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Abstract—The Banach Contraction Mapping Principle has many generalizations and extensions
in different directions. Here we define (ε, ψ)-Uniformly Local Weak Contractions and show that
these mappings admit unique fixed points. We obtain a generalization of two existing results. We
construct an example which illustrates of our main result in which the mapping is neither a ψ-weak
contraction nor a local contraction.
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1. INTRODUCTION

Metric fixed point theory is a vast and expanding branch of functional analysis. It is widely held that
the theory has its origin in Banach’s Contraction Principle [1],[2], which was established in the year of
1922. This result has served to establish several important results is different branches of mathematics
[2]–[4]. It has several generalizations and extensions which were advanced over the years and still are
being actively pursued [3],[5]–[10]. In this paper, we consider two such generalizations, one is the fixed
point result of local contraction due to Edelstein [11] and the other is the fixed point result for weak
contractions first proved by Alber et al. [12] in Hilbert spaces and subsequently established in the metric
spaces by Rhoades [13]. The result in [13] has itself become a source of an area of fixed point theory
where weak inequalities are considered [14]–[19]. Our result in this paper combines the above two ideas
to lead to a unique fixed point result for uniform local weak contraction mappings that we define here.

2. PRELIMINARIES

In this section we recall some definitions and introduce the notion of local weak contraction.
In what follows, we denote by B(x, r) the open ball of radius r centered at the point x, by N the set of

natural numbers, and by R the set of real numbers.

Definition 1 (local contraction). [11] A map T : X → X is said to be locally (Banach) contractive
if, for every x ∈ X, there exist ε, λ (∈ R, with ε > 0, 0 ≤ λ < 1), which may depend on x, such that
∀ p, q ∈ B(x, ε),

d(T (p), T (q)) < λd(p, q).

Definition 2 (Uniform Local contraction). [11] A map T : X → X is said to be uniformly locally
contractive if it is locally contractive and both ε and λ do not depend on x.

It is usually abbreviated as “(ε, λ)−uniformly locally contractive" when the role of ε and λ are to be
stressed down.
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Definition 3 (ε-chainable metric space [11]). A metric space X is said to be ε-chainable (ε ∈ R, > 0)
if, for any x, y ∈ X, there is an ε-chain from x to y, that is, there are finite number of points a0, a1, ..., an
in X, with x = a0, y = an such that d(ai, ai+1) < ε, ∀i = 0, 1, ..., n − 1.

Note that ε-chainable metric spaces have appeared in the works like [11],[20]–[25].

Definition 4 (ψ-weak contraction). Let ψ : [0,∞) → [0,∞) be a given continuous function which is
nondecreasing and satisfies ψ(t) > 0 for t > 0 and ψ(0) = 0. A function T : X → X is said to be a
ψ-weak contraction if ∀x, y ∈ X, d(Tx, Ty) ≤ d(x, y) − ψ(d(x, y)).

Definition 5 (weak contraction [13]). A map T : X → X is said to be a weak contraction if there is
a continuous function ψ : [0,∞) → [0,∞) which is nondecreasing and satisfies ψ(t) > 0 for t > 0 and
ψ(0) = 0 and lim

t→∞
ψ(t) = ∞, such that

x, y ∈ X =⇒ d(Tx, Ty) ≤ d(x, y)− ψ(d(x, y)).

Remark 1. There is a subtle difference between weak contraction and ψ-weak contraction. While the
latter implies the former, it is possible that a weak contraction is not a ψ-weak contraction for a prior
given ψ. If we consider X = [0, 1], with the usual distance, T (x) = x− 1

2x
2 and ψ(t) = (1− λ)t, where

0 < λ < 1, then, although it is a weak contraction [15], but is not a ψ-weak contraction, for this given
ψ.

We now introduce a local version of the weak contraction.

