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Abstract—The sub-Laplacian plays a key role in CR geometry. In this paper, we investigate
eigenvalues of the sub-Laplacian on bounded domains of strictly pseudoconvex CR manifolds,
strictly pseudoconvex CR manifolds submersed in Riemannian manifolds. We establish some
Levitin–Parnovski-type inequalities and Cheng–Huang–Wei-type inequalities for their eigenval-
ues. As their applications, we derive some results for the standard CR sphere S

2n+1 in C
n+1, the

Heisenberg group H
n, a strictly pseudoconvex CR manifold submersed in a minimal submanifold in

R
m, domains of the standard sphere S2n and the projective space FPm.
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1. INTRODUCTION

The study of eigenvalues of differential operators on manifolds is an important field in geometry
and analysis. In the past decades, some progress has been made. Let Ω be a bounded domain in a
Riemannian manifold M . The Dirichlet Laplacian problem is described by{ −Δu = μu, in Ω,

u|∂Ω = 0,
(1)

where Δ is the Laplacian. It has a real and discrete spectrum: 0 < μ1 < μ2 ≤ · · · ≤ μk ≤ · · · . When
M is R

2, Payne, Pólya and Weinberger [1] proved that the eigenvalues of problem (1) satisfy μ2 ≤ 3μ1

and μ2 + μ3 ≤ 6μ1. This led to the famous Payne–Pólya–Weinberger’s conjecture on the lower order
eigenvalues of problem (1) on a bounded domain Ω ⊂ R

n. Yau included this conjecture in his famous
problem lists (cf. [2]). In 1992, Ashbaugh and Benguria [3] gave the proof of the first part of this
conjecture. In 1993, they [4] proved that the second part of Payne–Pólya–Weinberger’s conjecture
holds under the assumption that Ω is invariant with respect to 90◦ rotations. In [4], they established a
universal inequality

n∑
i=1

μi+1 ≤ (n+ 4)μ1 (2)

for Ω ⊂ R
n. In 2008, Sun, Cheng and Yang [5] obtained some universal inequalities for eigenvalues

of problem (1) on bounded domains in the unit sphere, in complex projective space, and in compact
complex submanifolds of complex projective spaces. Chen and Cheng [6] proved that (2) still holds when
Ω is a bounded domain in an n-dimensional complete Riemannian manifold isometrically minimally
immersed in a Euclidean space with mean curvature vector field H. In fact, they obtained

n∑
i=1

μ̃i+1 ≤ (n+ 4)μ̃1, where μ̃i = μi +
n2

4
H2

0 , H0 = max
x∈Ω

|H(x)|. (3)
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Since R
n can be seen as a totally geodesic minimal hypersurface in R

n+1, we know that the result (2) of
Ashbaugh and Benguria is included in (3). On the other hand, Levitin and Parnovski [7] generalized (2)
to

n∑
i=1

μi+j ≤ (n+ 4)μj , (4)

where j is any positive integer. A remarkable point of (4) is that it gives some estimates for the upper
bounds of μj+1 + · · ·+ μj+n in terms of μj . Moreover, it covers (2) when j = 1. This inequality has
since then been referred to the Levitin–Parnovski inequality. On the other hand, for the clamped plate
problem: {

Δ2u = Γu, in Ω,

u|∂Ω = 0

on a bounded domain Ω in an n-dimensional complete Riemannian manifold M , Cheng, Huang and Wei
[8] derived

n∑
i=1

(Γi+1 − Γ1)
1/2 ≤

[
(2n+ 4)Γ

1/2
1 + n2H2

0

]1/2(
4Γ

1/2
1 + n2H2

0

)1/2

, (5)

where H0 is a nonnegative constant which only depends on M and Ω. Observe that (5) also gives a
estimate for the lower eigenvalues in terms of the first eigenvalue.

