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Abstract—The paper examines the following question: Under what orders of monotonicity are the
upper and lower bounds of the sum of a cosine series near zero valid if they are obtained using the
function

∑[π/x]
n=0 (n+ 1)Δ(a)n?
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1. INTRODUCTION

One of the classical problems of the theory of trigonometric series is to obtain asymptotic estimates
near zero of sums of trigonometric series with monotone coefficients. The first of the works in this
direction, apparently, is the paper [1] of Salem; see also [2, pp. 668–676]. The research was
later continued in the works of Telyakovsky [3], Popov and Solodov [4], Popov[5] and many other
mathematicians.

However, in this problem, the properties of sine and cosine series differ significantly. If sums of sine
series with monotone decreasing coefficients

∞∑

n=1

an sinnx,

where x ∈ (0, π), are usually estimated using the expression

h(x) ≡ x

[π/x]∑

n=1

nan,

then, for a cosine series with monotone decreasing coefficients

a0
2

+
∞∑

n=1

an cosnx, (1)

a similar role is played by

q(x) ≡
[π/x]∑

n=0

(n + 1)Δan,

where Δan = an − an+1, n = 0, 1, . . . .
In this note, we will focus our attention on cosine series.
The classical version for an upper bound is as follows.
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Theorem A. Let the coefficients of the series (1) satisfy the conditions an → 0 as n → ∞ and

Δ2(a)n ≡ Δ(Δa)n ≡ an − 2an+1 + an+2 ≥ 0

for n = 0, 1, . . . . Then if f(x) is the sum of the series (1), then, for x ∈ (0, π), the following
estimates hold:

0 ≤ f(x) ≤ 5q(x). (2)

Of course, the constant 5 is not optimal, but questions about best constants in inequalities are not
discussed in this paper.

For lower bounds, a greater ‘degree” of monotonicity is usually required. The following statement is
known.

Theorem B. Let the coefficients of the series (1) satisfy the conditions an → 0 as n → ∞ and

Δ3(a)n ≡ Δ(Δ(Δ(a)))n ≡ an − 3an+1 + 3an+2 − an+3 ≥ 0

for n = 0, 1, . . . . Then, for some constant C > 0, if f(x) is the sum of the series (1), then, for
x ∈ (0, 1], the following estimate holds:

f(x) ≥ Cq(x). (3)

Unfortunately, the authorship of Theorems A and B is, apparently, unknown, but, for many years,
these theorems have been included in special courses for students. It is also known that estimates (2)
(even with another constant on the right-hand side) is, generally speaking, no longer valid if only the
monotonicity of the coefficients an is required, while estimate (3) does not hold under the conditions
of their convexity. In this connection, it is of interest to consider the problem on classes of fractional
monotonicity, which were previously introduced by the author in [6].

Let us give the corresponding definitions.

Definition 1. Let −∞ < α < ∞. By Cesaro numbers {Aα
n}∞n=0 we mean the coefficients of the

expansion

(1− x)−α−1 =

∞∑

n=0

Aα
nx

n

for x ∈ (0, 1).

The following properties of these numbers are known (see [7]):

1) A0
n = 1 for n = 0, 1, . . . and Aα

0 = 1 for any α;

2) if α �= −1,−2, . . . , then there are constants C1 > 0 and C2 > 0 depending only on α such that

C2n
α ≤ |Aα

n| ≤ C1n
α

for all n > 0;

3) for α > −1 and any n, Aα
n > 0; for α > 0, Aα

n ↑ ∞ as n → ∞; and, for −1 < α < 0, Aα
n ↓ 0 as

n → ∞;

4) the following equality holds:
n∑

k=0

aαn−kA
β
k = Aα+β+1

n

for all α and β, and n = 0, 1, . . . . In particular, Aα
n −Aα

n−1 = Aα−1
n .
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If a number sequence a = {an}∞n=0 and a real α are given, then we denote

Δα(a)n =
∞∑

k=0

A−α−1
k an+k

for n = 0, 1, . . . in the case where such a sum exists, for example, if α > 0 and the sequence a is bounded.