Definition 6 ((ε, ψ)-uniform local weak contraction). Let ψ : [0,∞) → [0,∞) be a given continuous
function which is nondecreasing and satisfies ψ(t) > 0 for t > 0 and ψ(0) = 0. Let (X, d) be a metric
space. A function T : X → X is said to be an (ε, ψ)-uniform local weak contraction if

d(x, y) < ε =⇒ d(Tx, Ty) ≤ d(x, y)− ψ(d(x, y)). (1)

3. MAIN RESULTS

Theorem 1. Let ε > 0 and X be a complete, ε-chainable metric space. Supposeψ : [0,∞) → [0,∞)
be a continuous, nondecreasing function such that ψ(t) > 0 for t > 0 and ψ(0) = 0. Suppose also
that T : X → X is a self-map which is an (ε, ψ)-uniform local weak contraction, that is, for each
x, y ∈ X if d(x, y) < ε, then

d(Tx, Ty) ≤ d(x, y) − ψ(d(x, y)).

Then T has a unique fixed point x̄ in X.

Proof. Let x ∈ X be an arbitrary element. We construct a sequence {xn} such that

x0 := x, xi := T ix, ∀i ∈ N. (2)

As X is ε-chainable, let x = a0, a1, ..., an = Tx, be an an ε-chain from x to Tx, where

d(ai, ai+1) < ε, ∀i = 0, 1, .., n − 1. (3)

Since d(ai, ai+1) < ε,∀i = 0, 1, .., n − 1, equation-(1) is also satisfied for every pair of consecutive
elements of the chain. Thus, we have

d(Tai, Tai+1) ≤ d(ai, ai+1)− ψ(d(ai, ai+1)) ≤ d(ai, ai+1) < ε.

Inductively, we obtain d(Tmai, T
mai+1) < ε, for any m ∈ N.

Let Ri
m := d(Tmai, T

mai+1). Then,

Ri
m+1 = d(Tm+1ai, T

m+1ai+1) ≤ d(Tmai, T
mai+1)− ψ(d(Tmai, T

mai+1))

≤ d(Tmai, T
mai+1) = Ri

m.
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Thus, {Ri
m} is a nonincreasing sequence, and being bounded below (0 is a lower bound), it must be

convergent. Suppose lim
m→∞

Ri
m = Ri ≥ 0, for each i = 0, 1, ..., n − 1.

Again, we have

Ri
m+1 ≤ Ri

m − ψ(Ri
m)

⇒ lim
m→∞

Ri
m+1 ≤ lim

m→∞
Ri

m − lim
m→∞

ψ(Ri
m)

⇒ Ri ≤ Ri − ψ(Ri) [since ψ is continuous]

⇒ ψ(Ri) = 0

⇒ Ri = 0. (4)

Now using triangle inequality, we have

d(xm, xm+1) = d(Tmx, Tm(Tx)) ≤
n−1∑

i=0

d(Tmai, T
mai+1) =

n−1∑

i=0

Ri
m. (5)

Taking limit m −→ ∞, we obtain,

lim
m→∞

d(xm, xm+1) ≤ lim
m→∞

n−1∑

i=0

Ri
m =

n−1∑

i=0

lim
m→∞

Ri
m = 0. (6)

We will show that {xn} is a Cauchy sequence.

Let ε1 > 0 be chosen arbitrarily and take ε0 = min{ε, ε1} > 0. As lim
m→∞

d(xm, xm+1) = 0, ∃ k ∈ N

such that

d(xk, xk+1) < min{ε0
2
, ψ(

ε0
2
)}. (7)

We note that if d(y, xk) < ε0 ≤ ε, then (1) holds for x = xk. Thus, if y ∈ B(xk,
ε0
2 ), we have,

d(Ty, xk) ≤ d(Ty, Txk) + d(Txk, xk)

≤ d(y, xk)− ψ(d(y, xk)) + d(xk, xk+1)

<
ε0
2

− ψ(d(y, xk)) +
ε0
2

[ ∵ y ∈ B(xk,
ε0
2
)]

≤ ε0 − ψ(d(y, xk))

≤ ε0. (8)

∴ Ty ∈ B(xk, ε0),∀y ∈ B(xk,
ε0
2 ).

