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Abstract—The question of the representability of a continuous function on R
d in the form of the

Fourier integral of a finite Borel complex-valued measure on R
d is reduced in this article to the same

question for a simple function. This simple function is determined by the values of the given function
on the integer lattice R

d. For d = 1, this result is already known: it is an inscribed polygonal line.
The article also describes applications of the obtained theorems to multiple trigonometric Fourier
series.
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We will write the Fourier series of a function f ∈ L1(T
d), where T

d = [−π, π)d is the torus, in the
form (x = (x1, . . . , xd), (x, y) =

∑d
i=1 xjyj, |x| =

√
(x, x) )

f ∼
∑

k∈Zd

f̂kek, f̂k =
1

(2π)d

ˆ
Td

f(x)e−i(k,x) dx, ek = ei(k,x).

If μ is a finite Borel (complex-valued) measure on T
d, then we write its Fourier series in the form

(see [1, Chap. 3])
∑

k∈Zd

f̂kek, f̂k =

ˆ
Td

e−i(k,x) dμ(x).

If μ is a finite Borel measure on R
d and |μ| is its variation (see, for example, [2, Chap. XI]), then

Wiener Banach algebras are defined as follows:

W = W (Rd) =

{

f : f(x) =

ˆ
Rd

e−i(x,y) dμ(y), ‖f‖W = |μ|(Rd)

}

,

W0 = W0(R
d) =

{

f : f(x) =

ˆ
Rd

g(y)e−i(x,y) dy, ‖f‖W0 = ‖g‖L1(Rd)

}

;

see [3, Chap. 6] and, most importantly, the survey [4], in which the list of references contains 175 titles.

The set of continuous positive definite functions on R
d will be denoted by W+(Rd). These are

functions from W (Rd) defined by the condition ‖f‖W = f(0).

Let d = 1. Denote by lf a piecewise linear continuous function defined by the conditions
lf (k) = f(k), k ∈ Z (a polygonal line). Further, it was noted in the book [5, Chaps. XIX, 16] that,
together with f , also lf belongs to W+(R1). Therefore,

‖lf‖W+ = lf (0) = f(0) = ‖f‖W+. (1)
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It follows that always

‖lf‖W ≤ 6‖f‖W . (2)

Indeed, if the measure μ in the representation of f is real, then

f(x) =

ˆ
R

e−ixy dμ(y) =

ˆ
R

e−ixy d|μ| −
ˆ
R

e−ixy d(|μ| − μ) = f1(x)− f2(x)

(f1, f2 ∈ W+(R)). Obviously, lf1 − lf2 = lf and ‖lf‖W ≤ 3‖f‖W . In the general case, ‖lf‖W ≤ 6‖f‖W .

In the recent paper [6], this inequality with coefficient 1 (instead of 6) was proved and different
applications were given (from Wiener algebras to Fourier series and from Fourier series to algebras).
These applications are completely new and cannot be obtained without theorems of this kind. Incidently,
similar arguments were given in [7], but without applications, because an important theorem was lacking
(see Theorem 1 below).

The purpose of this paper is to prove the following two theorems and their application to Fourier series
in d variables.

Theorem 1. For the trigonometric series
∑

k∈Zd ckek to be the Fourier series of a Borel measure
μ on T

d (of a function f ∈ L1(T
d)), it is necessary and sufficient that there exist a function

ϕ ∈ W (Rd) (ϕ ∈ W0(R
d)) with the condition ϕ(k) = ck, k ∈ Z

d. In addition,

|μ|(Td) = min
ϕ

‖ϕ‖W

(the minimum over such functions) and this minimum is attained at

ϕ0(x) =

ˆ
Td

e−i(x,y) dμ(y).

In the class of entire functions of exponential type at most π in each variable, there is only one
such function in W0. Further, the measure μ ≥ 0 if and only if such a function ϕ ∈ W+(Rd) exists.

Theorem 2. 1) Consider the cube

Πk = {x ∈ R
d : kj ≤ xj ≤ kj + 1, 1 ≤ j ≤ d}.

Any function R
d → C which is linear in each variable x1, . . . , xd on each such cube is completely

determined by the values at the vertices of such cubes (k ∈ Z
d) and is continuous on R

d.

2) If f ∈ W , and lf is a function from 1) defined by the condition lf (k) = f(k), k ∈ Z
d, then

‖lf‖W ≤ ‖f‖W , ‖lf‖W0 ≤ ‖f‖W0 , ‖lf‖W+ = ‖f‖W+.

Proof of Theorem 1. In the case of the Fourier series of a measure μ, we have

min
ϕ

‖ϕ‖W ≤ ‖ϕ0‖W = |μ|(Td). (3)

On the other hand, if

ϕ(x) =

ˆ
Rd

e−i(x,y) dμ(y), ‖ϕ‖W = |μ|(Rd),

then, for k ∈ Z
d, by virtue of the periodicity and Fubini’s theorem,

ck = ϕ(k) =

ˆ
Rd

e−i(k,y) dμ(y) =
∑

m∈Zd

ˆ
Td+2πm

e−i(k,y) dμ(y)

=
∑

m∈Zd

ˆ
Td

e−i(k,y) dμ(y + 2πm) =

ˆ
Td

e−i(k,y)
∑

m∈Zd

dμ(y + 2πm),
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i.e.,

ck =

ˆ
Td

e−i(k,y) dμ1(y), |μ1|(Td) ≤ |μ|(Rd),

and this series is the Fourier series of the measure μ1.

