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1. INTRODUCTION AND MAIN RESULTS

The problem we consider is a particular case of the following question, which is quite typical in
additive combinatorics. One considers a function of several variables and explores how big is the image
of the function as the arguments run along a finite set A; see [1], [2].

We consider the following formulation of this problem. Let A be a finite subset of a field F, and let
Dn(A) be the set of all determinants of matrices with entries in A, namely,

Dn(A) = {D ∈ F | ∃ aij ∈ A, 1 ≤ i, j ≤ n, det((aij)) = D},
where the symbol (aij) denotes the matrix with elements aij . How big is the set Dn(A) compared to the
set A?

Some related problems were considered in [3]–[5], in particular, the problem of the distribution of
determinants. A continuous counterpart of the problem under examination was presented in [6]. The
quantities |Dn(A)| for n = 3, 4 were studied in [7]. For example, it was proved that the condition
|A| > √

q implies |D3(A)| > q/2, and D4(A) = Fq (here q is a prime power and Fq is the field of order
q). Some other related questions were also studied there. The set D2(A) = AA−AA has also attracted
great attention in recent years (see [2], [8], and references therein).

It was proved in [3] that, for a set A which is a subset of the field F = Fp, i.e., a field whose cardinality
is equal to a prime p, under certain restrictions on the cardinality of A, there exists a c > 0 for which

|Dn(A)| ≥ (log |A|)−c|A|3+1/45−137/(45×2n/2 ).

There are also some other related results in the mentioned paper.
We will prove that, for F = Fp, where p is a prime, and an arbitrary subset A, the value of the power

grows without bound as the size of matrices tends to infinity; more precisely,

|Dn(A)| ≥
1

8
min(|A|c logn, p),

where c > 0 is an effective universal constant. In particular, the constant c = 1/10 is suitable; see
Corollary 3.

The theorem remains true for an arbitrary field of characteristic zero (of course, one can consider p
on the right-hand side to be +∞ in this case); see Remark 2. An analogous theorem is also true for an
arbitrary finite field Fq, where q = pr, under a natural additional assumption.
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Theorem 1. Let A ⊂ Fq, q = pr, be such that A is not contained in a multiplicative shift of a proper
subfield. Then

|Dn(A)| ≥ min(|A|C logn, q).

for some universal constant C > 0.

All mentioned results remain true for the set of permanents instead of the set of determinants; see
Remark 3.

2. MAIN DEFINITIONS

For any sets A and B, natural number n, and an element of a field a0 of a field F, the following
operations are defined:

A+B = {a+ b | a ∈ A, b ∈ B}, AB = {ab | a ∈ A, b ∈ B},
a0 ∗ A = {a0a, a ∈ A},

nA = {a1 + a2 + · · · + an | a1, . . . , an ∈ A}, An = {a1a2 · · · an | a1, . . . , an ∈ A}.
The symbol 0n denotes the zero matrix of size n× n.

By log n we denote the logarithm of n to base 2.

3. PROOF OF THE MAIN RESULT

First, we want to reduce our problem to the case when the set A includes the numbers 0 and 1. We
need the following lemma for this purpose.

Lemma 1. Let |A| ≥ 2. Then D2n(A) ⊃ b0 ∗Dn(A−A) for some b0 ∈ F \ {0}.

Proof. Let M0 be an n× n matrix with entries in A such that det(M0) �= 0. As M0 one can always take
a matrix of the form ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

b b b . . . b b

a b a . . . a a

a a b . . . a a
...

...
...

. . .
...

...
a a a . . . b a

a a a . . . a b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where b ∈ A \ {0} and a ∈ A \ {b}. Let now M1 and M2 be matrices of size n× n with entries from the
set A. Then D2n(A) contains the determinant of the following block matrix:

(
M0 M1

M0 M2

)
.

The determinant of this matrix is equal to the determinant of the difference of the matrices M2 and M1

multiplied by the determinant of the matrix M0. Indeed, it is easy to obtain a corner of zeros:

det

(
M0 M1

M0 M2

)
= det

(
M0 M1

0n M2 −M1

)
= det(M0) det(M2 −M1).

Therefore, we have the inclusion D2n(A) ⊃ det(M0) ∗Dn(A−A).