Definition 2. Let α > 0, and let a be a sequence of real numbers. Then we say that a ∈ Mα if
limn→∞ an = 0 and Δα(a)n ≥ 0 for n = 0, 1, . . . .

It follows from Definition 2 that the class M0 coincides with the class of zero-tending sequences of
nonnegative numbers, and M1 is the class of monotone nonincreasing sequences tending to zero, etc.
In addition, the author found that, for α > β ≥ 0, the inclusion Mα ⊂ Mβ is valid (see [6, Lemma 1, item
b)]).

It should be noted that many important auxiliary results needed for the study of monotonicity of
fractional order were established by Andersen [8].

The purpose of this paper is to obtain additions to Theorem A and to strengthen Theorem B in terms
of fractional monotonicity. More precisely, the following statements will be established.

Theorem 1. For any α ∈ (1, 2), there exists a sequence a ∈ Mα and a monotone zero-tending
sequence {tl}∞l=1 such that

q(tl)

f(tl)
→ 0 as l → ∞,

where f(x) and q(x) were defined above.

Theorem 2. Let α > 2. Then there exists a constant C = C(α) > 0 such that if the sequence
a is contained in Mα, then, for x ∈ (0, π/6), the sum of the series (1) satisfies the inequality
f(x) ≥ C(α)q(x).

It should be noted that the interval (0, π/6) in Theorem 2 is not definitive, and the question of how
much it can be extended remains open.

In the section “Additions”, some related problems will be discussed and also, for completeness, we
will prove that, in Theorem 2, we cannot take α = 2.

2. AUXILIARY RESULTS
The following results were established by the author in [6].

Lemma 1. Let, for the numbers α, γ and the sequence a, one of the following conditions holds:

a) α < 0, γ < 0, and a ∈ M0;

b) α > 0, γ < 0, and a ∈ Mα;

c) γ > 0, α = −γ, a ∈ M0, and there exists a bounded sequence {Δα(a)n}∞n=0.

Then

0 ≤ Δγ(Δα(a))n = Δγ+α(a)n for n = 0, 1, . . . .

Note that, in items a) and b) of Lemma 1, infinite values are not excluded.
For α > 0, denote

Kα
n (x) =

Aα−1
n

2
+

n∑

k=1

Aα−1
n−k cos kx

for n = 0, 1, . . . .
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Lemma 2. Let 1 < α < 2, and let a ∈ Mα. Then, for n = 0, 1, . . . and x ∈ (0, π),

a0
2

+
n∑

k=1

ak cos kx =
n∑

k=0

Δα(a)kK
α
n (x) + o(1)

as n → ∞.

Corollary 1. Let 1 < α < 2, and let a ∈ Mα. Then, for x ∈ (0, π),

f(x) =

∞∑

k=0

Δα(a)kK
α
n (x).

We will need another auxiliary statement.

Lemma 3. Let α ∈ (0, 1). Then there exists a constant C3 = C3(α) > 0 such that, for any sequence
a ∈ Mα and for any natural numbers k1 < k2 < k3 for which k2 − k1 > (k3 − k1)/4, the following
inequality holds:

k2∑

n=k1

an ≥ C3

k3∑

n=k1

an.

Proof. Let us define the sequence b = {bn}∞n=0, where bn = Δα(a)n for n = 0, 1, . . . . By assumption,
this is a sequence of nonnegative numbers and, by Lemma 1, b), we have

an = Δ−α(b)n =

∞∑

r=0

Aα−1
r bn+r =

∞∑

ν=n

Aα−1
ν−nbν .