Also, if ε0
2 ≤ d(y, xk) ≤ ε0, by monotonicity of ψ, we have ψ(ε02 ) ≤ ψ(d(y, xk)).

d(Ty, xk) ≤ d(Ty, Txk) + d(Txk, xk)

≤ d(y, xk)− ψ(d(y, xk)) + d(xk, xk+1)

≤ d(y, xk)− ψ(
ε0
2
) + ψ(

ε0
2
)

≤ d(y, xk)

≤ ε0. (9)

By the above two cases we have Ty ∈ B(xk, ε0),∀y ∈ B(xk, ε0), which implies xm ∈ B(xk, ε0) for
all m ≥ k. Hence d(xm, xk) < ε0 ≤ ε1 for all m ≥ k, and thus {xn} is a Cauchy sequence. X
being complete, {xn} must converge to some x̄ ∈ X. Again for any ε2 > 0 let δ = min{ε, ε2}. Now,
if d(x, y) < δ, then d(x, y) < ε and thus d(Tx, Ty) ≤ d(x, y)− ψ(d(x, y)) ≤ d(x, y) < δ ≤ ε2, which
means that T is continuous. Therefore, x̄ = lim

n→∞
xn+1 = lim

n→∞
T (xn) = T x̄. Therefore, x̄ is a fixed

point of T .
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We now prove that x̄ is unique. If not, let ∃ ȳ (
= x̄) ∈ X such that ȳ = T ȳ. Then d(x̄, ȳ) > 0.
Now consider the ε-chain from x̄ to ȳ. Let x̄ = b0, b1, ..., bp = ȳ be an an ε-chain from x̄ to ȳ. Thus,
d(bi, bi+1) < ε,∀i = 0, 1, .., p − 1. By the same argument as we reached (5) we obtain that

d(x̄, ȳ) = d(Tmx̄, Tmȳ) ≤
p−1∑

i=0

d(Tmbi, T
mbi+1). (10)

Taking limit m −→ ∞ we obtain, d(x̄, ȳ) = 0, which is a contradiction. Hence the fixed point would be
unique.

Remark 2. The above result generalizes the result of Edelstein[11] and the result of Rhoades [13] in the
context of ε-chainable metric spaces.

The next result shows that instead of assuming the whole space X to be ε-chainable, if T (X) only is
assumed to be so, the conclusion of the previous result still remains valid.

Theorem 2. Let ε > 0, and let X be a complete metric space. Suppose ψ : [0,∞) → [0,∞)
be a continuous, nondecreasing function such that ψ(t) > 0 for t > 0 and ψ(0) = 0. Also let
T : X → X be a self-map which is (ε, ψ)-uniform local weak contraction, that is, for each x, y ∈ X
if d(x, y) < ε, then

d(Tx, Ty) ≤ d(x, y) − ψ(d(x, y)).

If T (X) is closed and ε-chainable, then T has a unique fixed point.

Proof. Let z ∈ X be arbitrary, then Tz ∈ T (X). We write x0 = x = Tz and set xn = T nx, for
n = 1, 2, ... . Then repeating the same argument as in Theorem 1, we assure the existence of a fixed
point in T (X) and hence in X. For the uniqueness part, we note that if z is any fixed point of T , then
z = T (z) ∈ T (X). Then following the same argument for the uniqueness part as in Theorem 1, we
assure the uniqueness of the fixed point.

4. ILLUSTRATIVE EXAMPLE

In this section we present an example to show that our theorem is applicable to a function which
is neither a uniform local (Banach) contraction nor a ψ-weak contraction on the whole space, for a
preassigned ψ.

Example 1. Let X = A ∪B, where A =
{
(x(t), y(t)) : x(t) = 1/2 − t, y(t) = 0, 0 ≤ t ≤ 1/2

}
and

B =
{
(x(s), y(s)) : x(s) = 0, y(s) = s+ 1/4, 0 ≤ s ≤ 1/4

}
.

X is clearly a complete subspace of the metric space R
2 with the usual distance d. Further we note

that, X is η-chainable for any η > 1/4.
Let ψ : [0,∞) → [0,∞) be defined by ψ(u) = u2/2. Clearly, ψ is a continuous, nondecreasing

function such that ψ(t) > 0 for t > 0 and ψ(0) = 0.
Let T : X → X be defined by

T (x(u), y(u)) =

{(
1
2 −

(
u− 1

2u
2
)
, 0

)
if (x, y) ∈ A(

1
2 −

{(
u+ 3

4

)
− 1

2

(
u+ 3

4

)2}
, 0

)
if (x, y) ∈ B.

