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Abstract—The main purpose of the present paper is to investigate the global asymptotic eigenvalue
density of the fixed-trace generalized Gaussian ensemble of random matrices. To answer such a
question, we begin with a complete study of the zeros of generalized Hermite orthogonal polynomials
which are closely related to the eigenvalues in question.
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INTRODUCTION

In the last few years, there has been a growing interest in the theory of random matrices. Many
authors investigate the global and local asymptotic behavior of the spectrum of random matrices. It is
well known that the Wigner semicircle law describes the global density of the eigenvalues of an n x n
random Gaussian Hermitian matrix when the dimensional n goes to infinity. This result has been proven
by Wigner (1955). The same result was later extended to other ensembles of random matrices; see [1],
[2] and the references given there. For a background on random matrices, also see [3]—[7].

In some cases of ensembles of random matrices, the asymptotic behavior of the density of eigenvalues
coincides with the limit density of the zeros of some orthogonal polynomials. For instance, in the case
of the Gaussian ensemble of Hermitian matrices, the Wigner semicircle law describes the scaled limit of
the statistical density of the zeros of Hermite polynomials.

Others contributions of the asymptotic behavior of eigenvalues were made. For example, in [8], the
author studies the eigenvalues of the ensemble of fixed-trace Gaussian Hermitian matrix, and he gave
the limit of the level density (density of the eigenvalues or statistical density), which coincides with the
Wigner semicircle law. In [9], the author investigates the asymptotic behavior of the level density of a
generalized Gaussian random matrix without constraints.

In this paper, we investigate the statistical density of a generalized Gaussian random Hermitian
matrix with fixed-trace. That is to say, the elements x;; of the random Hermitian matrix X are distributed
with respect to the probability density 1y (z) = cx|z[**e~*" under the extra condition Dot j=t i 12 = ap,
where A > —1 and a,, is a real sequence. We use a technique different from the one used in [10], [8] and
[11]. Indeed, the orthogonal polynomial method cannot be applied due to the constraints on the entries
of the matrix, which makes the level density not determinantal and require a use of the potential theory
method. To my knowledge, the first papers on this subject which use this technical refer to[12] and [13].

Our main result reads as follows: given A, > 0 a positive sequence, and a Hermitian matrix X of
order n with coefficients in the field F = R, C or H the quaternion field, and assume that the coefficients
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GENERALIZED HERMITE POLYNOMIALS 41
are distributed according to the density ,,,. Let a:gn’)‘”), ey a:,(qn’)‘”) be the n eigenvalues of X, and define
on R the probability measure

1 n

A

v = O (nn
" n;xi )

with the extra condition on the eigenvalues

n

3 ) = an,

k=1

where a,, is a sequence of order n2, a,, ~ n?. Then, after scaling the probability z;)» by the factor 1/1/n,
and if A, /n converges to ¢ > 0, the measure v;\» converges weakly to a probability measure v ., in the
sense that, for every bounded continuous function f,

. An i y
lim /Rf(t)yn (dt) _/Rf(t) 5.c(dt).

n—oo

The measure vg . admits the support S = [—a, —b] U [a, b], and its density is given by

7761|t| \/(b2 - t2)(t2 - (12),

where a = a(5,¢),b = b(B, c) > 0, are some constants depending only on the parameters 8 and ¢, which
will be specified later.

The remainder of the paper is divided into three sections and is organized as follows. Section 1
contains the relevant background about generalized Hermite polynomials and some preliminary results
needed for the proof of our main results. In Section 2, we investigate the asymptotic behavior of the zeros
of the generalized Hermite polynomials and his relationship with the level density of the eigenvalues of a
generalized Gaussian matrix. In the last Section 4, we prove our main result.

1. PRELIMINARIES
Let 1 be a positive measure on R. Assume that the support of y is infinite, and that, for any & > 0,

/ it u(dt) < oo.
R

On the space & of polynomials in one variable with real coefficients, we consider the inner product

<pmw=4pmmmmw@,

which makes & into a pre-Hilbert space. From the system {tm, m € N}, the Schmidt orthogonaliza-

tion process produces a sequence (py,)m of orthogonal polynomials: p,, is a polynomial of degree m
and

[ pu@pn@ntn) =0 i mzn
Generalized Hermite polynomials. All the notation are from Rosenblum [13]; see also [15]. In this
example, p is a generalized Gaussian measure: let A > —1/2, and
p(dx) = |x\2)‘e_z2dx.

The generalized Hermite polynomial H;) is defined for n = 2m even by

2m)! 1
Hh(a) = 1 O (< o)

B o (2m)! & m\ T'(A+1/2)
=0 ;(_1)k<k>F(k+)\+1/2)$2k'
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42 BOUALI et al.