Corollary 1. Let |A| ≥ 2. Then there is a set A′ with the properties

A′ = −A′, A′ ⊃ {0, 1}, |A′| ≥ |A|,
and |D2n(A)| ≥ |Dn(A

′)|.
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Proof. For A′ one can take the set (b1)
−1 ∗ (A−A), where b1 is an arbitrary element of the set

(A−A) \ {0}. By the previous lemma, we have

D2n(A) ⊃ b0 ∗Dn(A−A) = b0(b1)
n ∗Dn(A

′).

Theorem 2. Let A = −A, A ⊃ {0, 1}. Then, for any m,n ∈ N,

Dm(n−1)+1(A) ⊃ nAm.

Proof. Before the general case of arbitrary m and n, we consider the case where m = 3 and n = 2, 3, 4
(it is enough to take a diagonal matrix for n = 1). We have

n = 2: det

⎛
⎜⎜⎜⎝

0 b1 b2 b3
a1 1 0 0

a2 0 1 0

a3 0 0 1

⎞
⎟⎟⎟⎠ = −(a1b1 + a2b2 + a3b3).

Taking arbitrary elements of A for ai and bi, i = 1, 2, 3, we obtain D4(A) ⊃ 3A2.

Further, we have

n = 3: det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 c1 0 c2 0 c3 0

0 1 b1 0 0 0 0

a1 0 1 0 0 0 0

0 0 0 1 b2 0 0

a2 0 0 0 1 0 0

0 0 0 0 0 1 b3
a3 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= a1b1c1 + a2b2c2 + a3b3c3.

Substituting different ai, bi, ci ∈ A into this formula, we obtain D3(2−1)+1(A) ⊃ 3A3.

Now let us consider a matrix for 3A4. We have

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 d1 0 0 d2 0 0 d3 0 0

0 1 c1 0 0 0 0 0 0 0

0 0 1 b1 0 0 0 0 0 0

a1 0 0 1 0 0 0 0 0 0

0 0 0 0 1 c2 0 0 0 0

0 0 0 0 0 1 b2 0 0 0

a2 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 c3 0

0 0 0 0 0 0 0 0 1 b3
a3 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −(a1b1c1d1 + a2b2c2d2 + a3b3c3d3).

For mAn one can write down the necessary matrix in the following way. Let a = {a1, . . . , an}, where
ai = (ai,1, . . . , ai,n). Let us define a matrix M(ai) as

M(ai) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ai,n−1 0 . . . 0 0

0 1 ai,n−2 . . . 0 0

0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 ai,2
0 0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Now we can define a block matrix M(a):

M(a) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a1,n 0 0 . . . 0 . . . am,n 0 0 . . . 0
0

M (a1)

. . .

0n−1
0 . . .
... . . .
0 . . .

a1,1 . . .
...

...
...

...
...

...
. . .

...
...

...
...

...
0

0n−1

. . .

M (am)
0 . . .
... . . .
0 . . .

am,1 . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Then

det(M(a)) = (−1)n+1
m∑
i=1

n∏
j=1

ai,j.

Indeed, all nonzero elements of the matrix M(a) in the rows from (i− 1)(n− 1) + 2 to i(n− 1) + 1 lie
only in the first column and in the block with M(ai). Moreover, in the first column, we can choose only
one of the m elements ai,1. Suppose that we have chosen ai0,1 in the first column. Then we cannot
pick an element of the last row in the block with M(ai0); thus, in the last column, we must pick the
element ai0,2 Further, we cannot pick elements of the last two rows in the third column, so that we
inevitably choose ai0,3 in that column, and so on. Finally, we pick the element ai0,n−1 in the second
column of the block with M(ai0). Now, in the column with index (i0 − 1)(n − 1) + 1 of the original
matrix, we can pick only ai0,n. The product of the entries already chosen equals

∏n
j=1 ai0,j . Now if

one removes the rows and columns with already chosen entries from the matrix, there remains an upper
triangular matrix with all diagonal elements equal to 1. It is also easy to show that the sign of the
permutation corresponding to the chosen entries is always the same (although, this is inessential for our
considerations, because the set A is symmetric with respect to zero). Thus, picking a with all possible
ai,j ∈ A, we obtain Dm(n−1)+1(A) ⊃ mAn.

Remark 1. It is easy to see that the following generalization of the previous statement takes place.
Under the assumptions of the previous theorem, let

k = m1(n1 − 1) +m2(n2 − 1) + · · ·+mj(nj − 1);

then

Dk(A) ⊃ m1A
n1 +m2A

n2 + · · ·+mjA
nj .

