
ISSN 0001-4346, Mathematical Notes, 2022, Vol. 111, No. 5, pp. 729–735. © Pleiades Publishing, Ltd., 2022.

Maximal and Riesz Potential Operators in Double Phase
Lorentz Spaces of Variable Exponents*

Y. Mizuta1**, T. Ohno2***, and T. Shimomura3****

1 Department of Mathematics, Graduate School of Advanced Science and Engineering,
Hiroshima University, Higashi-Hiroshima, 739-8521 Japan

2 Faculty of Education, Oita University, Oita-city, 870-1192 Japan
3 Department of Mathematics, Graduate School of Humanities and Social Sciences,

Hiroshima University, Higashi-Hiroshima, 739-8524 Japan
Received April 28, 2020; in final form, November 24, 2021; accepted November 26, 2021

Abstract—In the present note, we discuss the boundedness of maximal and Riesz potential
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1. INTRODUCTION

Recently, the study of double phase problems is very active in the field of Harmonic Analysis, Variable
Exponent Analysis and PDE’s. The double phase functional was introduced by Zhikov [2]. Regarding
regularity theory of differential equations, Mingione and collaborators [3]–[5] investigated a double phase
functional

Φ(x, t) = tp + a(x)tq, x ∈ RN , t ≥ 0,

where 1 < p < q, a is nonnegative, bounded and Hölder continuous of order θ ∈ (0, 1]. Regularity
properties for general functionals was studied, under the condition q ≤ (1 + θ/N)p, in [6]. We refer
to, e.g., [7] and [8] for Calderón-Zygmund estimates, [9] for the eigenvalue problem, and [10] for the
boundedness of the maximal operator.

In [11], relaxing the continuity of a(·), we considered the double phase functional

Φ̃(x, t) = tp(x) + (b(x)t)q(x),

where p, q are log-Hölder continuous and b is nonnegative, bounded and Hölder continuous of order
θ ∈ (0, 1]. We showed the boundedness of the maximal operator and Sobolev’s inequality for double
phase functionals with variable exponents. See also [12]. For other recent works, see [13], [16], etc.

Let B(x, r) denote the open ball centered at x of radius r > 0. The volume of a measurable set
E ⊂ RN is written as |E|.

For a measurable function f on RN , we define the symmetric decreasing rearrangement of f by

f�(x) =

ˆ ∞

0
χEf (t)�(x) dt,
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where E� = {x : |B(0, |x|)| < |E|} and Ef (t) = {y : |f(y)| > t} (see [1]). Note here that

f∗(|B(0, |x|)|) = f�(x),

where f∗ is the usual decreasing rearrangement of f . The fundamental fact of the symmetric decreasing
rearrangement of f is that

|Ef (t)| = |Ef�(t)|
for all t ≥ 0. This readily gives the rearrangement preserving Lp-norm property such as

‖f‖Lp(RN ) = ‖f�‖Lp(RN )

for 1 ≤ p ≤ ∞. For fundamental properties of the symmetric decreasing rearrangement, see Almut [1].
We also refer to his papers [17], [18] and [19, Chap. 4].

For variable exponents p and s, the Lorentz space Ls,p(RN ) is defined as the set of all measurable
functions f on RN with

‖f‖Ls,p(RN ) = inf

{
λ > 0 :

ˆ
RN

|f�(x)/λ|p(x)|x|N(p(x)/s(x)−1) dx ≤ 1

}
< ∞.

See the paper by Ephremidze, Kokilashvili and Samko [20] when p and q are radial. In [21], the
boundedness of the maximal operator and Sobolev’s inequality in the Lorentz space of variable exponents
were studied.

Our first aim in this note is to establish the boundedness of the maximal operator in double-phase
Lorentz spaces of variable exponents (Theorem 3 and Corollary 3), as an extension of [21]. We also give
Sobolev’s inequality in double-phase Lorentz spaces of variable exponents (Theorem 4 and Corollary 4).

Throughout this paper, let C denote various constants independent of the variables in question.

2. SYMMETRIC DECREASING REARRANGEMENT AND LORENTZ SPACES
OF VARIABLE EXPONENTS

The (centered) maximal function Mf of a measurable function f on RN is defined by

Mf(x) = sup
r>0

1

|B(x, r)|

ˆ
B(x,r)

|f(y)| dy.

Lemma 1 [21, Lemma 2.2]. For all measurable functions f on RN ,

(Mf)�(x) ≤ C
1

|B(0, |x|)|

ˆ
B(0,|x|)

f�(y) dy ≤ CMf�(x),

where C is a positive constant independent of f .

For f ∈ L1
loc(R

N ), we define the Riesz potential of order α (0 < α < N) by

Iαf(x) =

ˆ
RN

|x− y|α−Nf(y) dy.

Lemma 2 [21, Lemma 2.4]. For all nonnegative measurable functions f on RN ,

(Iαf)
�(x) ≤ C

ˆ
RN

(|x|+ |y|)α−Nf�(y) dy ≤ C(Iαf
�)(x),

where C is a positive constant independent of f .