They are defined for n = 2m + 1 odd by

Byiale) = 0 O TR o )
: 2
o ym @m DS m\ T(A+1/2)
=0T kzzo(_l)k<k>F(k+)\+3/2)$2k+1’

where 1 F} is the confluent hypergeometric function.
They are orthogonal in the Hilbert space L?(R, 1) with square norm

o2m JL(m+ X +1/2)

i n = 2m,
a2 onp T+ 1/2) B ro+1/2) T
|2 = 2"(n) . ) =
(A +1/2) '

The generalized Hermite polynomial H) is a solution of the differential equation
2%y + 20(A — 2®)y + (2na® — A(L - (=1)")y =0,

and satisfies the three terms recurrence relation

Ya(n)
ZL'H)‘ 1= 2n,y)\(n B l)Hn)\ —+ (n — 1)H£\_2

Let Dy be the one-dimensional Dunkl operator acting on entire functions by

DA@)@) = ¢'(2) + *(pla) ~ ().

[t corresponds to the particular case of the Dunkl transform for the reflection group G = Zs. In this case
the polynomials H) are eigenvectors of the Dunkl operator Dy, and satisfy

Dy(Hp) = 2nHy

See for instance [15] and [16] for a background on the Dunkl transform in the multidimensional case.
Other relations between Dyson’s brownian motion model and Dunkl heat equation are made, see for
instance [17],[18] and [15].

2. ASYMPTOTICS OF THE ZEROS OF GENERALIZED HERMITE POLYNOMIALS
2.1. Maximum Value and Asymptotics of the Energy

Let xﬁ”’”, :1:7(1" ) , be the zeros of H,}. In order to study the global behavior of the zeros, we consider

on R the probablhty measure Up,x defined by

1< 5
V?’L,)\ == n Z wgn)\).
=1

In other words, for a continuous function f defined on R

[ 1ewnian - Zf

We will see that under some conditions on the parameter A, the measure v, 5 converges weakly.

Given n distinct points z1,...,z, in R™, we define its energy with respect to a potential @ in the
following way:

Egn(z1,-- 0 —ZZlog ‘ $‘|+ZQ(332-). (1)
J i=1

1<j
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GENERALIZED HERMITE POLYNOMIALS 43

For a lower semi continuous and convex potential Q with limj, o (Q(x) — log(1 + 2?)) = +oo, the
energy £ n(21,...,xy) is defined for z; € R*, with values in | — oo, 0o, bounded from below, and lower
semi-continuous. Further, the energy goes to infinity at the boundary of R™ \ {0}. Hence there is at least

one point 2™ = (z{™ ... 2} € R™ which minimizes the energy:
EHn=Eqn (m(n)) = mg]]gn Egn(z).

Proposition 1. For Q(z) = z? + 2\log(1/|x
reached at the zeros of the generalized Hermite polynomials H).

), and X\ >0, the minimum of the energy E, is

Proof. First, remark that, for the minimizer point (™", we have 2" # mg-"’)‘) for ¢ # j and

i

2" £ 0. Onthe other hand, Qy is C! onR™ \ {0} and the energy is of class C* on R\ {z € R" | 2; # x;, i # j}.

Since z(™™) is a critical point of the function Eqn(x), it follows that, foralli = 1,--- | n,
8E}\,n (n,A)y
61‘2‘ (xz ) - 0’
which means that
aE}\,n (n,A)y 1 (n,A) 2X _
s (27 7) = _2' 12;' LN _ () + 2z - OEVE 0.
i=1,1#75 ~j i

Then z(™™ is a critical point of By, if

n

1 _ oy A o
) Z ) x(n,A) . {Ij(n’)\) — 33] - m(n’)\) (Z = 1, ,n)
i=1i#j ) b

With a point x € R™ we associate the polynomial

p(t) = H(t — ).

Let us compute the logarithmic derivative of p:

Pt) — 1
p(t) _Z —x;

/ n
o (P T Yoy
t=wzi\ p(t) t—ux;j T — T

and we have

which gives

Therefore,
1o (n,A)
OB (gny - P (x]( A>),
ox; 2p/($j”7 )
and

(m§n,k))2p//(x§n,)\)) . 2x§n,)\) ((x(n,A))2 . )\)p/(m(n,k)) —0
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44 BOUALI et al.

Consider the polynomial

2*p"(z) — 22(2® = \)p/(2).

[t is a polynomial of degree n + 2, whose distinct zeros are mgn’)‘)

22" (z) — 2z(2® — Np'(z) = (az® + bz + ¢)p(x). (2)

By the symmetry of the potential Q) (x) = QA (—x), we are looking for the symmetric polynomials which
satisfy (2). Using this fact, we conclude that the solution is an incomplete polynomial

p() = 21023 g 20m=h)
k=0

, j=1,...,n, whence

where m = [n/2].

n+2

By symmetry of p we obtain b = 0. Further, by considering the coefficient of 2=, we have a = —2n,

and
2*p"(z) — 2(a® = \)p'(2) = (—2n2” + ¢)p(x).
Since p(0) # 0; hence ¢ = 0 for n even. lin is odd, by letting 2 to 0 in the next equation

wf!(w) - 2(a* - N (@) = (~2na? + P

Y

we obtain
2)p'(0) = ¢p'(0).

