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1. HISTORICAL SURVEY. STATEMENT OF THE RESULTS

One of the directions in the study of algebraic differential equations is the description of their solutions
that are meromorphic or entire functions. At the same time, most of the results obtained so far relate to
linear equations (see, for example [1, Chap. 5]). For nonlinear equations, however, despite the fact that
the first results were obtained in the 19th century (Hermite’s theorem; see, for example [2, Chap. 2,
Sec. 8]), the results available to date are mainly related to the study of specific equations. There
are few statements describing meromorphic or entire solutions of any classes of nonlinear algebraic
differential equations. Thus, meromorphic solutions of autonomous equations of Briot–Bouquet type
P (y, y(n)) = 0 are described (for a large number of cases, although not for all; see [3]). In addition, there
exist a number of theorems that give conditions for the existence of solutions of algebraic differential
equations that are either polynomials or entire functions with finitely many zeros [4, Chaps. 4, 5].

More detailed information about the available results in this area can be found in the survey [3] of
Eremenko (relevant up to now) and in the monograph [4] of Gorbuzov. In recent years, in connection
with the study of the arithmetical properties of the values of entire functions, the author of this paper has
developed a certain technique [5] [6], which turned out to be applicable to problems of analyzing entire
solutions of algebraic differential equations.

In the present paper, using this technique, possible entire solutions (solutions that are entire functions
of finite order) for a class of second-order algebraic differential equations with an explicit linear part are
described.

In what follows, by E[ω0, . . . , ωn] we will denote the annulus of polynomials over the field E of
variables [ω0, . . . , ωn] and by C(z), the field of rational functions over the field of complex numbers C.

If ϕ(z) : C ∈ C is an entire function, then we put Mϕ(R) = max|z|≤R |ϕ(z)|; by Nϕ(R) we denote the
number of zeros (with their multiplicity taken into account) of the function ϕ(z) on the disk |z| ≤ R; the
order ρ of an entire function is determined by the equality

ρ = lim
R→+∞

ln lnMϕ(R)

lnR
.

If ρ < +∞, then the function ϕ(z) is called an entire function of finite order.
The main result of this paper is the following statement.
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Theorem 1. Let, for i = 0, 1, 2, bi ∈ C[z] and b2 �≡ 0. Let A ∈ C[z, ω0, ω1, ω2] and, at the same time,
A(z, 0, ω1,−(b1/b2)ω1) does not lie in C(z). Let an entire function of finite order y = f(z) satisfy
the differential equation

b0y + b1y
′ + b2y

′′ + yA(z, y, y′, y′′) = 0.

Then there exist A1, A2 ∈ C[z] and B1, B2 ∈ C(z) such that

f(z) = B1e
A1 +B2e

A2 .

2. AUXILIARY STATEMENTS

Lemma 1 [5, Sec. 2, Corollary of Lemma 1]. For any number H > 0 and any complex numbers
α1, . . . , αn, it is possible to find, in the complex plane, a set of at most n disks whose sum of radii
is at most 2h such that, for each point z lying outside these disks, the following estimate holds:

h∑

withJ=1

1

|z − αj |
<

n(lnN + 1)

h
.

Lemma 2 [5, Sec. 2, Lemma 2]. Let δ ∈ (0; 1); let R > 101/δ ; and let BR be a finite set of disks whose
sum of radii is at least 2R1−δ lying in the annulus

CR = {2R ≤ |z| ≤ 3R}.
Then there exists a number R1 ∈ (2R; 3R) such that the circle βR1 = {z : /z/ = R1} does not
intersect the set BR.

The following statement is a slight enhancement of Lemma 3 from [5, Sec. 2].

Proposition 1. Let h(z) be an entire function of finite order ρ. Then, for any ε > 0, there exist
numbers R0 > 0 and σ > 0 such that the following assertion is valid: for any R > R0 and H > 0,
in the annulus CR = {2R ≤ |z| ≤ 3R}, one can choose a finite set ER of disks whose sum of radii
is at most 2H , so that, for any z ∈ CR \ER, the following estimate holds:

∣∣∣∣
h′(z)

h(z)

∣∣∣∣ ≤ σ

(
1 +Rρ+ε−1 +

Rρ+ε

H

)
.