Corollary 2. For an arbitrary set A,

|D2(m(n−1)+1)(A)| ≥ |m(A−A)n|.

The main result is a consequence of the following lemma (see [9]).

Lemma 2. For an arbitrary A ⊂ Fp,

|8nAn − 8nAn| ≥ 1

8
min(|A|n, p).
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Proof. In Sec. 5 of [9], it was proved that if |A| ≥ 5 and Nn = 5 · 4n/24− 1/3, then

|NnA
n −NnA

n| ≥ 3

8
min

(
|A|n, p− 1

2

)
.

The required estimate is obvious for |A| = 0 and |A| = 1, and for |A| ≥ 2, we have |4A| ≥ 5 by the
Cauchy–Davenport theorem, and so

|8nAn − 8nAn| ≥ |4nNnA
n − 4nAn| ≥ |Nn(4A)

n −Nn(4A)
n| ≥ 3

8
min

(
|A|n, p− 1

2

)
,

which gives the desired result, because p− 1 ≥ p/3 for p ≥ 3, and the case p = 2 is trivial.
Lemma 2, together with Corollary 2, gives

D8n+1(A) ≥ 1

8
min(|A|n, p),

which implies the main result.

Corollary 3. The following estimate holds:

Dn(A) ≥
1

8
min(|A|0.1 logn, p).

Proof. It is easy to see that

|Dn(A)| ≥
1

8
min(|A|(log n)/(log 8)−2).

For n ≤ 210, we have (1/10) log n ≤ 1, and for n ≥ 210, we have (log n)/(log 8)− 2 ≥ (1/10) log n.

Remark 2. The above result remains true for fields of characteristic 0, since statements like Lemma 2
remain true in this case (moreover, their proofs become easier).

Remark 3. In [3] and [10], a problem similar to ours but for permanents instead of determinants was
considered. In particular, it was proved there that the number of distinct permanents of matrices with
entries in a set A is at least |A|2−1/6+o(1), where o(1) tends to zero with the growth of matrix size.
It is not hard to see that the results obtained here give the same estimate as in Corollary 3 but for
permanents. Indeed, in the matrices appearing in Theorem 2, the signs of all permutations which give
nonzero products of elements are the same. So the permanents of these matrices can differ from their
determinants only in sign.

The following result can be easily derived from Corollary 3.

Corollary 4. Let δ ∈ (0, 1). Then Dn(A) = Fp if |A| ≥ pδ, n ≥ 8e10/δ .

The case of a field Fq, q = pr, can be handled in a similar way by using results of [11], from which
one can easily derive a generalization of Lemma 2 to the case of an arbitrary finite field. Below we give a
simplified version of Lemma 18 from the cited paper.

Corollary 5. Let A ⊂ Fq, q = pr, be such that A is not contained in a multiplicative shift of a
proper subfield and |A| < q1/4. Then

|6nA2n − 6nA2n| ≥ min(q1/4, |A|n).

The proof of an analog of Lemma 2 also uses Proposition 1 from the paper cited above. Below we
formulate its simplified version.

Corollary 6. Let A ⊂ Fq, q = pr, be such that A is not contained in a multiplicative shift of a
proper subfield. Then the following estimate is true:

|16A3 − 16A3| ≥ min(q, |A|2).
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Combining the last two corollaries, one obtains the following statement.

Lemma 3. Let A ⊂ Fq, q = pr, be such that A is not contained in a multiplicative shift of a proper
subfield. Then the following estimate is true:

|69(n+2)A18n − 69(n+2)A18n| ≥ min(q, |A|n).

Theorem 1 can be proved similarly to Corollary 3 but with the use of Lemma 3 instead of Lemma 2.

Obviously, |Dn(A)| ≤ |A|n2
. The following example shows that the upper bound is much sharper

than the trivial one for some sets. For simplicity, we consider it in a field of characteristic zero.

Example. If the estimate |Dn(A)| ≥ C(n)|A|nα
with some C(n) > 0 is true for every set A ⊂ R, then α

cannot exceed 1. Indeed, if A = {1, . . . ,m}, then, since An ⊂ [1, . . . ,mn], we have

Dn(A) ⊂ [−n!mn, n!mn], so that |Dn(A)| ≤ C ′(n)mn ≤ C ′(n)|A|n.
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