Since the zeros of p are simple; hence ¢ = 2\. One deduces that the polynomial p satisfies the differential
equation

2y + 20(\ — 2y + 2(na? — A1 — (=1)")/2)y = 0.

The only polynomials solutions (up to constant facto) of the equation above is the generalized Hermite
polynomials H,. Hence the energy is minimal at the zeros of H.

Recall that the discriminant of a polynomial p of degree n with leading coefficient equal to one,
p(t) =t" + an_1t" 1 + ... + ag,
is the scalar A, (p) defined by

Aulp)= ] @ —al"y,

1<i<j<n

where xgn), cees m,(ln) are the zeros of p. Using equation (1), one deduces that

exp(—F —exp< ZQ (”> (p)- (3)

In the case of p = (1/a,) H)), the generalized Hermite polynomial, where a, is the leading coefficient of
H)\, we obtain the following relation for the discriminant of H).

Proposition 2. Forn € N,
k
A(H)\ n(n 1/2H< >

The outline of the computation can be found in [19] Proposition 1.3.7 with slight modifications.
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GENERALIZED HERMITE POLYNOMIALS 45

Proposition 3. The value of the energy EY ,, stated in Proposition 1 is given by the relation

exp(—B3,) =27 M([n/(;]))% exP(‘m:(ﬁ 2>> ,}j(vﬁ(ﬁ)ny’

where [z] is the integer part of the real .

Proof. From Proposition 1, Proposition 2 and equation (3), we saw that

exp(—FE5.,) —exp< ZQ)\ (X > W (HY)

—n(n— n, A - n, - Y. k K
oo S )
=1 k=1

i=1

By using the relations between the zeros and the coefficients of H,}, we obtain

n

2 n
N2 g Qp—2 A o7y}
E:(‘rz(n )) = n21_2n ) lez(n): )
an Gnp i1 (679

i=1

where ay, are the coefficients of the generalized Hermite polynomial H).

Since
2Mn! n—2p) n!
E= ™ " -2 O 2
whence
= (n,\) M(n) (n,) [n/g} Ya(n)
T and x; .
Z( i ) 29 (1 — 2) H 2n[n/2]!

By a straightforward computation, we have the desired result.
From the propositions above, we deduce the following result.

Proposition 4. For 8 >0, the function o(x) = [Ti— [2i|** [Ti<icj<pn [2i — 25]°, restricted to the

closed ball
Yaxr/p(n) }
rz eR"” 2 < ,
{ ‘Z - 2’Y2,\/5 (n—2)

attains its maximum at the zeros of the generalized Hermite polynomial H%’\/B. Moreover, the
value of the maximum is given by

2\ n kB/2
max () = 2—n((n—1)5+8>\)/4<72>\/5(n)> H< v2r/8(k) > '
=€B [n/2]! var/p(k = 1)

Proof. First, we write ¢ as

gp(m):exp< <4A21 +2Zlogl >>

1<j

Therefore, the maximum points of ¢ are the minimum points of

E,(x1,...,zy 4>\Zlog +2210g

i< - $J|
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46 BOUALI et al.

By Proposition 1, we saw that the function U (1, ...,z,) = > 1 @7 24+ E, (:1:1, ..., Tp,) attains its mini-

mum at x&"”\), cey a:g"”\), the zeros of the generalized Hermite polynomial H: /ﬁ; moreover,

Z(x(m) 2 Yas(n)

— 2725/8(n —2)

[fweset d = v25/8(n)/(272x/5(n — 2)), then the function U reaches its minimum on the sphere of radius

/4. Using Proposition 1, we obtain

_ _ B8/2 E:
max ) = Inhax X (& maxex 2 33‘ ZL‘ yeeey Ly
2 90( ) S(O\/é)@( ) Pﬁ/ 1 ))

_ P4/2 2(— _
e %zjbxexpﬁ/ Zm E,(z1,....,xy))

= /2 exp(=B/2E3 )

= <2—n(n+(8)\/,8)—1)/2 (’72)\/ﬁ(n)>4)‘/f8 ﬁ( ~ars5(k) >k>5/2
1)

[n/2]! 72)\/6(14: —
— 9—n((n—1)B+8X)/4 (72>\/5 > ﬁ< 72/\/5 k) >k6/2‘
[n/2]! pratee} Yar/g(k — 1)

Proposition 5. Let A\, be a positive real sequence. Assume that lim,,_,o, \,/n = ¢, then

. L, An 1
7~}I—>Holo<n2E)‘"’” - < n * 2> 1ogn>

1
_3 + 2log2+ <3 —|—log2>c+czlog(20)— <02+c+

4

1
log(1 + 2¢).
4 5 >og(+c)

Proof. By Proposition 1, we have

I .  nn+4x,-1) o Y, (1) 2\, T, (1)
B = oz = o)

p2" Amn 2n? 2n2y, (n — 2

ZM ( Yrn /@)1))