Proof. Without loss of generality, we assume that h(0) = 1.
Indeed, if the assertion of the lemma is established for such functions, then, for h1(z) = Azmh(z)

(A ∈ C, m ≥ 1, h(0) �= 0), for the values of z specified in the assertion of the proposition, we have
∣∣∣∣
h′1(z)

h1(z)

∣∣∣∣ ≤
∣∣∣∣
h′(z)

h(z)

∣∣∣∣ +
m

|z| ≤
∣∣∣∣
h′(z)

h(z)

∣∣∣∣ +
m

R
,

and the required inequality will also hold for the function h1(z).
We fix an arbitrary ε > 0. Then there exists an R0 > 0 such that, for all R > R0, the following

estimate holds:

lnMh(R) < Rρ+ε/2. (1)

Let us put

E0(ω) = 1− ω, Em(ω) = (1− ω) exp

( m∑

k=1

ωk

k

)
, m ∈ N.

Then

Em(ω)

Em(ω)
=

ωm

ω − 1
.
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Denote p = [ρ]. Let {an} be all the zeros of the function h(z) (with their multiplicity taken into
account). By Hadamard’s theorem [7, Chap. 1], we have

∞∑

n=1

1

|an|p+1
< +∞ and h(z) = eQ(z)

∞∏

n=1

Ep

(
z

an

)
,

where Q(z) ∈ C[z] and degQ ≤ R. Then we obtain

h′(z)

h(z)
= Q′(z)−

∞∑

n=1

(z/an)
p

an − z
. (2)

Let N(t) denote the number of zeros of h(z) on the disk |z| ≤ t. Since h(0) �= 0, it follows that, for
some δ > 0, N(t) = 0 for any t ∈ [0, δ].

Let us arbitrary fix R > R0 and H > 0. By Lemma 1, inside the disk |z| ≤ 4R, there exists a finite set
BR of disks whose sum of radii is at most 2H , so that, for each z satisfying the conditions

{
|z| ≤ 4R,

z /∈ BR,

the following estimate holds:
∑

|an|≤4R

1

|z − an|
≤ N(4R)(lnN(4R) + 1)

H
.

Let γj , j = 0, 1, . . . , denote constants depending only on ε and h(z), and independent of R and H .
Then, since N(x) ≤ γ0 lnMh(x) [7, Chap. 1], taking into account estimate (1), we find that, for each z
such that {

|z| ≤ 4R,

z /∈ BR,

the following inequality holds:

∑

|an|≤4R

1

|z − an|
≤ γ0

Rρ+2ε/3

H
. (3)

We set

Σ1 =
∑

|an|≤R

|z/an|p
|an − z| , Σ2 =

∑

R<|an|≤4R

|z/an|p
|an − z| , Σ3 =

∑

|an|>4R

|z/an|p
|an − z| .

Let us estimate Σ1, Σ2, Σ3.
a) The first of these sums can be estimated as follows:

Σ1 ≤
∑

|an|≤R

(3R)p

|an|pR
≤ 3pRp−1

ˆ R

0

dN(t)

tp

≤ 3pRp−1

(ˆ R0

0

dN(t)

tp
+

ˆ R

R0

dN(t)

tp

)

≤ 3pRp−1

(ˆ R0

0

dN(t)

tp
+

N(t)

tp

∣∣∣∣
R

R0

+ p

ˆ R

R0

N(t)

tp+1
dt

)

≤ 3pRp−1

(ˆ R0

0

dN(t)

tp
+ γ1R

ρ+ε/2−p + p

ˆ R

R0

γ1t
ρ+ε/2−p−1 dt

)

≤ 3pRp−1

(ˆ R0

0

dN(t)

tp
+ γ1R

ρ+ε/2−p + γ2R
ρ+ε/2−p

)
≤ γ3R

ρ+ε/2−1.
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b) Let us estimate the second sum. Using (3), we obtain

Sigma2 ≤
∑

R<|an|≤4R

|z/an|p
|an − z| ≤ γ4

∑

|an|≤4R

1

|an − z| ≤ γ5
Rρ+2ε/3

H
.

c) The third sum can be estimated as follows:

Σ3 ≤
∑

|an|>4R

|z/an|p
|an| − |z| ≤

∑

|an|>4R

(3R)p

(|an| − (3/4)|an|)|an|p
≤ γ6R

p
∑

|an|>4R

1

|an|p+1
.