But then
k2∑

n=k1

an =

k2∑

n=k1

∞∑

ν=n

Aα−1
ν−nbν =

k2∑

ν=k1

bν

ν∑

n=k1

Aα−1
ν−n +

∞∑

ν=k2+1

bν

k2∑

n=k1

Aα−1
ν−n ≡

∞∑

ν=k1

bνfν. (4)

Similarly,

k3∑

n=k1

an =

k3∑

ν=k1

bν

ν∑

n=k1

Aα−1
ν−n +

∞∑

ν=k3+1

bν

k3∑

n=k1

Aα−1
ν−n ≡

∞∑

ν=k1

bνf
′
ν . (5)

Note that, for k1 ≤ ν ≤ k2,

fν = f ′
ν . (6)

If k2 + 1 ≤ ν ≤ k3, then

fν ≥ C2(ν − k1)
α−1(k2 − k1 + 1) > C2(k3 − k1)

α−1 1

4
(k3 − k1) =

C2

4
(k3 − k1)

α,

where the constants C1 and C2 given below are taken from property 2) of the Cesaro numbers, while

f ′
ν =

ν∑

n=k1

Aα−1
ν−n =

ν−k1∑

r=0

Aα−1
r ≤ C1

ν−k1∑

r=0

(r + 1)α−1 ≤ C4(α)(k3 − k1)
α.

Thus, for k2 + 1 ≤ ν ≤ k3, we have

fν ≥ C5(α)f
′
ν , (7)

where the constant C5(α) > 0 depends only on α.
Further, let k3 + 1 ≤ ν ≤ 2k3 − k1. Then, since ν − k1 ≤ 2(k3 − k1), we obtain

fν ≥ C2(ν − k1)
α−1(k2 − k1 + 1) > 2α−1C2(k3 − k1)

α−1 1

4
(k3 − k1)
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= 2α−3C2(k3 − k1)
α ≥ C22

−3(ν − k1)
α,

and, further,

f ′
ν ≤ C1

ν−k1∑

r=0

(r + 1)α−1 ≤ C4(α)(ν − k1)
α.

Therefore, also for k3 + 1 ≤ ν ≤ 2k3 − k1, we have

fν ≥ C6(α)f
′
ν , (8)

where the constant C6(α) > 0 depends only on α.
Finally, let ν > 2k3 − k1. Then

fν ≥ C2(ν − k1)
α−1(k2 − k1 + 1),

and, further,

f ′
ν ≤ C1(ν − k3)

α−1(k3 − k1 + 1).

Note that k2 − k1 + 1 > (k3 − k1 + 1)/4 and ν − k1 = ν − k3 + k3 − k1 < 2(ν − k3), whence

(ν − k1)
α−1 > 2α−1(ν − k3)

α−1.

Therefore, in this case, we have

fν ≥ C7(α)f
′
ν , (9)

where the constant C7(α) > 0 depends only on α. Let us put C3 = min(1, C5, C6, C7). Now the result
of Lemma 3 follows from (4)–(9) and the nonnegativity of the numbers bν .

3. MAIN RESULTS

Proof of Theorem 1. Because of the embedding of the classes Mα, we assume without loss of
generality that α ∈ (3/2, 2). Let {ml}∞l=1 be an increasing sequence of natural numbers that satisfies
the following conditions:

1) all the ml are fourth powers of natural numbers;

2) ml+1 > m4
l for l = 1, 2, . . . ;

3) m
1−α/2
l+1 > 100lml for l = 1, 2, . . . ;

4) m1 > 100.

Let us define the sequence b as follows:

br =

⎧
⎪⎨

⎪⎩

10−l

Aα−1
ml

for r = ml, l = 1, 2, . . . ,

0 for the other r.

Note that, for any n ≥ 0,
∞∑

k=0

Aα−1
k bn+k =

∑

ml≥n

Aα−1
ml−n

10−l

Aα−1
ml

≤
∑

ml≥n

10−l.

Thus, there exists a sequence tending to zero, {Δ−α(b)n}∞n=0. Let us put an = Δ−α(b)n for
n = 0, 1, . . . and consider the series

a0
2

+

∞∑

n=1

an cosnx. (10)
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By Lemma 1 c), for all n we have Δα(a)n = bn ≥ 0, i.e., a ∈ Mα ⊂ M1. Therefore, the series (10)
converges for x ∈ (0, π) to some function f(x). By Corollary 1, for x ∈ (0, π) we have

f(x) =

∞∑

k=0

Δα(a)kK
α
n (x) =

∞∑

l=1

10−l

Aα−1
ml

Kα
ml

(x). (11)