Moreover, for all k € N*,
Yan (k) = (k 4+ 20 )7, (k — 1),

where 6, = 01if k is even and 6, = 1 if k is odd.
Since the sequence A, /n converges to ¢, we have

onn+4r, —1) (1
i MY = (e *
1
lim Yo () = +ec (5)

n—oo 2n2yy (n —2) 2

Let us define the two sequences
2\ rn (R) Y, (k)
1, 2 og< /2 and 2, Zk‘ og (b —1)
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GENERALIZED HERMITE POLYNOMIALS 47

Using the analytic expression of vy, (n) and the formula for the gamma function I'(z 4+ 1) = 2I'(x), we
obtain

2\ n/2] 1 )\ [n/2]—-1 1
Iipy=—"""log2— log(k + A\p) 1 1 i
= loe2 =S sk h) =S o8 (14 501 )
By concavity of the logarithmic function, we have
[n/2 [n/2]—1
1 2\, 1 [n/2]
I < < .
Z BLF 9kt S w2 kzzo 2k + M) = n2
Hence the last sum in I ,, has a zero limit. This means
n/2] 1
2\ n| A, k
Lip=— i log2—2[2}n2 log Ay, — Z log <1—|— >—|—o(1).

o(1) means a small term in n.
Applying Riemann sums with the bisection ay = k/\,, of the interval [0,1/(2¢)], for k=0, ...,
[’I’L/Q] —1and a[n/g} = 1/(26), then

[n/2]-1 [n/2] 2

22211 kZ:O log (1 + fn> = 2;\2% k:O(ak —ag—1)log(1 + ax) — 2;;” (A[n/2) — A[ny21—1) log <1 + 2lc>,
and
A 1/(2¢)
n11_}1(1;o n2 Z log <1 + > = 202/0 log(1 + z)dx.
By using the fact that

2 n
lim < [/ ] gAn—);L logn> = cloge.

n—o0

It follows that

A, 1/(2¢)
lim <Il,n + n log n> = —2clog 2 — clog(c) — 2¢2 / log(1 4 z)dx.
0

n—oo
Hence
lim (I —i-)\nlo n) = —2clog2 — clog(c) — (2¢2 + ¢)lo 1+1 +c (6)
Jim (T, 47 P logn | = g g g\ 1+, ) te
Now, we compute the limit of the sequence I5 ,,. First, for n = 2m even
2m
Isom = — 1 2 9m,
2,2 (2m) Zk og(k + 2A2m0)
k=1
1 m—1
2 Z 2k log(2k) — )2 > (2K + 1)log(2k + 1 + 2Xgp).
= k=0

Applying Riemann sums again, we obtain

1

- 1
T (2m)2 Z 2k log(2k) = _411 log(2m) — ; /0 xlog x(dx) + o(1) = _411 log(2m) + ; + o(1).

k=1
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48 BOUALI et al.

For the second sum, let us write it as

m—1
1
~ mp? D (2K + 1) log(2k + 1 + 2Agp)
k=0
1 e e 2%k + 1
= - log(2ham) > (2k + 1) (2 + 1)1
(am 982Nam) 26+ k; - og( %m)

m—1
1 1 2k +1
— log(2X9,) — 2k + 1)1 1 .
A 0g(2A2m) (2m)? 1;:0( +1) og< + 2)\2m>

By using Riemann sums, this can be written as
m—1

1 1 1/(2¢)
~ (2m)? Z (2k + 1)log(2k + 1 + 2XAg,) = 4 log (22 ) — 2¢ / xlog(1l+ z)(dx) + o(1).
k=0 0
Hence

m—1
)2 > (2k + 1) log(2k + 1 + 2Xgy,)
k=0

1
4

A straightforward computation gives

1/(2¢)
log(2m) — log(2c) - 202/0 xlog(1 4+ z)(dz) + o(1).

1 1 1 1/(2¢)
I om = ~4 log(2m) + 8§ 4 log(2¢) — 202/ xlog(l + z)(dz) + o(1).
0

Therefore,

, 1 1 ¢ 1 , 1 1
n}gnoo <I272m +, log(2m)> =4 974 log(2¢c) + (c - 4> log <1 + 20>'
Similarly, we prove an analogous result for I3 2,41 and limy,, o0 12 2m41 = limyy, o0 I2 2. Hence
_ 1 1 ¢ 1 , 1 1
nll_)IIOlo(IQ,n + 5 log(n)) = 179 4 log(2¢) + (¢ — 4)log(1 + 2c)’
From equations (4), (5), (6) and (7), we see that

. 1, An 1
nh—>n;o<n2E>\n’n + < n + 2> logn>

3 1 3 1
= 4+ <62+c+2>log2+ 2c—|—czlogc— <62+c+4>log(1+2c).