Without loss of generality, we assume that ε is quite small, so that ρ+ ε/2− p− 1 < 0. Then

Σ3 ≤ γ6R
p

∑

|an|>4R

1

|an|p+1
= γ6R

p

ˆ ∞

4R

dN(t)

tp+1

= γ6R
p

(
N(t)

tp+1

∣∣∣∣
+∞

4R

+ (p+ 1)

ˆ ∞

4R

N(t)

tp+2
dt

)
≤ γ7R

p

ˆ ∞

4R
tρ+ε/2−p−2 dt ≤ γ8R

ρ+ε/2−1.

Using the estimates for Σ1, Σ2, Σ3, from equality (2), we further find that, for any z /∈ BR,
∣∣∣∣
h′(z)

h(z)

∣∣∣∣ ≤ γ9

(
Rρ+ε−1 +

Rρ+ε

H

)
.

Putting ER = BR ∩ CR, we finally obtain the proof of Proposition 1.

Corollary 1. Under the assumptions of Proposition 1, for any natural n, for any ε > 0,
there exist numbers R0 > 0 and d > 0 such that, for any R > R0 and H > 0, in the annulus
CR = {2R ≤ |z| ≤ 3R}, we can choose a finite set of disks BR whose sum of radii is less than
2nH , so that, for any z ∈ CR \BR and k = 1, . . . , n, the following inequality holds:

∣∣∣∣
h(k)(z)

h(z)

∣∣∣∣ ≤ d

(
1 +Rρ+ε−1 +

Rρ+ε

H

)k

.

Proof. Note that, for any k = 0, 1, . . . , n, the order of the entire function h(k)(z) is ρ [7, Chap. 1]. We fix
arbitrary ε > 0 and H > 0. Let us apply Proposition 1 to each h(k)(z) (for k = 0, 1, . . . , n− 1). Then, for
any k = 0, 1, . . . , n− 1, there exist positive R0,k, σk such that, for any R > R0,k, there exists a set ERk

of disks whose sum of radii is less than 2H and, for any z ∈ CR \ERk
, the following estimate holds:

∣∣∣∣
h(k+1)(z)

h(k)(z)

∣∣∣∣ ≤ σk

(
1 +Rρ+ε−1 +

Rρ+ε

H

)
.

Now let R > maxk R0,k. Set BR =
⋃n−1

k=0 ER,k. Then, for any z ∈ CR \BR and any k = 1, . . . , n,
∣∣∣∣
h(k)(z)

h(z)

∣∣∣∣ =
k−1∏

l=0

∣∣∣∣
h(l+1)(z)

h(l)(z)

∣∣∣∣ ≤
( k−1∏

l=0

σl

)(
1 +Rρ+ε−1 +

Rρ+ε

H

)k

.

By putting d =
∏n−1

l=0 (max{1, σl}), we obtain the proof of Corollary1.

Lemma 3. Let f(z) be an entire function of finite order; let P ∈ C[z, ω] be a polynomial such that
∂P/∂ω �≡ 0; P (z, f(z)) = 0 for any z ∈ C. Then f(z) is a polynomial from the annulus C[z].

Proof. Let

P = am(z)ωm + · · ·+ an(z)ω
n,

where all the ai(z) belong to C(z), let 0 ≤ m ≤ n, and let am(z), an(z) be nonzero polynomials. If f(z)
is nonzero, then m < n and

am(z) + f(z)(am+1(z) + · · ·+ an(z)f
n−m(z)) ≡ 0 in C.
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Therefore, all the zeros of f(z) are included among the zeros of the polynomial am(z); therefore, by
Hadamard’s theorem, there exist polynomials b1(z), b2(z) ∈ C[z] such that f(z) = b1(z)e

b2(z).
Suppose that b2(z) is not a constant. We have

an(z)(b1(z)e
b2(z))n−m + · · ·+ am+1(z)b1(z)e

b2(z) + am(z) ≡ 0 in C. (4)

Let R > 0 be large enough for all the zeros of all the polynomials {ai(z)}, b1(z), b2(z) to lie inside the
disk |z| < R. Let zR ∈ C be a point such that |zR| = R and

max
|z|≤R

|b1(z)eb2(z)| = |b1(zR)eb2(zR)|.