In Zygmund’s book [7], the following estimates were established:
∣
∣
∣
∣
Kα

r (x)

Aα−1
r

∣
∣
∣
∣ ≤ r + 1 (12)

for r = 0, 1, . . . and all x,
∣
∣
∣
∣
Kα

r (x)

Aα−1
r

∣
∣
∣
∣ ≤ C8(α)r

−α+1x−α (13)

for r = 1, 2, . . . and x ∈ (0, π), where the constant C8(α) depends only on α;

Kα
r (x)

Aα−1
r

=
1

Aα−1
r

· sin((r + α/2)x − π(α− 1)/2)

(2 sin(x/2))α
+

2θ(α− 1)

r(2 sin(x/2))2
(14)

for x ∈ (0, π), where |θ| ≤ 1.
For all l, we put nl =

√
ml. Obviously, there exists a tl ∈ (π/(2nl), 2π/nl) such that

sin

((

ml +
α

2

)

tl −
π(α− 1)

2

)

= 1.

Hence, using (14), we obtain

Kα
ml

(tl)

Aα−1
ml

≥ C9(α)n
α
l

mα−1
l

− C10(α)n
2
l

ml
= C9(α)m

1−α/2
l − C10(α),

where the positive constants C9(α) and C10(α) depend only on α. Combining this with formu-
las (11)–(13), we see that, for any l,

f(tl) ≥ 10−l(C9(α)m
1−α/2
l − C10(α)) −

l−1∑

r=1

10−r

Aα−1
mr

|Kα
mr

(tl)| −
∞∑

r=l+1

10−r

Aα−1
mr

|Kα
mr

(tl)|

≥ 10−l(C9(α)m
1−α/2
l − C10(α)) −

l−1∑

r=1

10−r(mr + 1)−
∞∑

r=l+1

10−rC8(α)mr
−α+1nα

l

≥ 10−l(C9(α)m
1−α/2
l − C10(α)) − 2ml−1 −

∞∑

r=l+1

10−rC8(α)

>
C9(α)

2
10−lm

1−α/2
l , (15)

where l is sufficiently large.
Let us now estimate q(tl). Obviously, if r ≥ l ≥ 1 and k ≤ 2nl, then mr − k ≥ mr/2, and hence

Aα−2
mr−k

Aα−1
mr

≤ C1(α)(mr − k)α−2

C2(α)m
α−1
r

≤ 22−αC1(α)

C2(α)
· 1

mr
≡ C11(α)

mr
≤ C11(α)

ml
.

Therefore,

q(tl) ≤
2nl∑

k=0

(k + 1)Δ(a)k =

ml−1∑

k=0

(k + 1)Δ(a)k +

2nl∑

k=ml−1+1

(k + 1)Δ(Δ−α(b))k
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≤ (ml−1 + 1)a0 +

2nl∑

k=ml−1+1

(k + 1)Δ(Δ−1(Δ−α+1(b)))k

≤ (ml−1 + 1)a0 +

2nl∑

k=ml−1+1

(k + 1)Δ−α+1(b)k

≤ (ml−1 + 1)a0 + (2nl + 1)

2nl∑

k=ml−1+1

∞∑

r=l

Aα−2
mr−k ·

10−r

Aα−1
mr

≤ (ml−1 + 1)a0 + (2nl + 1)2nl
C11(α)

ml

∞∑

r=l

10−r ≤ (ml−1 + 1)a0 + C12(α). (16)

Formulas (9), (10) and Condition 3) imposed on the sequence {ml}∞l=1 imply the result of Theorem 1.

Proof of Theorem 2. Without loss of generality, we can assume that α ∈ (2, 3). Since, in particular,
a ∈ M2, for x ∈ (0, π), it follows that

f(x) =

∞∑

n=0

Δ2(a)nKn(x), where Kn(x) =
1− cos(n+ 1)x

4 sin2(x/2)
.

For brevity, we denote bn = Δ2(a)n for n = 0, 1, . . . . Then we have the sequence b = {bn}∞n=0 ∈ Mα−2.
Further,

f(x) =

[π/x]∑

n=0

bnKn(x) +

∞∑

n=[π/x]+1

bnKn(x) ≡ S1 + S2.