(7)

This completes the proof.
Corollary 1. Let 8 > 0. If we consider the energy

Bann(onoe o) =y Slog L+ 30 Qulai),
z;é] N xj‘ 1=1
one proves first that the minimum of the energy is attained at the zeros of the generalized Hermite

polynomials Hg’\/ﬁ(\/Q/ﬁ x). Further, under the condition lim,,_,., A\, /n = ¢, and with a = /4,
we show by the same method that

- A
Bp = lim <n2Eﬁ,An,n + < N +a> 10gn>

3 3 2
= a—aloga+ —loga c+c log ca — c22a+c+a log 1+C .
2 2 2a 2 a
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GENERALIZED HERMITE POLYNOMIALS 49

2.2. Density of the Zeros of Generalized Hermite Polynomials
Let denote by x§”>, veey :1:7(1") the zeros of the generalized Hermite polynomials H)\», where \,, is some
positive real sequence, and define on R the probability measure

1< 5
Vn—nz zl(-n)'
=1

The first two moments of the measure v,, are

n

1 n
my(vy) = / tvp(dt) = n Zazg ) = 0,
R

i=1
[y, = ENS 2
ma(ve) = [ Con(dt) = Y (")
R =
() (mF200,) (0 = 1+ 20,0, 1)
C 20y, (n—2) 2n ’

where 6y, is 0 if £ is even and 1 if k is odd. One observes that the second moment mg(v,) is of order n
and a scaling of order \/n of the measure v, is necessary. Let us denote
n (n)
- 1 (n) T,
n = 5 n) A = i .
LD L

Similarly, we scale the energy E}, ,, of equation (1) as

~ 1 n
Ex,n(T1, -+ 2) = 2210g 125 — ] +nZQan(azi),
i<j v J i=1

where o, = 2\, /n.

(n)

The minimum E;mn of the energy Ean,n is reached at the n! points o;, these scaled zeros of the

generalized Hermite polynomials. Moreover,

Ezmn = Iﬁ%nﬁamn(acl, ey Tpy) = Ean’n(agn), weey 07(1")).

For a probability measure p on R, consider the energy
1
B = [log L (st + [ Qunta),
R |s—1 R

where Q.(t) = t? + 2clog(1/|t|). The measure which realizes the minimum of the energy E is v, with
density f. given by

18— a2)(5? — 12)

fc(t) = ™ |t|
0 ifté¢s,

iftes

where § = [~a, —b] U [a,b], a = V/1+ ¢ — /14 2c and b= /1 + ¢ + /1 + 2c.
Therefore,

Ef=E(v) = min E(u),
e = E(v) oin (1)

and the value of the energy is given by

3 1 3 1
E: = A + 2log2+ (2 +10g2>c—|—0210g2c— <C2+C—|— 4> log(1 + 2¢);
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50 BOUALI et al.

see Theorem 4.1 in [9].
On the other hand, remark that E;

sition 5 one deduces that lim, o E7; ,/n* = E.

=E .t n(n —1)/2log n + n\, log n. Therefore, by Propo-

n,M

Theorem 1. Let )\, be a positive real sequence, assume that lim,_,oc Ap/n = c. Then the measure
vy, converges weakly to the probability measure v, stated above. This means that, for every
bounded continuous function f on R,

fim [ ()7 (o) = /R f(@)ve(dz),

n—o0

The proof of the theorem can be found in [10], [20], [21] (or [19], Theorem 3.1 and Theorem 2.1), and
references therein. We give it here for completeness.

Proof. For a probability measure y, consider its energy

1
Pou) = [ tog L utdoyutan) + [ Qa(@)nie).

As it is stated above, the measure which realizes the minimum of E,,, ,, (1) is va,, whose density f,,, and
support Sy, . Moreover, the value of the energy is given by

E;n = Eanyn(l/an)

3 1 3
- log 2
g o8 +<2

1
+ log 2> an + a2 log 2a,, — (ai + oy + 4> log(1 + 2av,).
Set

inf B, ().
n(n—1) R o (z)

Recall that Qq,, (v/nz) = na? + 2ay, log(1/|z|) — ay, logn. Then

/n Ean’n(:rl, ey Tp ) p(dzq)...p(dxy) = n(n — 1) /R2 log P i y|,u(dy),u(d:r) + n2/RQan(x),u(da:),

Tn =

and

|| ol ldes)cpldan) = nn = DFo )+ | Qu (@)p(da)

For p = v,,,, we have

- 1

Letx € S,,, then |Qa, (z)] < max(Q_q, (an), @—a, (bn)). Theright hand side of the previous inequality
is bounded, indeed a,, a,,, and b,, are convergent sequences. Moreover, v,,, is a probability measure, so
by applying the dominated convergence theorem, we obtain

limsup 7, < limsup B, = E}.

n n

Observe that if we set
bnlo,y) =log | '+ 0w @)+ L Quv)
n 7y - g|$_y| 2 Qn 2 any'
Then

1 1
Ba,9) 2 o ha(2) + (1)
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GENERALIZED HERMITE POLYNOMIALS 51
where h,(z) = Qq, (z) — log(1 + 22). Further,
n
Zk‘n(aji,w] Zlog . $j| —I—(n—l)ZQan(:Ei),
i#] i# i—1
and

an, Zk mux] +ZQan xz

]