If b2(z) = αdz
d + · · ·+ α0, αd �= 0, d ≥ 1, then

|b1(zR)eb2(zR)| ≥ eγ1R
d

(5)

for some constant γ1 > 0 independent of R. But then it follows from (4) that

1 =
−1

an(zR)

[
an−1(zR)

1

b1(zR)eb2(zR)
+ · · ·+ am(zR)

(b1(zR)eb2(zR))n−m

]
,

whence, by virtue of (5), we have

1 ≤ 1

|an(zR)|
(|an−1(zR)|e−γ1Rd

+ · · · + |am(zR)|e−γ1(n−m)Rd
) ≤ e−γ2Rd

for a constant γ2 > 0 independent of R; but this is impossible, because R → +∞. Therefore, b2(z) does
not depend on z and, therefore, f(z) is a polynomial from C[z]. Thus, Lemma 3 is proved.

Remark 1. Note that the assertion of Lemma 3 is also valid for entire functions of infinite order. This
can be deduced from the fact that a univalent algebraic function must be rational (see, for example [8,
pp. 215, 224]).

Lemma 4. Let an entire function y = f(z), other than a constant, satisfy the differential equation
y′ = R(z)y, where R(z) ∈ C(z). Then there exist z0 ∈ C and Q1, Q2 ∈ C[z] such that

1) e
´ z
z0

R(ω)dω
= Q1(z)e

Q2(z);

2) f(z) = γQ1(z)e
Q2(z) for some γ ∈ C.

Lemma 4 (in stronger form) was proved by Shidlovskii [8, Chap. 5, Lemma 11].

Lemma 5. Let P ∈ (C[z, ω0, ω1] \ C[z]) be a nonzero homogeneous (with respect to the variables
ω0, ω1) polynomial. Let f(z) be an entire function of finite order such that P (z, f(z), f ′(z)) = 0 in
C. Then f(z) = Q1(z)e

Q2(z) for some Q1(z), Q2(z) ∈ C[z].

Proof. If ∂P/∂ω0 ≡ 0, then P ∈ C[z, ω1] and P (z, f ′(z)) ≡ 0 in C. Then, by Lemma 3, f ′(z) is a
polynomial from C[z], and hence f(z) is also a polynomial.

Now let ∂P/∂ω0 �≡ 0. Taking out the maximum possible power ωm0
0 ωm1

1 (m0, m1 are nonnegative
integers), we find that P = ωm0

0 ωm1
1 Q, where Q ∈ C(z)[ω0, ω1] is homogeneous in ω0, ω1 and either

Q ∈ C[ω0], or Q ∈ C[ω1], or

Q = aNωN
0 + · · ·+ a0ω

N
1 ,

and a0, aN ∈ C[z] is nonzero. Then either f(z) ≡ 0, or f ′(z) ≡ 0, or

aN (f(z))N + · · ·+ a0(f
′(z))N ≡ 0 in C.

In the first two cases, f(z) ∈ C[z]. Let us consider the third case. We assume that f(z) is not a con-
stant. Suppose that there exists a z0 ∈ C such that f(z0) = 0; a0(z0) �= 0. Then f(z) = (z − z0)

dϕ(z)
for a natural number d ≥ 1 and ϕ(z0) �= 0.
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Then the function

h(z) =
f(z)

f ′(z)
=

(z − z0)ϕ(z)

dϕ(z) + (z − z0)ϕ′(z)

is holomorphic in some Oδ(z0), h(z0) = 0, and

aN (z)(h(z))N + · · ·+ a1(z)h(z) + a0(z) = 0

in this neighborhood Oδ(z0). But then, for z = z0, we have a0(z0) = 0.
The resulting contradiction with the choice of z0 means that any zero of the function f(z) is a

zero of the polynomial a0(z). Therefore (because f(z) is an entire function of finite order), there exist
polynomials Q1, Q2 ∈ C[z] such that f(z) = Q1(z)e

Q2(z). Thus, Lemma 5 is proved.

Remark 2. Lemma 5 can be proved without the assumption that the order of the entire function f(z) is
finite (using arguments similar to those of Shidlovskii in his proof of Lemma 1 [8, Chap. 6]).