If 0 ≤ n ≤ [π/x], then

Kn(x) ≥
2 sin2((n+ 1)x/2)

x2
≥ 1

π2
(n+ 1)2.

Hence, applying the Abel transformation, we obtain

S1 ≥
1

10

[π/x]∑

n=0

(n + 1)2Δ2(a)n =
1

10

[π/x]∑

n=0

((n+ 1)2 − n2)

[π/x]∑

r=n

Δ2(a)r

≥ 1

10
q(x)− 1

10

[
π

x

]2
Δ1(a)[π/x]+1. (17)

Note that, for any x ∈ (0, π/6) and for any natural k, the interval
[
[(2k− 1)π/x] + 1, [(2k− 1/3)π/x]

]

will contain at least a quarter of integer points from the segment
[
[(2k − 1)π/x] + 1, [(2k + 1)π/x]

]
.

Hence, taking into account the nonnegativity of the Fejér kernels and Lemma 3, we obtain

S2 =
∞∑

k=1

[(2k+1)π/x]∑

n=[(2k−1)π/x]+1

bnKn(x) ≥
∞∑

k=1

[(2k−1/3)π/x]∑

n=[(2k−1)π/x]+1

bnKn(x)

≥ 1

x2

∞∑

k=1

[(2k−1/3)π/x]∑

n=[(2k−1)π/x]+1

bn(1− cos(n+ 1)x) ≥ 1

8x2

∞∑

k=1

[(2k−1/3)π/x]∑

n=[(2k−1)π/x]+1

bn

≥ C3

8x2

∞∑

k=1

[(2k+1)π/x]∑

n=[(2k−1)π/x]+1

bn =
C3

8x2
Δ1(a)[π/x]+1. (18)
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Now if
[
π

x

]2
Δ1(a)[π/x]+1 <

1

2
q(x),

then the result of Theorem 2 follows from (17) and, otherwise, from formula (18).

4. ADDITIONS

1. Let us give an example showing that the condition a ∈ M2 does not guarantee the validity of the
lower bound in terms of q(x). Let nk = 22

k − 1, k = 1, 2, . . . , and let

br =

{
k−22−2k for r = nk, k = 1, 2, . . . ,

0 for the other r.

Let

cn =
∞∑

r=n

br

for n = 0, 1, . . . . Note that, for any k ≥ 1, for nk < n ≤ nk+1, we have cn ≤ 2bnk+1
, whence it is clear

that the numbers

an =
∞∑

l=n

cl ≤
∑

k : nk≥n

nk2bnk
≤

∑

k : nk≥n

2k−2

are defined and tend to zero as n → ∞. It is also obvious that

Δ2(a)n = bn

for all n. Thus, a ∈ M2. Let f(x) be the sum of the series (1).
Obviously,

f(x) =

∞∑

n=0

bn
1− cos(n+ 1)x

4 sin2(x/2)
=

∞∑

m=1

m−22−2m 1− cos 22
m
x

4 sin2(x/2)
.

Let tk = 2π/22
k

for k = 1, 2, . . . . Then

f(tk) =
k−1∑

m=1

m−22−2m 1− cos 22
m
tk

4 sin2(tk/2)
≤

k−1∑

m=1

m−22−2m22
m+1

=
k−1∑

m=1

m−222
m ≤ 2(k − 1)−222

k−1
. (19)

At the same time,

q(tk) =

[π/tk]∑

n=0

(n+ 1)Δ(a)n =

22
k−1
∑

n=0

(n + 1)Δ(a)n ≥
22

k−1
∑

n=22k−2

(n+ 1)k−22−2k ≥ 1

k2
· 22k−4. (20)

It follows from (19)–(20) that

q(tk)

f(tk)
→ ∞

as k → ∞, which was required to verify.

2. If a ∈ M1, then an elementary estimate involving the Abel transformation shows that

|f(x)| ≤ q(x) +
π

x
a[π/x]+1

for x ∈ (0, π).

3. It would be of interest to obtain results similar to Theorems 1 and 2 for sine series.
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