For the fundamental properties of symmetric decreasing rearrangements, see Almut [1].

A function p on RN is said to be log-Hölder continuous if
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(P1) p is locally log-Hölder continuous, namely,

|p(x)− p(y)| ≤ C0

log(1/|x− y|) for |x− y| ≤ 1

e

with a constant C0 ≥ 0;

(P2) p is log-Hölder continuous at infinity, namely,

|p(x)− p(∞)| ≤ C∞
log(e+ |x|)

with constants C∞ ≥ 0 and p(∞).

Let P(RN ) be the class of all log-Hölder continuous functions p on RN . If in addition p satisfies

(P3) 1 < p− := infx∈RN p(x) ≤ supx∈RN p(x) =: p+ < ∞,

then we write p ∈ P1(R
N ).

Definition 1. For p ∈ P1(R
N ) and τ ∈ P(RN ), Lτ,p(RN ) denotes the weighted Lp(·) space of all

functions f with

‖f‖Lτ,p(RN ) = inf

{
λ > 0 :

ˆ
RN

|f(x)/λ|p(x)|x|τ(x)dx ≤ 1

}
< ∞.

We write L0,p(RN ) = Lp(·)(RN ) and

‖f‖L0,p(RN ) = ‖f‖Lp(·)(RN ).

Definition 2. For s, p ∈ P1(R
N ), denote by Ls,p(RN ) the set of all measurable functions f such that

‖f‖Ls,p(RN ) = inf

{
λ > 0 :

ˆ
RN

|f�(x)/λ|p(x)|x|N(p(x)/s(x)−1)dx ≤ 1

}
< ∞.

3. THE BOUNDEDNESS OF MAXIMAL AND POTENTIAL OPERATORS
IN LORENTZ SPACES OF VARIABLE EXPONENTS

We know the following boundedness of the maximal operator in the weighted Lp(·) space, which is an
extension of Diening [22] and Cruz-Uribe, Fiorenza and Neugebauer [23].

Theorem 1 [21, Theorem 4.1]. Let p ∈ P1(R
N ) and τ ∈ P(RN ). Suppose

(T1) −N < τ(0) < N(p(0)− 1) and −N < τ(∞) < N(p(∞)− 1).

Then the maximal operator M : f −→ Mf is bounded from Lτ,p(RN ) into itself, namely, there is
a constant C > 0 such that

‖Mf‖Lτ,p(RN ) ≤ C‖f‖Lτ,p(RN )

for all f ∈ Lτ,p(RN ).

This is a special case of [24, Theorem 1.1]. We also refer to [25].
In view of Lemma 1, we obtain the following result.

Corollary 1 [21, Corollary 4.2]. Let s, p ∈ P1(R
N ). Then the maximal operator M : f −→ Mf is

bounded from Ls,p(RN ) into itself, namely, there is a constant C > 0 such that

‖Mf‖Ls,p(RN ) ≤ C‖f‖Ls,p(RN )

for all f ∈ Ls,p(RN ).
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As an application of Theorem 1, we can obtain a Sobolev type inequality for Riesz potentials by using
Hedberg’s method ([26]).

For p ∈ P1(R
N ), set

1/p�(x) = 1/p(x)− α/N.

Theorem 2 [21, Theorem 6.1]. Let p ∈ P1(R
N ) and τ ∈ P(RN ). Suppose p+ < n/α and

(T2) αp(0) −N < τ(0) < N(p(0) − 1) and αp(∞)−N < τ(∞) < N(p(∞)− 1).

Then there is a constant C > 0 such that

‖Iαf‖Lτp�/p,p� (RN )
≤ C‖f‖Lτ,p(RN )

for all f ∈ Lτ,p(RN ).

Using Lemma 2, we obtain the following result.

Corollary 2 [21, Corollary 6.2]. Let p, s ∈ P1(R
N ), If p+ < N/α and s+ < N/α, then there is a

constant C > 0 such that

‖Iαf‖Ls�,p�(RN )
≤ C‖f‖Ls,p(RN )

for all f ∈ Ls,p(RN ).

4. THE BOUNDEDNESS OF MAXIMAL OPERATOR IN DOUBLE-PHASE
LORENTZ SPACES OF VARIABLE EXPONENTS

As an extension of [21], we obtain the boundedness of maximal operator in double-phase Lorentz
spaces of variable exponents, in view of Theorems 1 and 2.

Recall that b is nonnegative, bounded and Hölder continuous of order θ ∈ (0, 1].

Theorem 3. Let p, q ∈ P1(R
N ) and τ, κ ∈ P(RN ). Suppose

(D1) 1/q(x) = 1/p(x)− θ/N ;

(D2) κ(x) = τ(x)q(x)/p(x);

(T3) θp(0)−N < τ(0) < N(p(0)− 1) and θp(∞)−N < τ(∞) < N(p(∞)− 1);

(T4) −N < κ(0) < N(q(0)− 1) and −N < κ(∞) < N(q(∞)− 1).