In recent years, there is increasing interest in the research of the sub-Laplacian Δb on a strictly
pseudoconvex CR manifold. A CR manifold is a differentiable manifold together with a subbundle of
the complexified tangent bundle which is formally integrable and almost Lagrangian. The canonical
examples of CR manifolds include the real (2n+ 1)-dimensional sphere as a submanifold of Cn+1, and
the Heisenberg group H

n. Let (M,θ) be a strictly pseudoconvex CR manifold, where 1-form θ is called
pseudo-Hermitian structure on M . The sub-Laplacian Δb is a second order differential operator on
(M,θ), which is defined by

Δbu = traceGθ
∇du,

where ∇ the Tanaka–Webster connection on the tangent bundle TM and Gθ is the Levi form of
θ. Similar to that played by the Laplacian in Riemannian geometry, the sub-Laplacian Δb plays a
fundamental role in CR geometry. For example, in the famous CR Yamabe problem.

Some recent papers extended the results for the Laplacian to the sub-Laplacian on CR manifolds.
For example, [9]–[12]. Noticing that the determination of the eigenvalues of the sub-Laplacian on
the standard sphere is still an open problem, the research in this direction is significant. Let Ω be
a bounded domain in a strictly pseudoconvex CR manifold (M,θ) of real dimension 2n+ 1, V be a
nonnegative continuous function, and f : (M,θ) → R

m be a semi-isometric C2 map. Consider the
following Dirichlet eigenvalue problem of the sub-Laplacian{ −Δbu+ V u = λu, in Ω,

u|∂Ω = 0.
(6)

It also has a real and discrete spectrum: 0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · → ∞. In 2013, Aribi and El
Soufi [9] investigated eigenvalues of problem (6). For every k ≥ 1 and p ∈ R, they obtained

k∑
i=1

(λk+1 − λi)
p ≤ max{2, p}

n

k∑
i=1

(λk+1 − λi)
p−1

(
λi +

1

4
D∞

)
,

where D∞ = sup
Ω

(
|Hb(f)|2Rm − 4V

)
. In this paper, we establish some Levitin–Parnovski-type in-

equalities and Cheng–Huang–Wei-type inequalities for lower order eigenvalues of problem (6) for the
sub-Laplacian Δb on a strictly pseudoconvex CR manifold.

The paper is organized as follows: In Section 3, we first consider problem (6) for the sub-Laplacian
on a bounded domain Ω in a strictly pseudoconvex CR manifold (M,θ) of real dimension 2n+ 1.
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Let f : (M,θ) → R
m be a semi-isometric C2 map. In Theorem 1, we derive the following Levitin–

Parnovski-type inequality

2n∑
i=1

λj+i ≤ (2n + 4)λj + sup
Ω

(
|Hb(f)|2Rm − 4V

)
,

where Hb(f) is the Levi tension of f and j ∈ N. The Heisenberg group and real hypersurfaces of complex
manifolds are two important models for CR manifolds. In Corollaries 1 and 2, by using Theorem 1, we
obtain some Levitin–Parnovski-type inequalities for the standard CR sphere S

2n+1 in C
n+1 and the

Heisenberg group. In Section 4, we establish some Cheng–Huang–Wei-type inequalities (cf. [8] and
[13]) for lower order eigenvalues of problem (6). In Theorem 2, for a bounded domain Ω in a strictly
pseudoconvex CR manifold (M,θ) of real dimension 2n+ 1, we prove that the following inequality

2n∑
i=1

(λi+1 − λ1)
1/2 ≤

√
2n

[
4λ1 + sup

Ω

(
|Hb(f)|2Rm − 4V

)]1/2

holds. We also obtain some results for the standard CR sphere S
2n+1 in C

n+1 and the Heisenberg group
in Corollaries 3 and 4. In Section 5, as applications of Theorems 1 and 2, we concern Riemannian sub-
mersions over submanifolds of the Euclidean space. Let (M,θ) be a strictly pseudoconvex CR manifold
of real dimension 2n+ 1 and let f : (M,θ) → N be a Riemannian submersion over a Riemannian man-
ifold of dimension 2n such that df(ξ) = 0. In Theorem 3, we derive a Levitin–Parnovski-type inequality
and a Cheng–Huang–Wei-type inequality for the eigenvalues of problem (6) for the sub-Laplacian Δb
on a bounded domain Ω ⊂ M by using Theorems 1 and 2. In Corollary 5, by using Theorem 3, we give
some results for a minimal submanifold in R

m, the standard sphere S
2n and the projective space FPm.