First, we show that T is not a uniform local (Banach) contraction. If possible, let T be a uniform local
contraction. Then there exist ε, λ (with ε > 0, 0 ≤ λ < 1) such that, for all U, V ∈ X,

if d(U, V ) < ε, then d(T (U), T (V )) < λd(U, V ). (11)

Let t = min{ε, (1− λ)/2}. Now if we consider the points U(1/2, 0) and V (1/2− t, 0) then d(U, V ) = t
and

d(TU, TV ) = d

((
1

2
, 0

)
,

(
1

2
−

{
t− 1

2
t2
}
, 0

))
= t− 1

2
t2.
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Since d(U, V ) = t < ε, relation-(11) is satisfied. Thus, we obtain

t− 1

2
t2 <λt,

or t− 1

2
t2 <(1− 2t)t [because t ≤ (1− λ)/2 =⇒ λ ≤ 1− 2t],

or − 1

2
t2 <− 2t2. (12)

Relation (12) is absurd. So we arrive at a contradiction, and thus T is not a uniform local contraction.
Now, we show that T is not a ψ-weak contraction. For this, consider a pair of points U(1/2, 0) and

V (0, 1/2) of X corresponding to t = 0 and s = 1/4, respectively. Then

d(U, V ) =

√
2

2
, d(U, V )− ψ(d(U, V )) =

√
2

2
− 1

2
× 1

2
=

2
√
2− 1

4
.

Again,

T

((
1

2
, 0

))
=

(
1

2
−

(
0− 1

2
× 02

)
, 0

)
=

(
1

2
, 0

)
,

T

((
0,

1

2

))
=

(
0,

1

2
−

(
1− 1

2
× 12

))
= (0, 0).

Thus,

d(T (U), T (V )) =
1

2
�

2
√
2− 1

4
= d(U, V )− ψ(d(U, V )).

Hence relation (1) is not satisfied for this pair of points, which shows that it is not a ψ-weak contraction.
We now show that T is a (η, ψ)-uniformly local weak contraction map, for some η > 0.
Let us now consider the following cases.

Case I : Let us consider two points P (x(t), y(t)) ∈ A and Q((x(s), y(s)) ∈ B, where 0 ≤ t ≤ 1/2 and
0 ≤ s ≤ 1/4. Then

d(P,Q) =

√(
1

2
− t

)2

+

(
s+

1

4

)2

.

Thus,

d(P,Q)− ψ (d(P,Q)) =

√(
1

2
− t

)2

+

(
s+

1

4

)2

− 1

2

((
1

2
− t

)2

+

(
s+

1

4

)2
)
.

Now,

d (T (P ), T (Q)) =d

(
(
1

2
− (t− 1

2
t2), 0),

(
1

2
−

{(
s+

3

4

)
− 1

2

(
s+

3

4

)2
}
, 0

))

=

{(
s+

3

4

)
− 1

2

(
s+

3

4

)2
}

−
(
t− 1

2
t2
)
.

Consider the function F : R× R → R, defined by

F (t, s) =

⎧
⎨

⎩

√(
1

2
− t

)2

+

(
s+

1

4

)2

− 1

2

((
1

2
− t

)2

+

(
s+

1

4

)2
)⎫
⎬

⎭

−
{{(

s+
3

4

)
− 1

2

(
s+

3

4

)2
}

−
(
t− 1

2
t2
)}

.
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Now F (1/2, 0) > 0 and F is continuous at (1/2, 0). Thus, by the Neighborhood property of Continuous
functions, there is a δ − neighborhood of the point (1/2, 0) where the function assumes only positive
values.

Thus, for t = 1/2 and s = 0, the corresponding pair of points (0, 0) ∈ A and (0, 1/4) ∈ B satisfies
the relation (1) and there is some δ with 1/4 > δ > 0, such that, for all pair of points R(x(t), y(t)) ∈ A
and S((x(s), y(s)) ∈ B), where t ∈ (1/2 − δ, 1/2] and s ∈ [0, δ), relation (1) remains satisfied.

Now let us consider α ≥ 0 be such that α ≤ δ. The points corresponding to parametric values
t = 1/2 − α and s = α are P (α, 0) and Q(0, 1/4 + α), respectively, and the distance between them is

d(P,Q) = d

(
(α, 0) ,

(
0,

1

4
+ α

))
=

√

α2 +

(
1

4
+ α

)2

.