_2<Zh x;) + hp( $]>+2Qan

i#]
Remark that Q}, (z) = 22 — a,,/; hence

. an an
min Qa, (z) = <1 ~log >
[t follows that
n(n — 1)/ hn(8)Un(ds) < n(n — 1)1, — n/ Qo (8)vp(ds) < n(n— 1)1, — nO;" (1 — log O;")
R R

Thus,
~ o, an,
mn n § n - 1 - l )
/Rh (s)vp(ds) < 2(n—1)< og 5 >

* 1 Qnp Qp,
/ hin () (ds) < Eamn 1 /RQ%(QI:)I/%(da:) ~o(n—1) (1 — log ) > (8)

On the other hand, a,, converges to ¢ >0, (0 < a; < ay, < ag), and v,, converges pointwise to the
measure v, with support provided by 0, and @, converges uniformly to Q.. Moreover, hy,(x) > h(x),
where h(z) = min(hy(z), ha(x)) and hi(z) = 22 + a;log(1/|z]) — log(1 + 2%). Put all these relations
together, we deduce that the right hand side in equation (8) remains bounded by C, and

/ h(s)Pn(ds) < C.
R

By the Prokhorov Criterion, the sequence (,) is relatively compact for the tight topology. Let
us assume for some subsequence that limy_,o v, = v and, for £ > 0, let us define the cut kernel

kf (z,y) = inf(k,(z,y), ) and its energy

E(p) = /}R2 kb (0, y) p(da) p(dy).

or

Then

E' (D) < nk_lT + £_ o (1 —log ank)

ng) > ng Nk ng ng — 1 gQnk).
Letting k — oo, we obtain
E'(v) < Er.
Applying the monotone convergence theorem, we obtain
E(v) = lim E(u) < EF.
{—00

Since EY is the minimum of the energy, thus E(v) = E. One deduces by uniqueness that the sequence
of measure v,, converges weakly to v and that v = v.. This completes the proof.
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Proposition 6. Given the asymptotic density of the zeros of the generalized Hermite polynomials
H?/8(/2/B x), then, under the same condition for A, (limy,—y00 A\ /1 = ¢), a similar result holds
with limit measure given by vg ; its support is Sg = [~b, —a| U [a, b] with density 2/B fs./3, where

a=/B/2\/1+ 26/~ \/1+4c/8.b= \/B/2\/1+2c/B + \/1 + de/.

3. PROBABILITY DENSITY FUNCTION WITH SECOND MOMENT CONSTRAINTS
Consider the eigenvalue p.d.f (Probability density function) defined on R™ by: for 5 > 0, A > 0,

Pan(e) = ~a<zx - )Hw [T Il ©)

1<i<j<n

where a,, = y25/58(n)/(272x/8(n — 2)), ¢ is the Dirac delta function, and Zy, is a normalizing constant.

Let us define the statistical density of eigenvalues as:

W (1) = / Py (z)dz,
Rn—l

the integral is taken over the n — 1 variables zo, ..., z,,.

[t is straightforward to see that the function h?’,n admits a continuous density with respect to the

Lebesguie measure. We define on R the probability measure v}

va(dz) = hip(2)(dz).

Direct computations give, for a continuous function f on R,

rowdan =213 1), (10)
R i=1

where E,, is the expectation with respect to the probability Py ,,.

Interpretation of the density of eigenvalues. Let Herm(n,F) be the space of square Hermitian
matrices with coefficient in R, C or H the quaternion field and 5 = 1, 2 or 4 the dimensional of F as a real
vector space, also we denote by P,, the generalized Gaussian probability density on Herm(n,F) defined

by Pp(dX) = (1/Zy,)| det(X) e~ "X dX, where dX is the Lebesgue measure over Herm(n,F) and
Zy, is some normalizing constant. Moreover, we denote by
Q, = {X € Herm(n,F) | tr(X?) = a,/n},

the subset of fixed-trace Hermitian matrices.
For a continuous function f on R using the functional calculus, we obtain

/Q tr f(X)Po(dX) —n/f

Observe that, for 8 = 1,2 or 4, the p.d.T is closely related to the ensemble of fixed-trace generalized

Gaussian Hermitian matrices, and the probability measure ;) is the counting eigenvalues measure; see

also[11]for the case A = 0, where the author computed the limit of the sequence of measures /2.

Our goal in this section is to study the asymptotics of the measure v} when n goes to infinity.

Theorem 2. Let )\, be a positive real sequence such that
An

lim =c.
n—oo N
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Then after scaling the probability measure v by the factor 1/+/n, it converges to the probability
measure vg ., whose density is fg.and support S = [—b, —a| U [a, b], where

firela) = g V(@2 = )02 = %),

a? = B/2(1+2¢/B — /1 +4c¢/B),b* = B/2(1 +2¢/B + /1 + 4¢c/B). The convergence is in the sense
of a bounded continuous function o,

lim | @(z/v/n)v) (dx) :/Rgo(m)yﬁﬁ(dx).

n—o0 R

For 8 = 2, and ¢ = 0, one recovers the limit density of the ensemble of fixed-trace Gaussian matrix;
see[8]and[11]. Moreover, for 8 = 1, we retrieved the limit density of the zeros of the generalized Hermite
polynomials, Theorem 1.