2. PRELIMINARIES

In this section, we give some definitions and basic facts about strictly pseudoconvex CR manifolds
and sub-Laplacians. For more details, we refer to [9], [14]–[16].

Let M be an orientable CR manifold of CR dimension n. That is to say, M is an orientable manifold
of real dimension 2n+ 1 equipped with a pair (H(M), J), where H(M) is a subbundle of the tangent
bundle TM of real rank 2n and J is an integrable complex structure on H(M). H(M) is called a Levi
distribution.

Since M is orientable, there exists a nonzero 1-form θ ∈ Γ(T ∗M) such that Kerθ = H(M). Such
1-form θ is called a pseudo-Hermitian structure on M . To each pseudo-Hermitian structure θ we
associate its Levi form Gθ defined on H(M) by Gθ(X,Y ) = θ([JX, Y ]) for any X,Y ∈ Γ(H(M)). The
CR manifold is said to be strictly pseudoconvex if the Levi form Gθ of a compatible pseudo-Hermitian
structure θ is positive definite for the pseudo-Hermitian structure θ. The Reeb vector field of θ is the
unique tangent vector field determined by the pseudo-Hermitian structure θ, which satisfies θ(ξ) = 1
and ξ�dθ = 0. It is also called characteristic direction of θ.

The Tanaka–Webster connection of a strictly pseudoconvex CR manifold (M,θ) is the unique affine
connection ∇ on TM satisfying:

(1) ∇θ = 0, ∇dθ = 0, and ∇J = 0.
(2) The torsion T∇ of ∇ is such that, for all X,Y ∈ H(M),

T∇(X,Y ) = −θ([X,Y ])ξ and T∇(ξ, JX) = −JT∇(ξ,X) ∈ H(M).

Take a local Gθ-orthonormal frame {X1, · · · ,X2n} of Levi distribution H(M). Then one has

Δbu =
2n∑
i=1

{XiXiu− (∇XiXi)u} =
2n∑
i=1

〈∇Xi∇Hu,Xi〉Gθ
,

where ∇Hu ∈ H(M) is the horizontal gradient of u defined by

Xu = Gθ(X,∇Hu) for any X ∈ Γ(H(M)).
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The contact form θ induces the volume form ϑθ = 1/(2nn!)θ ∧ (dθ)n on M . For every compactly
supported smooth function u, integration by parts yieldsˆ

M
uΔbuϑθ = −

ˆ
M

|∇Hu|2Gθ
ϑθ. (7)

Let f : (M,θ) → (N, ζ) be a smooth map, where (N, ζ) is a Riemannian manifold. Let ηf be a vector
valued 2-form on H(M) given by

ηf (X,Y ) = ∇f
Xdf(Y )− df(∇XY ),

where ∇f is the connection induced on the bundle f−1TN by the Levi-Cività connection of (N, ζ).
Hb(f) = traceGθ

ηf is said to be the Levi tension of f . In fact, Hb(f) is a vector field defined similarly to
the tension vector field in the Riemannian case. Then one has

Hb(f) =
2n∑
i=1

∇f
Xi
df(Xi)− df(∇XiXi).

The map f : (M,θ) → (N, ζ) is said to be semi-isometric if it preserve lengths in the horizontal
directions as well as the orthogonality between H(M) and Reeb vector field ξ of θ. That is to say,
∀X ∈ H(M), we have

|df(X)|ζ = |X|Gθ
and 〈df(X), df(ξ)〉ζ = 0.