It remains to take into account that, for any extension of ϕ from Z
d to R

d (see also (3)),

‖ϕ0‖W = |μ1|(Td) ≤ |μ|(Rd) = ‖ϕ‖W .

But if ϕ is an entire function of type at most π in z1, . . . , zd, then the uniqueness of ϕ0 follows from
the fact that any such function vanishing for z = k, k ∈ Z

d, after division by
∏d

j=1 sinπzj , is entire and

bounded on C
d (see, for example, [3, 3.4.4]) and, therefore, it is a constant. But then, for some λ ∈ C,

ϕ(x) = ϕ0(x) + λ

d∏

j=1

sinπxj,

and if the limits of ϕ and ϕ0 exist as |x| → ∞, then we have λ = 0.

The same argument applies to Fourier series of functions f ∈ L1(T
d).

Proof of Theorem 2. 1) The boundary of Πk consists of cubes of dimension from 1 to d− 1. On the
edges of Πk (all the coordinates, except one, of the points are fixed), such a linear function is uniquely
defined by the values at the endpoints (these are the vertices of Πk). In the case of squares (all the
coordinates, except two, are fixed), we draw a segment parallel to the coordinate axis and again use
linearity, etc.

The coefficients of such a polynomial of degree d are easy to find.
For example, for d = 2, we can express this polynomial as

a1(x1 − k1 − 1)(x2 − k2 − 1) + a2(x1 − k1)(x2 − k2 − 1)

+ a3(x1 − k1 − 1)(x2 − k2) + a4(x1 − k1)(x2 − k2)

and, substituting the vertices (k1, k2), (k1 + 1, k2), (k1, k2 + 1), and (k1 + 1, k2 + 1), we successively
obtain a1, a2, a3, and a4. Further, the constant mixed derivative of the polynomial a1 is equal to the
mixed difference over 2d vertices of Πk.

2) For x ∈ R
d (h ∈ R, h+ = max{h, 0}), we assume

lf (x) =
∑

k∈Zd

f(k)

d∏

j=1

(1− |xj − kj |)+. (4)

Let

Πk ⊂ Π̃k := {x : |xj − kj | ≤ 1, 1 ≤ j ≤ d}.

If m ∈ Z
d, and x /∈ π̃m, then there exists a j0 such that |xj0 − kj0 | > 1, and hence lf (x) = 0.

Therefore, for x ∈ Π̃m,

lf (x) = f(m)
d∏

j=1

(1− |xj −mj|), lf (m) = f(m)

and, for x ∈ Πm,

lf (x) = f(m)

d∏

j=1

(mj + 1− xj).

It follows from the same linearity property that lf ∈ C(Rd).
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Let us now prove that if f ∈ W (Rd), then ‖lf‖W ≤ ‖f‖W . Let us first assume that the function f is
compactly supported. Then the sum in the definition of lf (see (4)) is finite.

We have ˆ
Rd

lf (x)e
i(x,y) dx =

∑

k

f(k)

ˆ
Rd

(1− |xj − kj |)+ei(x,y) dx

=
∑

k

f(k)

d∏

j=1

ˆ
R1

(1− |xj − kj|)+eixjyj dxj .

Since, for k and y ∈ R
1,ˆ

R1

(1− |x− k|)+eixy dx = eiky
ˆ
R1

(1− |x|)+eixy dx = eiky
(
2 sin(y/2)

y

)2

,

it follows that
ˆ
Rd

lf (x)e
i(x,y) dx =

∑

k∈Zd

f(k)ei(k,y)
d∏

j=1

(
2 sin(yj/2)

yj

)2

and, by the inverse formula for the Fourier transform,

‖lf‖W =
1

(2π)d

ˆ
Rd

∣
∣
∣
∣

∑

k

f(k)ei(k,y)
d∏

j=1

(
2 sin(yj/2)

yj

)2∣∣
∣
∣ dy.

In the general case, we apply this equality to fn(x) = f(x)
∏d

j=1(1− |xj |/n)+, obtaining

(2π)d‖lfn‖W =

ˆ
Rd

∣
∣
∣
∣

∑

k

f(k)

d∏

j=1

(

1− |kj |
n

)

+

ei(k,y)
d∏

j=1

(
2 sin(yj/2)

yj

)2∣∣
∣
∣ dy.

As before, Rd =
⋃

m(Td + 2πm) and, due to periodicity,

(2π)d‖lfn‖W =

ˆ
Td

∣
∣
∣
∣

∑

k

f(k)

d∏

j=1

(

1− |kj |
n

)

+

ei(k,y)
∑

m

d∏

j=1

(
2 sin(yj/2)

yj + 2πmj

)2∣∣
∣
∣ dy.

