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1. INTRODUCTION

The St. Petersburg game, paradox, or lottery is more than 300 years old, and has never ceased to
surprise mathematicians, statisticians, philosophers, economists, and others. It is a situation where a
naive decision criterion, which takes only the expected value into account, predicts a course of action
that presumably no actual person would be willing to take.

In its original form, a single trial of the St. Petersburg game consists in tossing a fair coin until it first
lands heads and the player wins 2k dollars if this happens on the kth toss. Hence, if X is the gain at a
single trial, we have

P (X = 2k) = 2−k, P (X > c) = 2−�log2 c� for k = 1, 2, . . . , c ≥ 1, (1)

where log2 stands for the logarithm to the base 2, �x� denotes the floor of x (i.e., the largest integer not
exceeding x), and P ( · ) denotes the probability of the event between brackets.

Let (Xn)n≥1 be i.i.d. (independent and identically distributed) random variables, all distributed likeX,
and representing the player’s gains in a sequence of independent repetitions of the St. Petersburg game.
There is strong motivation in describing the distribution of

Sn := X1 + · · ·+Xn – the player’s total winnings in n games.

More precisely, the striking point is that the expectation E(Sn) is infinite; in spite of this, Feller [1] proved
that Sn/(n log2 n) → 1 in probability as n → ∞. It was subsequently shown that, with probability
one, the set of limit points of the sequence {Sn/(n log2 n)}n≥2 is the interval [1,∞) (see Chow and
Robbins [2] and Adler [3]).

Moreover, Csörgő and Simons [4] showed that, with probability one, Sn is asymptotic to n log2 n
if the largest gains are ignored (i.e., the entry fee is fair except for the largest gains). As shown by
Vardi [5], this asymptotic equality is very rarely interrupted by a large gain that puts the player ahead for
a relatively short period. Moreover, Martin-Löf [6] proved that the premium per game 2m + n has only a
small probability ≈ 1.8× 2−m) of being insufficient to cover the accumulated gains S2n .
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2. MAIN RESULTS
And now we come back to the probabilities of the accumulated gain Sn in the St. Petersburg game.

Hu and Nyrhinen [7] and Gantert [8] proved independently the following result for the moderate (or
polynomial) size gains nb, for some b > 1 fixed. Namely,

lim
n→∞

log2 P (Sn > nb)

log2 n
= 1− b. (2)

When the gains have large (or exponential) size bn, for some b > 1 fixed, it is expected that the
corresponding probabilities have much smaller values than those in the polynomial case. Indeed,
Vardi [5] and Stoica [9] suggested that the normalization in formula (2) needs to be changed in the
case of large gains, and in the sequel we will fulfill the task. More precisely, we will prove the following
theorem.

Theorem. Let (Xn)n≥1 be the player’s gains in independent St. Petersburg games, and let
Sn = X1 +X2 + · · ·+Xn be the player’s total winnings in n games. Then, for every b > 1 fixed,
we have

lim
n→∞

log2 P (Sn > bn)

n
= − log2 b. (3)

Proof. Let’s get to work, then. We will prove below that:

lim sup
n→∞

log2 P (Sn > bn)

n
≤ − log2 b ≤ lim inf

n→∞
log2 P (Sn > bn)

n
, (4)

from which formula (3) follows immediately, i.e., the lim of the left-hand side of (3) exists and equals
the right-hand side of (3). The right-hand side inequality in (4) requires two rather short and easy
ingredients (Lemmas 1 and 2 below), whereas the left-hand side inequality in (4) requires a longer and
more laborious argument (Lemma 3 below) à la Hu and Nyrhinen [1].

Lemma 1. With the above notation and assumptions,

lim sup
n→∞

log2 P (X > bn)

n
= − log2 b.

Proof. The second formula in (1) implies that:

1

c
≤ P (X > c) <

2

c
for c ≥ 1.

Take c := bn in the above inequalities (recall that b > 1 by hypothesis); then apply log2 throughout,
divide by n, and finally let n → ∞.