When (N, ζ) is the standard space Rm, we have

Hb(f) = (Δbf1, · · · ,Δbfm). (8)

3. LEVITIN–PARNOVSKI-TYPE INEQUALITIES FOR THE SUB-LAPLACIAN

In this section, we establish some Levitin–Parnovski-type inequalities for problem (6) for the
sub-Laplacian Δb on some strictly pseudoconvex CR manifolds. We first state the following theorem:

Theorem 1. Let (M,θ) be a strictly pseudoconvex CR manifold of real dimension 2n+ 1 and let
f : (M,θ) → R

m be a semi-isometric C2 map. Let V be a nonnegative continuous function on a
bounded domain Ω ⊂ M . Denote by λi the ith eigenvalue of problem (6) for the sub-Laplacian Δb
on Ω. Then we have

2n∑
i=1

λj+i ≤ (2n + 4)λj + sup
Ω

(
|Hb(f)|2Rm − 4V

)
, (9)

where Hb(f) is the Levi tension of f and j ∈ N.

In order to prove Theorem 1, we need the following abstract formula established by Levitin and
Parnovski (see Theorem 2.2 of [7]).

Lemma 1. Let H be a complex Hilbert space with a given inner product 〈, 〉. Let E : D ⊂ H −→ H
be a self-adjoint operator defined on a dense domain D which is semibounded below and has a
discrete spectrum μ1 ≤ μ2 ≤ μ3 ≤ · · · . Let {Gα : E(D) −→ H}Nα=1 be a collection of symmetric
operators which leave D invariant. Denote by ui the normalized eigenvectors of E and ui
corresponding to the ith eigenvalue μi. Moreover, this family of eigenvectors is further assumed
to be an orthonormal basis for H. For any positive integer j, we have

∞∑
k=1

‖〈[E,Gα]uj , uk〉‖2
μk − μj

= −1

2
〈[[E,Gα], Gα]uj, uj〉, (10)

where [E,Gα] := EGα −GαE is the commutator of E and Gα. Here we have 〈[E,Gα]uj, uk〉 = 0 if
μk = μj for k �= j.
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The proof of Theorem 1 is based on the observation that estimates in the proof of Lemma 1 can
be sharpened. Using Lemma 1, the properties of the sub-Laplacian and a strictly pseudoconvex CR
manifold, we can give the proof of Theorem 1.

Proof of Thereom 1 Let f : (M,θ) → R
m be a semi-isometric map and let f1, · · · , fm be its Euclidean

components. For each α = 1, · · · ,m, we still use fα to denote the multiplication operator naturally
associated with fα. Let ui be the orthonormal eigenfunction corresponding to the ith eigenvalue λi of
problem (6). We know that ui satisfies ˆ

Ω
uiujϑθ = δij . (11)

For each j fixed, we consider a m×m matrix Q = (qαβ)m×m, where qαβ = 〈[−Δb + V, fα]uj , uj+β〉.
According to the QR-factorization theorem, we know that there exists an orthogonal m×m matrix
P = (pαβ)m×m such that B = PQ = (bαβ)m×m is an upper triangular matrix. That is to say, for
1 ≤ β < α ≤ m, we have

bαβ =

m∑
γ=1

pαγqγβ = 〈[−Δb + V,

m∑
γ=1

pαγfγ ]uj , uj+β〉 = 0. (12)

Define the functions ϕα by ϕα =
∑m

γ=1 pαγfγ . Therefore, we can choose the functions ϕ1, · · · , ϕm as
the standard coordinates functions of Rm such that

〈[−Δb + V, ϕα]uj , uj+β〉 = 0, for 1 ≤ β < α ≤ m. (13)

Rewriting the summation index k, and using (13), we find that
j+α−1∑
k=j+1

‖〈−Δb + V, ϕα]uj , uk〉‖2L2

λk − λj
=

α−1∑
β=1

‖〈−Δb + V, ϕα]uj , uj+β〉‖2L2

λj+β − λj
= 0. (14)