Then there is a constant C > 0 such that

‖Mf‖Lτ,p(RN ) + ‖bMf‖Lκ,q(RN ) ≤ C

(
‖f‖Lτ,p(RN ) + ‖bf‖Lκ,q(RN )

)

for all f ∈ L1
loc(R

N ).

When τ = κ = 0, we refer the reader to [11] and [12].
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Proof of Theorem 3. In view of Theorem 1, it suffices to show that

‖bMf‖Lκ,q(RN ) ≤ C (4.1)

when f is a nonnegative measurable function f on RN with ‖f‖Lτ,p(RN ) + ‖bf‖Lκ,q(RN ) ≤ 1. Note that

b(x)
1

|B(x, r)|

ˆ
B(x,r)

f(y) dy

=
1

|B(x, r)|

ˆ
B(x,r)

{b(x)− b(y)}f(y) dy +
1

|B(x, r)|

ˆ
B(x,r)

b(y)f(y) dy

≤ C
1

|B(x, r)|

ˆ
B(x,r)

|x− y|θf(y) dy + 1

|B(x, r)|

ˆ
B(x,r)

b(y)f(y) dy

for x ∈ RN and r > 0. Hence

b(x)Mf(x) ≤ CIθf(x) +M [bf ](x)

for x ∈ RN . In view of Theorem 2, we have

‖Iθf‖Lκ,q(RN ) ≤ C‖f‖Lτ,p(RN ).

Moreover, we obtain, by Theorem 1,

‖M [bf ]‖Lκ,q(RN ) ≤ C‖bf‖Lκ,q(RN ),

which gives (4.1).

Corollary 3. Let s, p, t, q ∈ P1(R
N ). Suppose 1/t(x) = 1/s(x) − θ/N and 1/q(x) = 1/p(x)− θ/N .

Then there is a constant C > 0 such that

‖Mf‖Ls,p(RN ) + ‖bMf‖Lt,q(RN ) ≤ C

(
‖f‖Ls,p(RN ) + ‖bf‖Lt,q(RN )

)

for all f ∈ L1
loc(R

N ).

5. SOBOLEV’S INEQUALITY IN DOUBLE-PHASE LORENTZ SPACES OF VARIABLE
EXPONENTS

By Theorem 2, we obtain the following Sobolev inequality.

Theorem 4. Let p, q ∈ P1(R
N ) and κ, τ ∈ P(RN ). Suppose p+ < N/(α + θ). Moreover, suppose

(D1) 1/q(x) = 1/p(x)− θ/N ;

(D2) κ(x) = τ(x)q(x)/p(x);

(T5) (α+ θ)p(0)−N < τ(0) < N(p(0) − 1) and (α+ θ)p(∞)−N < τ(∞) < N(p(∞)− 1);

(T6) αq(0) −N < κ(0) < N(q(0)− 1) and αq(∞)−N < κ(∞) < N(q(∞)− 1).

Then there is a constant C > 0 such that

‖Iαf‖Lτp�/p,p�(RN )
+ ‖bIαf‖Lκq�/q,q� (RN )

≤ C

(
‖f‖Lτ,p(RN ) + ‖bf‖Lκ,q(RN )

)

for all f ∈ L1
loc(R

N ).

MATHEMATICAL NOTES Vol. 111 No. 5 2022



734 MIZUTA, OHNO, SHIMOMURA

Proof. By Theorem 2, it suffices to show

‖bIαf‖Lκq�/q,q� (RN )
≤ C (5.1)

when f is a nonnegative measurable function f on RN with ‖f‖Lτ,p(RN ) + ‖bf‖Lκ,q(RN ) ≤ 1. Note that

b(x)Iαf(x) =

ˆ
RN

|x− y|α−N{b(x)− b(y)}f(y) dy +

ˆ
RN

|x− y|α−Nb(y)f(y) dy

≤ C

ˆ
RN

|x− y|α+θ−Nf(y) dy +

ˆ
RN

|x− y|α−Nb(y)f(y) dy

for x ∈ RN . Therefore,

b(x)Iαf(x) ≤ CIα+θf(x) + Iα[bf ](x)

for x ∈ RN . In view of Theorem 2, we have

‖Iα+θf‖Lκq�/q,q� (RN )
≤ C‖f‖Lτ,p(RN )

and

‖Iα[bf ]‖Lκq�/q,q� (RN )
≤ C‖bf‖Lκ,q(RN ),

which proves (5.1).

Corollary 4. Let s, p, t, q ∈ P1(R
N ), 1/t(x) = 1/s(x)− θ/N and 1/q(x) = 1/p(x) − θ/N . Suppose

s+ < N/(α + θ) and p+ < N/(α + θ). Then there is a constant C > 0 such that

‖Iαf‖Ls�,p� (RN )
+ ‖bIαf‖Lt�,q� (RN )

≤ C

(
‖f‖Ls,p(RN ) + ‖bf‖Lt,q(RN )

)

for all f ∈ L1
loc(R

N ).
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