Lemma 2. Let δ > 0 be fixed. Then

1− [1− (bn)−1−δ]n ≥ n

2
· (bn)−1−δ for large n.

Proof. As b > 1, we have that n · (bn)−1−δ → 0. Choose n sufficiently large that n · (bn)−1−δ < 1/2.
Then

[1− (bn)−1−δ
]n ≤ exp[−n · (bn)−1−δ]

≤ 1− n · (bn)−1−δ + [n · (bn)−1−δ ]2 ≤ 1− 1

2
· n · (bn)−1−δ;

here the first inequality follows from

(1− x)n ≤ exp(−nx) for all x ∈ (0, 1), n ≥ 1,

the second inequality, from

exp(−x) ≤ 1− x+ x2 for x ∈ (0, 1),

and the third, from our choice for large n.
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Proof of the second inequality in (4). Let δ > 0 be fixed. By Lemma 1, we have

log2 P [X > bn] ≥ −(1 + δ) · n · log2 b for large n. (5)

Therefore,

P (Sn > bn) ≥ P [max(X1, . . . ,Xn) > bn] = 1− [1− P (X > bn)]n

≥ 1− [1− (bn)−1−δ]n ≥ 1

2
· n · (bn)−1−δ; (6)

here the first inequality follows from that all X1, . . . ,Xn are nonnegative, and hence

if max(X1, . . . ,Xn) > bn, then Sn > bn,

and P is a monotonically increasing function with respect to the set inclusion; the second inequality
follows from that X1, . . . ,Xn are independent and all distributed like X, hence

P [max(X1, . . . ,Xn) ≤ bn] = P (X1, . . . ,Xn ≤ bn) =

n∏

i=1

P (Xi ≤ bn)

=
n∏

i=1

[1− P (Xi > bn)] =
n∏

i=1

[1− P (X > bn)] = [1− P (X > bn)]n;

the third inequality follows from (5) for large n; finally, the last inequality holds for large n by Lemma 2.
Apply log2 in (6) and obtain

log2 P (Sn > bn) ≥ −1 + log2 n− (1 + δ) · n · log2 b for large n.

as δ > 0 is arbitrary, the latter inequality gives

log2 P (Sn > bn) ≥ −1 + log2 n− n · log2 b for large n;

divide by n and obtain

lim inf
n→∞

log2 P (Sn > bn)

n
≥ − log2 b.

Lemma 3. Let t > 0. With the above notation and assumptions, for any n ≥ 1,

P (Sn > bn) ≤ n · P
[
X >

(
bn

tb

)]
+ (n · b−n/b)t

b · exp(t) · Etb(X1/b). (7)

Proof. We will adapt to our set-up several arguments from Hu and Nyrhinen [7]. Write

X̃n := Xn · 1[Xn≤(bn/tb)], S̃n := X̃1 + · · ·+ X̃n for n ≥ 1.

The independence of (Xn)n≥1 implies that (X̃n)n≥1 are also independent random variables. We then
have the set-inclusion equation

{Sn > bn} ⊆
( n⋃

i=1

{Xi �= X̃i}
)
∪ {S̃n > bn},

which is apparent from the (almost) obvious equation

{S̃n ≤ bn} ∩
( n⋂

i=1

{Xi = X̃i}
)

⊆ {Sn ≤ bn}.