Taking E = −Δb + V and Gα = ϕα in (10), we have
∞∑
k=1

‖〈[−Δb + V, ϕα]uj , uk〉‖2L2

λk − λj
= −1

2
〈[[−Δb + V, ϕα], ϕα]uj , uj〉. (15)

Utilizing (14), we can deduce an inequality. In fact, rewriting the summation index, one can obtain
∞∑
k=1

‖〈[−Δb + V, ϕα]uj , uk〉‖2L2

λk − λj
=

j−1∑
k=1

‖〈[−Δb + V, ϕα]uj, uk〉‖2L2

λk − λj

+

j+α−1∑
k=j+1

‖〈[−Δb + V, ϕα]uj , uk〉‖2L2

λk − λj

+

∞∑
k=j+α

‖〈[−Δb + V, ϕα]uj , uk〉‖2L2

λk − λj
. (16)

Moreover, noticing that the spectrum of problem (6) is non-decreasing, one can find that
j−1∑
k=1

|〈[−Δb + V, ϕα]uj , uk〉|2
λk − λj

≤ 0. (17)

Combining (14), (16) and (17), we derive
∞∑
k=1

‖〈[−Δb + V, ϕα]uj, uk〉‖2L2

λk − λj
≤

∞∑
k=j+α

‖〈[−Δb + V, ϕα]uj, uk〉‖2L2

λk − λj

≤ 1

λj+α − λj

∞∑
k=1

‖〈[−Δb + V, ϕα]uj, uk〉‖2L2 . (18)
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Furthermore, Parseval’s identity implies
∞∑
k=1

‖〈[−Δb + V, ϕα]uj , uk〉‖2L2 = ‖[−Δb + V, ϕα]uj‖2L2 . (19)

Combining (18) and (19), we obtain
∞∑
k=1

‖〈[−Δb + V, ϕα]uj , uk〉‖2L2

λk − λj
≤ 1

λj+α − λj
‖[−Δb + V, ϕα]uj‖2L2 . (20)

Substituting (20) into (15), and taking sum on α from 1 to m, we derive

−1

2

m∑
α=1

(λj+α − λj)〈[[−Δb + V, ϕα], ϕα]uj , uj〉 ≤
m∑

α=1

‖[−Δb + V, ϕα]uj‖2L2 . (21)

Because

Δb(ϕαuj) = ujΔbϕα + ϕαΔbuj + 2〈∇Hϕα,∇Huj〉Gθ
,

we have

[−Δb + V, ϕα]uj = −Δbϕαuj − 2〈∇Hϕα,∇Huj〉Gθ
. (22)

From (22), we derive

〈[[−Δb + V, ϕα], ϕα]uj, uj〉 = −2

ˆ
Ω
u2j |∇Hϕα|2Gθ

ϑθ. (23)

On the other hand, we have[
−Δb + V, ϕα

]
uj =− ujΔbϕα − 2〈∇Hϕα,∇Huj〉Gθ

.

From this, we derive

‖[−Δb + V, ϕα]uj‖2L2 =

ˆ
Ω

[
u2j (Δbϕα)

2 + 4〈∇Hϕα,∇Huj〉2Gθ
+ 4ujΔbϕα〈∇Hϕα,∇Huj〉Gθ

]
ϑθ.

(24)
Therefore, substituting (23) and (24) into (21), we derive

m∑
α=1

(λj+α − λj)

ˆ
Ω
u2j |∇Hϕα|2Gθ

ϑθ

≤
m∑

α=1

ˆ
Ω

[
u2j(Δbϕα)

2 + 4〈∇Hϕα,∇Huj〉2Gθ
+ 4ujΔbϕα〈∇Hϕα,∇Huj〉Gθ

]
ϑθ. (25)