∴ d(P,Q)− ψ (d(P,Q)) =

√

α2 +

(
1

4
+ α

)2

− 1

2

{
α2 +

(
1

4
+ α

)2
}

= g(α)(say).

d(P,Q)− 1
2(d(P,Q))2 = g(α) is a strictly increasing function of d(P,Q) when d(P,Q) < 1. Thus, g(α)

is increasing with respect to α, for 0 ≤ α < 1/4. Hence the minimum value of g(α) in [0, 1/4) is 7/32,
corresponding to α = 0. Now,

d (T (P ), T (Q)) =

{(
3

4
+ α

)
− 1

2

(
3

4
+ α

)2
}

−
{(

1

2
− α

)
− 1

2

(
1

2
− α

)2
}

=
3

32
+

3

4
α = f(α)

(say), which is clearly a continuous and increasing function of α. In particular, for α = 0.1, we
have d (T (P ), T (Q)) = 27/160 < 7/32, the minimum value of the R. H. S of (1) in this case. Thus,
f(α) < f(0.1) = 27/160 < 7/32 = g(0) < g(α). Thus, for α ≤ 0.1 the inequality (1) is satisfied. Hence
we can choose δ = 0.1

Thus, in this case we see that the pair of points P,Q (where P ∈ A,Q ∈ B), whose distance is less
than

η =

√

0.12 +

(
1

4
+ 0.1

)2

≈ 0.3640,

satisfies relation (1).
Case II : P (x(s1), y(s1)), Q((x(s2), y(s2)) ∈ B), 0 ≤ s1 ≤ s2 ≤ 1/4.

d(T (P ), T (Q)) =

{(
s2 +

3

4

)
− 1

2

(
s2 +

3

4

)2
}

−
{(

s1 +
3

4

)
− 1

2

(
s1 +

3

4

)2
}

=(s2 − s1)−
1

2

{(
s2 +

3

4

)2

−
(
s1 +

3

4

)2
}

=(s2 − s1)−
1

2

{(
s2

2 − s1
2
)
+ 2× 3

4
(s2 − s1)

}
=

1

4
(s2 − s1)−

1

2

(
s2

2 − s1
2
)
.

Now, d(P,Q) = s2 − s1. Therefore,

d(P,Q) − ψ(d(P,Q)) = d(P,Q) − 1

2
(d(P,Q))2 = (s2 − s1)−

1

2
(s2 − s1)

2.

Since 0 ≤ s1 ≤ s2, we note that s22− s1
2 = (s2 + s1)(s2 − s1) ≥ (s2 − s1)(s2 − s1) = (s2 − s1)

2. Thus,
we have

1

4
(s2 − s1)−

1

2

{
s2

2 − s1
2
}
≤ (s2 − s1)−

1

2
(s2 − s1)

2.

Therefore, (1) is satisfied. In particular, if d(P,Q) < η, then (1) is also satisfied.
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Case III : P (x(t1), y(t1)), Q((x(t2), y(t2)) ∈ A), 0 ≤ t1 ≤ t2 ≤ 1
2 . Then

d(T (P ), T (Q)) =

{
t2 −

1

2
t2

2

}
−

{
t1 −

1

2
t1

2

}
= (t2 − t1)−

1

2

{
t2

2 − t1
2
}
.

Also, d(P,Q) = t2 − t1. Therefore,

d(P,Q)− ψ(d(P,Q)) = d(P,Q)− 1

2
(d(P,Q))2 = (t2 − t1)−

1

2
(t2 − t1)

2.

Since 0 ≤ t1 ≤ t2, we note that

t2
2 − t1

2 = (t2 + t1)(t2 − t1) ≥ (t2 − t1)(t2 − t1) = (t2 − t1)
2.

Thus, we have

(t2 − t1)−
1

2

{
t2

2 − t1
2
}
≤ (t2 − t1)−

1

2
(t2 − t1)

2.

Thus, (1) is satisfied. In particular, if d(P,Q) < η, then (1) also holds.
Hence, from the above cases we can conclude that the function T is an (η, ψ)- uniformly locally weak

contraction for η = 0.36. The space X is 0.36-chainable. Thus, all the conditions of Theorem 1 are
satisfied. The point (1/2, 0) is a fixed point of T .
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