We thus obtain, for all n ≥ 1,

P (Sn > bn) ≤ n · P
[
X >

(
bn

tb

)]
+ P (S̃n > bn), (8)
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as

P

( n⋃

i=1

{Xi �= X̃i}
)

≤ n · P ({Xi �= X̃i}) = n · P
(
Xi >

(
bn

tb

)
= n · P (X >

(
bn

tb

))

(recall that X1, . . . ,Xn are (all) distributed like X)
Next, we estimate the second term on the right hand side of (8). Note that, for any x > 0 and

i = 1, . . . , n,

E[exp(xX̃i)] = E[1( ˜Xi>0) · exp(xX̃i)] + P (X̃i = 0)

= E

[
exp(xX̃i)− 1

X̃
1/b
i

· X̃1/b
i · 1

( ˜Xi>0)

]
+ 1

≤
(

t

bn/b

)
·
{
exp

[
(x · bn)

tb

]
− 1

}
·E(X

1/b
i ) + 1

≤ exp

{(
t

bn/b

)
·
{
exp

[
(x · bn)

tb

]
− 1

}
·E(X

1/b
i )

}
. (9)

In the first and second equalities, we used that Xi is nonnegative and some little algebraic tricks. In the
first inequality, we used that

the function y → y−1/b · [exp(xy)− 1] is monotonically increasing for y > 0,

together with the fact and that X̃i ≤ bn/tb; and the second inequality follows from the inequality

ey ≥ y + 1 for y > 0.

Hence, for any x > 0 and i = 1, . . . , n, we have

P (S̃n > bn) = P [exp(x · S̃n) > exp(x · bn)] ≤ exp(−x · bn) ·
n∏

i=1

E[exp(x · X̃i)]

≤ exp(−x · bn) · exp
{(

t

bn/b

)
·
{
exp

[
(x · bn)

tb

]
− 1

}
·

n∑

i=1

E(X
1/b
i )

}

= exp

{
n · E(X1/b) ·

(
t

bn/b

)
·
{
exp

[
(x · bn)

tb

]
− 1

}
− x · bn

}
. (10)

To obtain the first inequality in (10), we applied Markov’s inequality

P (Y > a) ≤ E(Y )

a
, if Y is a nonnegative random variable and a > 0,

to Y = x · S̃n and a = x · bn and used that exp(x · X̃1), . . . , exp(x · X̃n) are independent random
variables for all x > 0 (because X̃1, . . . , X̃n are independent), hence

E[exp(x · S̃n)] = E

n∏

i=1

exp(x · X̃i) =

n∏

i=1

E[exp(x · X̃i)];

the second inequality follows from (9); finally, the last equality follows from that X1, . . . ,Xn are
identically distributed, hence they have the same expectation as X.

Choose

x :=

(
tb

bn

)
· log

{
bn/b

[n ·E(X1/b)]
+ 1

}

in (10) and obtain

P (S̃n > bn) ≤ exp

{
t− tb · log

{
bn/b

[n ·E(X1/b)]
+ 1

}}
≤ exp(t) ·

[
n ·E(X1/b)

bn/b

]tb
.

We finally obtain (7) by (8).
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Proof of the first inequality in (4). From inequality (6) in Lemma 3, for any t > 0 and any natural
n ≥ 1, we obtain

P (Sn > bn) ≤ n · P
[
X >

(
bn

tb

)]
+ (n · b−n/b)t

b · exp(t) · Etb(X1/b)

≤ (n · tb)
bn

+ (n · b−n/b)t
b · exp(t) · Etb(X1/b)

(the last inequality follows from Markov’s inequality and the equality E(X) = 1).
Next, apply log2 in the latter inequality, use that

log2(x+ y) ≤ 1 + max{log2 x, log2 y} for all x, y > 0,

and deduce that, for any t > 0 and n ≥ 1, we have:

log2 P (Sn > bn)

≤ 1 + max
{
b · log2 t+ log2(n · b−n), t · log2 e+ tb · log2 E(X1/b) + tb · log2(n · b−n/b)

}
.

Further divide by n and obtain

lim sup
n→∞

log2 P (Sn > bn)

n

≤ lim sup
n→∞

1

n
·max

{
log2 n− n · log2 b, tb ·

[
log2 n−

(
n

b

)
· log2 b

]}

= max

{
− log2 b,−tb · (log2 b)

b

}
= − log2 b

(the last equality follows by letting t increase until the second term in the latter maximum becomes
smaller than − log2 b).
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