}$ for u so that the vertex u and $\{u_1,~u_1^{'},~u_1^{''},~w,~w_1\}$ are $D(2)$ -vertex distinguishable. We finally color the vertex $v.$ Since there are at least 7 colors which can be used to color v properly, and the color set of v should be distinguished from the color sets of 6 vertices, that is, $\{u,\ w,\ w_1,\ v_1,\ v_1^{'} ,\ v_1^{''}\}$ (if exists), there exists one color

in $\{1, 2, \cdots, 11\}\backslash\{\psi(w), \ \psi(wv), \ \psi(vv_1), \ \psi(v_1)\}$ (note that $\psi(v_1)=\psi^{'}(v_1)$) for v such that v and $\{u, w, w_1, v_1, v'_1, v''_1\}$ are $D(2)$ -vertex distinguishable. Hence, we obtain an 11- $D(2)$ -VDTC ψ of G.

Subcase 2.2. The distance between any two vertices of degree-2 in G is no less than 3. Let G' be the graph obtained by taking two copies of G and joining their corresponding vertices of degree-2 by an edge. Then $G^{'}$ is a 3-regular graph, and contains at most one cut edge. By Lemma 4, $G^{'}$ has a perfect matching. Hence $G^{'}$ admits an 11-D(2)-VDTC $\phi^{'}$ by Lemma 7. We construct a proper total coloring ϕ of G. For any $x \in V(G) \cup E(G)$, set

$$
\phi(x) = \phi^{'}(x).
$$

Obviously, the vertices of degree-2 and the vertices of degree-3 are $D(2)$ -vertex distinguishable if their distance is no more than 2. Since the distance between any two vertices of degree-2 in G is at least 3, one doesn't take the $D(2)$ -vertex distinguishable of such vertices into account. In addition, for any two vertices u and v of degree-3, since $S_{\phi}(u) \neq S_{\phi}(v)$ while $d(u, v) \leq 2$, we get $S_{\phi}(u) \neq S_{\phi}(v)$. Thus, ϕ is an 11- $D(2)$ -VDTC of G, as required.

Summing up the discussions above, the proof is completed.

 \Box

FUNDING

This work was supported by the NSFC (grant nos. 11961041, 61802158) and Natural Science Foundation of Gansu Province, China (grant no. 21JR11RA065).

REFERENCES

- 1. J. A. Bondy and U. S. R. Murty, in *Graph theory with applications* (Macmillan, London, 1976).
- 2. Z. F. Zhang, J. W. Li, X. E. Chen, et al., " $D(\beta)$ -vertex-distinguishing total coloring of graphs," Science in China Series A: Mathematics **49** (10), 1430–1440 (2006).
- 3. Z. F. Zhang, X. E. Chen, J. W. Li, et al., "On adjacent-vertex-distinguishing total coloring of graphs," Science in China Series A: Mathematics **48** (3), 289–299 (2005).
- 4. A. J. Dong, W. W. Zhang, and X. Tan, "Neighbor Sum Distinguishing Total Colorings of Corona of Subcubic Graphs," Bulletin of the Malaysian Mathematical Sciences Society **44** (4), 1919–1926 (2021).
- 5. L. Sun, "Neighbor sum distinguishing total choosability of planar graphs without adjacent special 5-cycles," Discrete Applied Mathematics **279**, 146–153 (2020).
- 6. W. Y. Song, L. Y. Miao, and Y. Y. Duan, "Neighbor sum distinguishing total choosability of IC-planar graphs," Discussiones Mathematicae Graph Theory **40** (1), 331–344 (2020).
- 7. L. Sun, G. L. Yu, and X. Li, "Neighbor sum distinguishing total choosability of 1-planar graphs with maximum degree at least 24," Discrete Mathematics **344** (1), 112–190 (2021).
- 8. H. Y. Wang, "On the adjacent vertex-distinguishing total chromatic numbers of the graphs with $\Delta(G)=3$," Journal of combinatorial optimization **14** (1), 87–109 (2007).
- 9. X. E. Chen, "On the adjacent vertex distinguishing total coloring numbers of graphs with $\Delta = 3$," Discrete Mathematics **308** (17), 4003–4007 (2008).
- 10. X. H. Cheng, G. H. Wang, and J. L. Wu, "The adjacent vertex distinguishing total chromatic numbers of planar graphs with $\Delta = 10$," Journal of Combinatorial Optimization **34** (2), 383–397 (2017).
- 11. D. J. Huang, W. F. Wang, and C. C. Yan, "A note on the adjacent vertex distinguishing total chromatic number of graphs," Discrete Mathematics **312** (24), 3544–3546 (2012).
- 12. B. Vučković, "An improved upper bound on the adjacent vertex distinguishing total chromatic number of graphs," Discrete Mathematics **341** (5), 1472–1478 (2018).
- 13. P. N. Balister, E. Gyori, J. Lehel, et al., "Adjacent vertex distinguishing edge-colorings," SIAM Journal on Discrete Mathematics **21** (1), 237–250 (2007).
- 14. X. E. Chen, in *An Introduction to the Distinguishing Colorings of Graphs (in chinese)* (Science and Technology of China Press, Beijing, 2015).
- 15. D. W. Cranston and S. J. Kim, "List-coloring the square of a subcubic graph," Journal of Graph theory **57** $(1), 65-87 (2008).$