Lemma 6. Let T ∈ C(z)[ω0, ω1], T /∈ C(z), and let T be irreducible in C(z)[ω0, ω1]. Let y = f(z) be
an entire function of finite order satisfying the system of equations

{
T (z, y, y′) = 0,

y′′ = α1y
′ + α0y,

(6)

where α0, α1 ∈ C(z). Then there exist A1, A2 ∈ C[z] and B1, B2 ∈ C(z) such that

f(z) = B1e
A1 +B2e

A2 .

Proof. Let Δ be the differential operator (in C(z)[ω0, ω1]) defined by the equality

Δ =
∂

∂z
+ ω1

∂

∂ω0
+ (α0ω0 + α1ω1)

∂

∂ω1
.

Then, for any solution y of the equation y′′ − α1y
′ − α0y = 0 and any polynomial B ∈ C(z)[ω0, ω1], the

following equality holds:

ΔB(z, y, y′) =
d

dz
(B(z, y, y′)).

If the polynomial T from the assertion of Lemma 6 does not depend on ω0 or on ω1, then, applying
Lemma 3, we obtain f(z) ∈ C[z].

Now let ∂T/∂ω0 �≡ 0, ∂T/∂ω1 �≡ 0. If T and ΔT are coprime, then, consideannulus the resultant
B = Resω1(T,ΔT ), we obtain B ∈ C(z)[ω0], B �≡ 0 and B(f(z)) ≡ 0 in C, whence, by Lemma 3, we
see that f(z) ∈ C[z].

Suppose that T and ΔT are not coprime. Then, by virtue of the irreducibility of T , there exists a
λ(z) ∈ C(z) such that ΔT = λ(z)T (if ΔT = 0, then λ(z) ≡ 0).

Let T =
∑N

i=0 Pi, where each of the Pi is a homogeneous (in ω0, ω1) polynomial of degree i.
Note that the operator Δ takes any homogeneous (with respect to the variables ω0, ω1) polynomial

from C(z)[ω0, ω1] to a homogeneous polynomial of the same degree or to zero. Since T /∈ C(z), it follows
that there exists a number i0 ≥ 1 such that Pi0 is a nonzero polynomial. Then ΔPi0 = λPi0 .

Suppose that f(z) has infinitely many zeros. By assumption, y = f(z) satisfies the equation
y′′ − α1y

′ − α0y = 0, where α0, α1 are rational functions of z. Let us choose the point z0 so that
f(z0) = 0 and z0 will not be a singular point of α0(z), α1(z), λ(z). By the properties of solutions of
a linear homogeneous equation, there exists a neighborhood Oδ(z0) of the point z0 and a holomorphic
function g(z) in it such that the following conditions hold in Oδ(z0):

a) α0(z), α1(z), λ(z) are holomorphic;

b) g(z) and f(z) are linearly independent over C;
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c) y = C1f(z) + C2g(z) is a solution in Oδ(z0) of the equation y′′ − α1y
′ − α0y = 0 for any

C1, C2 ∈ C.

For each C = (C1, C2) ∈ C
2, we set

ΦC(z) = Pi0(z, C1f + C2g,C1f
′ + C2g

′). (7)

Then (from the condition ΔPi0 = λPi0) we find that Φ′
C
(z) = λ(z)ΦC(z) for any z ∈ Oδ(z0). Hence

ΦC(z) = A(C1, C2)h(z), where h(z) = e
´ z
z0

λ(ω) dω
;

A(C1, C2) depends only on C1, C2 and does not depend on z.
Note that (due to the holomorphy in Oδ(z0) of the function λ(z)) h(z0) �= 0 (if λ(z) ≡ 0, then we

consider h(z) ≡ 1).
Thus,

Pi0(z, C1f(z) + C2g(z), C1f
′(z) + C2g

′(z)) = A(C1, C2)h(z). (8)

For g(z) we can take the function g(z) = f(z)h(z), where

h′(z) =
1

f2(z)
R1e

R2

with some rational functions R1, R2 of z; to do this, it is enough to consider the following differential
equation for the Wronskian

W =

∣∣∣∣
f(z) g(z)

f ′(z) g′(z)

∣∣∣∣ .