Now we calculate the terms in (25) by using the geometric properties of a strictly pseudoconvex
CR manifold. According to the isometry property of f with respect to horizontal directions and the
orthogonal property of the matrix Q, one can obtain

m∑
α=1

〈∇Hϕα,∇Huj〉2Gθ
=

m∑
α=1

〈∇Hfα,∇Huj〉2Gθ
=

m∑
α=1

〈∇fα,∇Huj〉2Gθ

= |df(∇Huj)|2Rm = |∇Huj|2Gθ
. (26)

This yields
m∑

α=1

ˆ
Ω
〈∇Hϕα,∇Huj〉2Gθ

ϑθ =

ˆ
Ω
|∇Huj |2Gθ

ϑθ =

ˆ
Ω
uj(−Δb + V )ujϑθ −

ˆ
Ω
V u2jϑθ

= λj −
ˆ
Ω
V u2jϑθ. (27)
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Noticing that Levi tension of f satisfies (8), we have
m∑

α=1

ˆ
Ω
u2j(Δbϕα)

2ϑθ =

m∑
α=1

ˆ
Ω
u2j(Δbfα)

2ϑθ =

ˆ
Ω
|Hb(f)|2Rmu2jϑθ. (28)

Denote by {Eα} the standard basis of Rm. Using Lemma 2.1 in [9], we obtain
m∑

α=1

Δbϕα〈∇Hϕα,∇Huj〉Gθ
=

m∑
α=1

Δbfα〈∇Hfα,∇Huj〉Gθ

=

〈 m∑
α=1

ΔbfαEα,
m∑

α=1

〈∇fα,∇Huj〉Gθ
Eα

〉
Rm

= 〈Hb(f), df(∇Huj)〉Rm = 0. (29)

Therefore, using (27)–(29), we can write
m∑

α=1

ˆ
Ω

[
u2j (Δbϕα)

2 + 4〈∇Hϕα,∇Huj〉2Gθ
+ 4ujΔbϕα〈∇Hϕα,∇Huj〉Gθ

]
ϑθ

= 4λj +

ˆ
Ω

(
|Hb(f)|2Rm − 4V

)
u2jϑθ. (30)

Furthermore, since Q is an orthogonal matrix and f preserves the Levi form with respect to a
Gθ-orthonormal frame {ei} of Hp(M), one has

m∑
α=1

|∇Hϕα|2Gθ
=

m∑
α=1

|∇Hfα|2Gθ
=

m∑
α=1

2n∑
i=1

〈∇Hfα, ei〉2Gθ

=

2n∑
i=1

|df(ei)|2Rm =

2n∑
i=1

|ei|2Gθ
= 2n. (31)

The inequality |∇Hfα|2Gθ
≤ 1 implies that

|∇Hϕα|2Gθ
≤ 1, for α = 1, · · · ,m. (32)

According to (31) and (32), we deduce
m∑

α=1

(λj+α − λj)|∇Hϕα|2Gθ
≥

2n∑
i=1

(λj+i − λj)|∇Hϕi|2Gθ
+ (λj+2n − λj)

m∑
β=2n+1

|∇Hϕβ |2Gθ

=

2n∑
i=1

(λj+i − λj)|∇Hϕi|2Gθ
+ (λj+2n − λj)

2n∑
i=1

(1− |∇Hϕi|2Gθ
)

≥
2n∑
i=1

(λj+i − λj)|∇Hϕi|2Gθ
+

2n∑
i=1

(λj+i − λj)(1 − |∇Hϕi|2Gθ
)

=
2n∑
i=1

(λj+i − λj). (33)

Substituting (30) and (33) into (25), we derive

2n∑
i=1

λj+i ≤ (2n + 4)λj +

ˆ
Ω

(
|Hb(f)|2Rm − 4V

)
u2jϑθ. (34)

Taking the supremum of |Hb(f)|2Rm − 4V on Ω in (34), we obtain (9). This concludes the proof of
Theorem 1.