To prove the theorem, one needs some preparations. Let ) be a lower semicontinuous and convex
function on R. For a probability measure p with compactly support in R, we define its potential by

Ut(z) Z/Rlog w(dy),

|z — |

and its energy by
Baol) = 3/2 [ U"(@hutdo) + [ Qo(do)

For ¢ > 0, we use the notation

Qc(z) = 2% + 2clog(1/|z]), Qe(x) = 2clog(1/|x|).

If p € M.(R) ( M.(R) is the space of probability measure with compact support on R) is a compactly
support probability measure, then Eﬁ C7_(,11) is bounded below. This allows us to define

E,B,@; = ue}&f(]}{) E,B,C’j;('u)

By Theorem I1.2.3 in [19], there is a unique probability measure with compact support p* such that
Biq. = Bsa.0)-

*

p* is the equilibrium measure. In the sequel, we will prove that u* = vg ., since we saw that
B . = Epq.(vg,c) = inf e pm, v) Ep,q. (1) and the result follows by uniqueness.

Proposition 7. Let A\, be a positive real sequence such that lim,_,o A, /n = c. Then

(i) limp_oo —(1/n2)log Z, = E; G (u*).

(i) limy_yoo —(1/n2)log Z, = E, 5 (pe) = Ej . — (c+ B/4) — (c+ 5/4) log(2/8),
where Z, is the normalizing constant given in equation (9).
(iii) The equilibrium measure u* = vg. ..

Proof. (i). For the proof of this step, see, for instance, [19], Theorem IIl.2.1, Theorem III.4.1,
Proposition 1V.4.2, and the references therein.

(ii). Let a > 0, and consider the integral

Zn(a):/R e‘aZ?:lw?H\mﬂz)‘” H |z — 24| d. (11)
" i=1

1<i<j<n
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By performing a change of variable to polar coordinate, we obtain

“+oo 2
Zufa) = [ eertpmaime-in-ig, [ e T o - o Pdou(a).

Sn—1 -1 1<i<j<n

where S,,_1 is the unit sphere of R*~!, and ¢,,_; is the uniform measure on S,,_;. The integral in the
variable r is easily computed:

Zn(a):r(mn+(ﬁ/4)n(n—1 +n/2/ HW% I 1o 2Pdon().  (12)

aAnt(B/4)n(n—1)+n/2
Sn—1j—1 1<i<j<n

Moreover, if we put u; = \/an/n xz;, we see that

LC(nA, + (B/4)n(n —1)+n/2) 5

P = gz s gy 2

Let us choose o« = n; then
> g n g n
log(Z,) = log(Z,) —logT'| n\, + 4n(n —-1)+ 5 + | nA\, + 4n(n —1) ) logay, + 5 log n.
Since by Proposition 4.6 in [9],
1 *
5 108(Z0) = ~Ej .+ o(L),
On the other hand, by using the asymptotic Stirling’s formula for the gamma function, we obtain

logF(n)\n+ in(n— 1)> :n2<c+ i) log <n2<c—|— f)) —n2<c+ i) + o(n?).

Further,

an = n2<; - 2;) + o(n?), (13)

and

nA, + fn(n —1) =n? <c+ f) + o(n?).

Putting all this together, we have
1 7N * 6 6 2
2 log(Zn) = —Ej .+ <c+ 4> + <c+ 4>log <ﬁ> + o(1).

To complete the proof, we split the discussion into two cases:

First case. Assume that § = 2, We saw by Proposition 4.7 in [9] that

3 1 3 1
E5.= 4 + 5 log2 + <2 + log 2>c+ ?log(2c) — <02 +c+ 4> log(1 + 2¢).
Moreover,

B = Pa.v0) = B (v0) + [ au(da)

and

/ZL‘ ve(dr) = / z+/ (22 — a2)(b? — 22)dz.
S T Ja
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2

By the change of variable u = x*, we see that

/53527/c(d$) = 711 ;2 V(@ — a?)(b? — z)dz = 1 v — a2)23<3 3>7

where B states for the beta function. This gives
) 1 . 1
rve(dr) = | +c, Ex(v.)=FE5,.— +c).
S 2 Qc ’

Second case. Let 8 > 0. We saw that

Byqad) =y [ U @vaeldo) + [ Qulawlds).
9 Cc 2 S S
[t follows that

_ B
By a.Woe) = o By, (vse)

and

Emﬂwgzggﬂm—<f+a. (14)

Moreover,

B . 36 B 3 2¢2 4 2¢2 B 4
E = log 2 log 2 1 — 1 1 .
o F2,2¢/8 8 —1-4 og +<2+ og >c+ 3 0g 3 3 +c+8 og |1+ 3

Adding and subtracting 5/41og(2/5) + clog(2/p) to the right hand side, we obtain

B o . B 2
o Fooesp = B = (et |18 4

where E _ is the energy given in Corollary 1. Substituting the previous equation in equation (14), we
obtain

_ B g 2
Eﬁ,@;(yﬁ’c) = Eﬁ,c - <4 +c)—|c+ 4 log 3
which gives the desired result.