It follows from equality (8) that A(C1, C2) is a polynomial.
If A(C1, C2) = γ is a constant, then (putting C2 = 0 in (8)) we obtain

CN
1 Pi0(z, f(z), f

′(z)) = γh(z)

for any complex C1, whence γ = 0. In that case, Pi0(z, f(z), f
′(z)) ≡ 0, whence (by Lemma 5)

f(z) = Q1e
Q2 for some Q1, Q2 ∈ C[z].

But if the polynomial A(C1, C2) is not a constant, then there exist complex numbers C0
1 , C0

2 , not all
equal to zero, such that A(C0

1 , C
0
2 ) = 0. Then, from (8), we obtain

Pi0(z, C
0
1f(z) +C0

2g(z), C
0
1f

′(z) + C2g
′(z)) = 0.

If C0
2 = 0, then, by Lemma 5, we obtain the required form for f(z). If C0

2 �= 0, then (dividing the last
equality, by C0

1f + C0
2g), we see that

T (z, ϕ(z)) = 0

for some polynomial T ∈ C[z, w], other than a constant, where

ϕ(z) =
C0
1f

′(z) + C0
2g

′(z)

C0
1f(z) + C0

2g(z)
= (ln(C0

1f(z) + C0
2g(z)))

′.

Also note that

ϕ(z) =
C0
1f

′(z) + C0
2 (f(z)h(z))

′

C0
1f(z) + C0

2g(z)
=

C0
1f(z)f

′(z) + C0
2f

′(z)g(z) +C0
2R1e

R2

(C0
1f(z) + C0

2g(z))f(z)
.

Thus, the function ϕ(z) is an algebraic function.
In view of the equalities

g(z) = f(z)h(z) and h′(z) =
1

f2(z)
R1e

R2 ,
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if g(z) has critical points, then these points can only be singular points for the rational functions R1

and R2. But, in that case (integrating the corresponding Laurent series for h′(z)), we find that all the
branch points from C of the function ϕ(z) will necessarily be logarithmic, i.e., ϕ(z) in C does not have
any branch points of finite order. Therefore, ϕ(z) is a rational function, i.e.,

(ln(C0
1f(z) + C0

2g(z)))
′ ∈ C(z).

Then, decomposing the rational function into the sum of polynomials and simple partial fractions, we
obtain

C0
1f(z) + C0

2g(z) = Q1e
Q2 , where Q1, Q2 ∈ C(z).

Hence Q1e
Q2 is also a solution of the linear equation from (6).

Since C0
2 �= 0, it follows that, taking the function Q1e

Q2 for g(z) and repeating the above arguments,
we find that

f(z) = D1Q1e
Q2 +D2Q3e

Q4 under some D1,D2 ∈ C, Q3, Q4 ∈ C(z).

Consider the following system of equations (for eQ2 , eQ4):
{
(D1Q1e

Q2)′ + (D2Q3e
Q4)′ = f ′(z),

D1Q1e
Q2 +D2Q3e

Q4 = f(z).

If the determinant Δ of this system is identically zero, then we have the equation f ′(z) = λf(z) (for
some λ ∈ C(z)), whence (by Lemma 4) f(z) = R1e

R2 with R1, R2 ∈ C[z]. If Δ �= 0, then

eQ2 = α1f
′(z) + α2f(z), eQ4 = β1f

′(z) + β2f(z)

for some α1, α2, β1, β2 ∈ C(z). But then eQ2 , eQ4 cannot have finite essentially singular points, whence
Q2, Q4 ∈ C[z].

Thus, Lemma 6 is proved.

Remark 3. Note that the proof of Lemma 6 uses ideas expressed earlier by K. Siegel and A. B.
Shidlovskii (see, for example [2, pp. 192, 213, 214, 222]).