MATHEMATICAL NOTES Vol. 109 No. 5 2021



742 HE-JUN SUN

Using Theorem 1, we can obtain some results for two important models of CR manifolds: real
hypersurfaces of complex manifolds and the Heisenberg group. Denote by S2n+1 the standard CR sphere
in C

n+1. As well known, the standard embedding j : S2n+1 → C
n+1 satisfies |Hb(j)|2Cn+1 = 4n2. Hence

we obtain the following corollary by using Theorem 1.

Corollary 1. Let Ω ba a domain in the standard CR sphere S
2n+1 ⊂ C

n+1. Let V be a nonnegative
continuous function on a bounded domain Ω ⊂ S

2n+1. Denote by λi the ith eigenvalue of problem
(6) for the sub-Laplacian Δb on Ω. Then we have

2n∑
i=1

λj+i ≤ (2n + 4)λj + 4n2 − 4V0,

where j ∈ N and V0 = inf
Ω

V .

Denote by H
n ∼= C

n × R the Heisenberg group endowed with its standard CR structure. The
corresponding sub-Laplacian on H

n is

ΔHn =
1

4

∑
j≤n

(X2
j + Y 2

j ).

Noticing that the standard projection H
n is semi-isometric with zero Levi tension, we obtain the

following corollary.

Corollary 2. Let Ω ba a domain in the Heisenberg group H
n. Let V be a nonnegative continuous

function on a bounded domain Ω ⊂ H
n. Denote by λi the ith eigenvalue of problem (6) for the

sub-Laplacian Δb on Ω. Then we have
2n∑
i=1

λj+i ≤ (2n + 4)λj − 4V0,

where j ∈ N and V0 = inf
Ω

V .

4. CHENG–HUANG–WEI-TYPE INEQUALITIES FOR THE SUB-LAPLACIAN
In this section, we establish some Cheng–Huang–Wei-type inequalities for lower order eigenvalues

of problem (6) for the sub-Laplacian Δb.

Theorem 2. Under the same assumptions as Theorem 1,
2n∑
i=1

(λi+1 − λ1)
1/2 ≤

√
2n

[
4λ1 + sup

Ω

(
|Hb(f)|2Rm − 4V

)]1/2
, (35)

where Hb(f) is the Levi tension of f .

In order to prove Theorem 2, we need the following abstract formula established by Sun and Zeng
[17].

Lemma 2. Let H be a complex Hilbert space with a given inner product 〈, 〉 and corresponding
norm ‖ · ‖. We let A : D ⊂ H −→ H be a self-adjoint operator defined on a dense domain D which
is semibounded below and has a discrete spectrum μ1 ≤ μ2 ≤ · · · . Let {Tα : D −→ H}mα=1 be a
collection of skew-symmetric operators and {Bα : A(D) −→ H}mα=1 be a collection of symmetric
operators which leave D invariant. Denote by ui the normalized eigenvectors corresponding to
the ith eigenvalues μi of A. This family of eigenvectors are further assumed to be an orthonormal
basis for H. If the operators {Bα}mα=1 satisfy

〈Bαu1, uβ+1〉 = 0, for 1 ≤ β < α ≤ m, (36)

then
m∑

α=1

(μα+1 − μ1)
1/2〈

[
Tα, Bα

]
u1, u1〉 ≤ 2

{ m∑
α=1

〈
[
A,Bα

]
u1, Bαu1〉

m∑
α=1

‖Tαu1‖2
}1/2

. (37)
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Proof of Thereom 2 Let f : (M,θ) → R
m be a semi-isometric map and let f1, · · · , fm be its Euclidean

components. In order to make use of Lemma 2, we construct some functions satisfying (36) from fα.
Similar to the proof of Theorem 1, we can prove that there exists a series of functions hα which satisfy

〈hαu1, uβ+1〉 = 0, for 1 ≤ β < α ≤ m.

In fact, we consider an m×m matrix S =

( ´
Ω fαu1uβ+1ϑθ

)
m×m

.

According to the QR-factorization theorem, we know that there exists an orthogonal m×m matrix
T =

(
tαβ

)
m×m

such that U = TS is an upper triangular matrix. Namely we have

m∑
γ=1

tαγ

ˆ
Ω
fγu1uβ+1ϑθ = 0, for 1 ≤ β < α ≤ m.