But always
∑

m

∏

j

|amj | ≤
∏

j

∑

m

|amj |

and, for y ∈ R,
∞∑

m=−∞

(
2 sin(y/2)

y + 2πm

)2

≡ 1

(this well-known equality can be obtained, for example, from the partial fraction expansion of the
meromorphic function 1/ sin2(z/2)). Thus,

(2π)d‖lfn‖W ≤
ˆ
Td

∣
∣
∣
∣

∑

k

f(k)

d∏

j=1

(

1− |kj |
n

)

+

ei(k,y)
∣
∣
∣
∣ dy.

By virtue of Theorem 1 (under the condition f ∈ W (Rd)), the series
∑

k f(k)e
i(k,y) is the Fourier

series of a measure μ on T
d. But then, under the modulus sign, we have the (C, 1)-means of σn of this

series and, therefore,

1

(2π)d

ˆ
Td

|σn(y)| dy ≤ |μ|(Td) ≤ ‖f‖W .
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Let us pass to the limit as n → ∞, taking into account the fact that lfn → lf everywhere and that
lf ∈ C(Rd) (see [8, Theorem 2]). Then we see that ‖lf‖W ≤ ‖f‖W , and also that f and lf belong to
W+(Rd) (see (1)), and now, by virtue of (2), also that f and lf belong to W0(R

d).

Also note that the condition lf ∈ W needs to be checked only near ∞, because W is an algebra with
a local property and, for |x| ≤ N , the function lf has a bounded mixed derivative if the function itself is
bounded (see [4, 7.2, 7.3]).

Turning to the applications, we denote by lc the function from Theorem 2 with the conditions

lc(k) = ck, k ∈ Z
d.

Proposition 1. For the series
∑

k∈Zd ckek to be the Fourier series of a function (measure), it is
necessary and sufficient that lc ∈ W0(R

d) (lc ∈ W (Rd)).

Proof. It follows from Theorems 1 and 2.

Proposition 2. For the series
∑

k∈Zd ckek to be the Fourier series of a function of Vitali bounded

variation on T
d, it is necessary and sufficient that lc(x) ∈ W0(R

d) and lc(x)
∏d

j=1 xj ∈ W (Rd).

Proof. By definition (see, for example, [4, 4.2]), the Vitali variation is

Vvit(f) = sup
∑

|Δhf(x)|,

where (ej is the unit vector on the axis oxj , |hj | > 0, and the supremum is taken over all admissible x
and h)

Δhf(x) =

( d∏

j=1

Δhj

)

f(x), Δhj
f(x) = f(x+ hjej)− f(x).

For example, for smooth functions,

Vvit(f) =

ˆ ∣
∣
∣
∣

∂df(x)

∂x1 · · · ∂xd

∣
∣
∣
∣ dx.

It is only necessary to take into account that, for periodic functions f ,

f ∈ Vvit(T
d)

←→ sup
n

ˆ
Td

∣
∣
∣
∣

∂dσn(f)

∂x1 · · · ∂xd

∣
∣
∣
∣ dx = sup

n

ˆ
Td

∣
∣
∣
∣

∑

k

f(k)

d∏

j=1

kj

(

1− |kj |
n

)

+

ei(k,x)
∣
∣
∣
∣ dx < ∞.

The need for a condition involving σn is obvious if we proceed from the definition of the variation
Vvit (the case d = 1 was considered in [9, Chaps. 1, 60]). To prove sufficiency, we apply either the
Banach–Alaoglu theorem or simply Banach’s theorem, because the space C(Td) is separable. The
condition in question means that the norms of σn in the space conjugate to C(Td) are, for example,
bounded by the number M . But the ball in such a space is weakly compact, i.e., there is a subsequence
σn weakly converging to a function from C(Td) (converging pointwise everywhere). But then, also for
the limit function, we have Vvit ≤ M .

Proposition 3. If
∑

ckek is the Fourier series of a measure, lim|k|→∞ ck = 0 (which is also
necessary), and ˆ

Rd

∣
∣
∣
∣

∂dlc(x)

∂x1 · · · ∂xd

∣
∣
∣
∣ dx < ∞

or, which is the same, lc(x)
∏d

j=1 xj ∈ W (Rd), then
∑

ckek is the Fourier series of a function

from L1(T
d).
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Proof. Let us use Proposition 2, Theorem 2 from [8] (if f ∈ W (Rd): f(∞) = 0 and, outside of some
cube, f is a function of Vitali bounded variation, then f ∈ W0(R

d)), and Theorem 1.
Just as in Propositions 1 and 2 (which are criteria), it is possible to formulate a boundedness criterion

for Fourier partial sums in L1(T
d) and a convergence criterion for Fourier series in L1(T

d). In the first
case, the sequence of norms W0 will be bounded, while, in the second case, the zero limit will appear.
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