3. PROOF OF THEOREM 1

Let ρ be the order of the function f(z). Let us put ε = 1/2. Then, by the Corollary of Proposition 1,
there exists an R0 > 0 such that, for any R > R0, from the annulus CR = {2R < |z| < 3R} we can
throw out a set BR of finitely many disks whose sum of radii is at most 4R1−ε (we assume H = R1−ε),
so that, for any z ∈ CR \BR and k = 1, 2, the following estimate holds:

∣∣∣∣
f (k)(z)

f(z)

∣∣∣∣ ≤ δ

(
1 +Rρ+ε−1 +

Rρ+ε

H

)2

≤ γ1R
2ρ,

where γ1 does not depend on R.
Let us fix an arbitrary sufficiently large R > 0. Applying Lemma 2 (for δ = 2ε/3), we find that, for

some R1 ∈ (2R; 3R), the circle βR1 = {z : /z/ = R1} does not intersect the set of discarded disks BR,
whence, for k = 1, 2,

max
z∈βR1

∣∣∣∣
f (k)(z)

f(z)

∣∣∣∣ ≤ γ2R
2ρ. (9)

By assumption, the function y = f(z) satisfies the equation

b0y + b1y
′ + b2y

′′ + yA(z, y, y′, y′′) = 0.

Then, for z ∈ βR1 , we can write

b0 + b1
y′

y
+ b2

y′′

y
= −A(z, y, y′, y′′),
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whence, in view of (9), we have

max
|z|≤R

|A(z, y, y′, y′′)| ≤ max
z∈βR1

|A(z, y, y′, y′′)| ≤ Ra,

where a > 0 is a constant independent of R. But, in that case, by Liouville’s theorem (see, for
example [2, Chap. 1, Sec. 1]), the entire function A(z, f(z), f ′(z), f ′′(z)) is a polynomial, i.e., there
exists a q(z) ∈ C[z] such that, for y = f(z), the following equalities hold:

{
b0y + b1y

′ + b2y
′′ = q(z)y,

A(z, y, y′, y′′) = −q(z).

We put

T = A

(
z, ω0, ω1,−

(
b0 − q

b2
ω0 +

b1
b2
ω1

))
+ q(z).

Then T ∈ C(z)[ω0, ω1] and T /∈ C(z) (because, otherwise, for ω0 = 0, we have

A(z, 0, ω1,−(b1/b2)ω1) ∈ C(z),

which contradicts the assumptions of the theorem).
Let us put

α0 = −b0 − q

b2
, α1 = −b1

b2
.

Then, for y = f(z), the following equalities hold:
{
T (z, y, y′) = 0,

y′′ = α0y + α1y
′.

At the same time (replacing, if necessary, the polynomial T by its divisor), we can assume that T is
irreducible in C(z)[ω0, ω1]. But then, applying Lemma 6, we see that the assertion of Theorem 1 is valid.

4. CONCLUSIONS

In conclusion, we give a few remarks.

Remark 4. It is not difficult to give examples of differential equations of the kind described in Theorem 1,
such as the following ones:

a) 2zy′′ − (4z2 + 2)y′ + y((4z2 + 2)y2 − (y′′)2) = 0; y = ez
2

is an entire solution of this equation;

b) (zy)′′ − 3(zy)′ + 2zy + (z2 + 1)y(3((zy)′ − 2zy)2 − (zy)′′ + zy) = 0; y = (e2z − ez)/z is an en-
tire solution of this equation.

Remark 5. When proving Theorem 1, we essentially use the fact that f(z) is an entire function of finite
order. In general, the solutions of algebraic differential equations can also be entire functions of infinite
order (for example, f = ee

z
is the solution of the equation y′′y − (y′)2 − yy′ = 0). Nevertheless, it seems

to be a fair hypothesis that the possible solutions of equations with an explicit linear part (considered in
Theorem 1) will necessarily be of finite order if they are entire functions.

Remark 6. Statements similar to Theorem 1 proved in this paper can be obtained for some other classes
differential equations, for example, for equations of the form

(β2y
′′ + β1y

′ + β0y)
n + ynA(z, y, y′, y′′) = 0

with an arbitrary natural number n (the proof of such a statement practically repeats the proof of the
theorem in the paper).
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Remark 7. The paper dealt with equations with a selected linear part for n = 2:
n∑

i=0

βiy
(i) + yA(z, y, y′, . . . , y(n)) = 0.

The description of entire solutions of such equations for an arbitrary n is not known to the author.
(At present, it is possible to do this only for some special cases, for example, for equations of the form∑n

i=0 βiy
(i) + y2A(z, y, y′, . . . , y(n)) = 0.)
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