The equality of energy B, @(N*) =E, @(VB’C)’ implies by uniqueness that p* = vg . and hence 7,

converges weakly to vg .

Lemma 1. For a positive sequence A, such that lim,_,. A\p,/n = ¢, the probability Py, ,, concen-
trates in a neighborhood of the points where the function

Ko(x) = fglg IR (D ST}
attains its minimum in the sense that, forn > 0, the following set is valid:

Appn ={z € Sp1 | Kn(z) < (E;@ +n)n’};
Ay n is compact and, moreover,

lim Py, »(Ayn) =1,

n—oo

Sn—1 being the sphere of R™ with radius \/an/n.
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Proof. First, one see that K, is a lower-semicontinuous function . Thus, A, ,, is closed in the sphere
Sn—1 and hence compact. Let e > 0, by definition of A, ,,, we have on S,,_1\ A, »,

* 2
K, (z) > (EB,@ + n)n”.

27m/2 [ q,\ V2 1 —(E* ~ +n)n?
Py . (R™MA4,,) < " ~ 8.Qe ) 15
B < F ()T (15)
By Proposition 7, we have
. 1 - ¥
Ji, = 108 20 = B g

Moreover, applying Stirling’s formula, we obtain

NEHO

n—1 an n n 1 n n 1 1
= 1 log 2 1 — — 1 — log2 .
9 ogn—i-og +2og7r <2 2>0g2+2 20g7r+o<n>
Since a,, ~ n?; hence
1 2m/?
Ao log I'(n/2) =0

This implies, there is ng € N, such that, forn > ny,

n/2 *
2 } S nQQ(Eﬂ»@Vc+E/2)n2 '
L'(n/2) Z,

Put all this together with equation (15), then, for n = € and for every n > ny,
PAn,n(Rn\An,n) < n2e—(5/2)n2.
This completes the proof.

The proof of Theorem 2 is a consequence of Lemma 1, Proposition 7 and is in the same manner as
the proof of Theorem 1V.5.1 in [19]. One can also see Theorem 3 in [9] for the proof. We give it here for
completeness.

4. PROOF OF THEOREM 2
For § > 0, we use the following notation in the proof:

tole) oz L, Qula) + , Qato)

and for £ > 0, k4(x, y) = inf(ks(z, y), £), where Q(x) = 261log(1/|z]).
Let ¢ be a bounded continuous function on R and, on R™, we define the continuous function

U, (z) = 711 > ().
=1

Let € > 0, the set A, ,, is compact; hence ¥,, attains its maximum at some point in A ,,

a;g”) = (a;gz), ...,xf{;),
say. Hence one deduces by equation (10) that
/wwwmclx) < W (@) + |[$lloo (1 = P, n(Aen))- (16)
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To the point a:E”’ we associate the probability

1
One = § 5:0(”)7
n ke
k=1

then equation (16) reads as

x x
¢< >V1)L\" dx §/¢< >an,6 dz) + [|Y]]oo (1 = Px, n(Aen))- (17)
Le( 0 )ntan < [o( 5 )ometdn) + 10l = Pra(den)
By simple computations and by using Lemma 1, we obtain
14
14 < *
EﬁvQc(Un,E) - n + E67Q(: + € (18)

Moreover, since x,(gnﬁ)/\/n is in the sphere of radius \/an/nQ, we saw by equation (13)that lim,, \/an/n2 =1/2+2¢/p.
Thus, the sequence of measures (&), scaled by the factor 1/y/n has a compact support in

[—1/2+2¢/B,1/2 + 2¢/f3]. One can assume without loss of generality that the measure ,, . converges
weakly to some probability measure o.. Letting n tend to infinity in equation (18), we obtain

Ejq.(0) < Ej 5 +e
Now, as ¢ — oo, it follows that

< B* - .
EﬁvQc(UE) — EﬁvQc + €

Letting € — 0, we see that lim._,o Eg g.(0c) = E; oo Therefore, the measure o, converges weakly to

the equilibrium measure v .. Therefore, by letting n tend to infinity in equation (17), we obtain

limsup/ﬁg"tb(;n)%”(dx) S/R"tb(x)%(dl’)

and, ase — 0,

x
limsup/ < >1/ﬁ‘" dz S/ x)vg.(dr).
sup [ (7 Joinn) < [ @l
Replace 9 by —1; it follows that

lim inf /R <;n>ygn(dx) > /R W (2)vg e(da).

which gives the desired result; namely, for every bounded continuous function v,

i [ (7)) = [ wtowlao)
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