Defining the functions ψα by ψα =
∑m

γ=1 tαγfγ . Thus we infer

〈ψαu1, uβ+1〉 =
ˆ
Ω
ψαu1uβ+1ϑθ = 0, for 1 ≤ β < α ≤ m. (38)

In other words, the functions ψα satisfy (36). Hence, taking

A = −Δb + V, Bα = ψα, Tα = [Δb − V, ψα]

in (37), we have
m∑

α=1

(λα+1 − λ1)
1/2〈

[
[Δb − V, ψα], ψα

]
u1, u1〉

≤ 2

{ m∑
α=1

〈
[
−Δb + V, ψα

]
u1, ψαu1〉

m∑
α=1

‖[Δb − V, ψα]u1‖2L2

}1/2

. (39)

Now we calculate the terms of (39). Similar to (27)–(29), according to the isometry property of f
with respect to horizontal directions and the orthogonal property of the matrix T , we obtain

m∑
α=1

ˆ
Ω
〈∇Hψα,∇Hu1〉2Gθ

ϑθ = λ1 −
ˆ
Ω
V u21ϑθ, (40)

m∑
α=1

ˆ
Ω
u21(Δbψα)

2ϑθ =

ˆ
Ω
|Hb(f)|2Rmu21ϑθ, (41)

m∑
α=1

Δbψα〈∇Hψα,∇Huj〉Gθ
= 〈Hb(f), df(∇Huj)〉Rm = 0. (42)

Then, using (40)–(42), we have
m∑

α=1

‖[Δb − V, ψα]u1‖2L2

=

m∑
α=1

ˆ
Ω

[
u21(Δbψα)

2 + 4〈∇Hψα,∇Hu1〉2Gθ
+ 4u1Δbψα〈∇Hψα,∇Hu1〉Gθ

]
ϑθ

= 4λ1 +

ˆ
Ω

(
|Hb(f)|2Rm − 4V

)
u21ϑθ. (43)

Moreover, just as (23), we can write

〈[[Δb − V, ψα], ψα]u1, u1〉 = −2

ˆ
Ω
u21|∇Hψα|2Gθ

ϑθ. (44)
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Furthermore, since [
−Δb + V, ψα

]
u1 = −u1Δbψα − 2〈∇Hψα,∇Hu1〉Gθ

,

we obtain

〈
[
−Δb + V, ψα

]
u1, ψαu1〉 = −

ˆ
Ω
ψαu

2
1Δbψαϑθ −

1

2

ˆ
Ω
〈∇Hψ2

α,∇Hu21〉Gθ
ϑθ. (45)

Then, using (45) andˆ
Ω
〈∇Hψ2

α,∇Hu21〉Gθ
ϑθ = −2

ˆ
Ω
ψαu

2
1Δbψαϑθ − 2

ˆ
Ω
u21|∇Hψα|2Gθ

ϑθ,

we derive
m∑

α=1

〈
[
−Δb + V, ψα

]
u1, ψαu1〉 =

m∑
α=1

ˆ
Ω
u21|∇Hψα|2Gθ

ϑθ = 2n. (46)

Substituting (43), (44) and (46) into (39), we obtain
m∑

α=1

(λα+1 − λ1)
1/2

ˆ
Ω
u21|∇Hψα|2Gθ

ϑθ ≤
√
2n

[
4λ1 +

ˆ
Ω

(
|Hb(f)|2Rm − 4V

)
u21ϑθ

]1/2
. (47)

It follows from fact that f preserves the Levi form with respect to the Gθ-orthonormal frame {ei} of
Hp(M) that

m∑
α=1

|∇Hψα|2Gθ
= 2n.

Then, similar to the proof of (33), we deduce
m∑

α=1

(λα+1 − λ1)
1/2|∇Hψα|2Gθ

≥
2n∑
i=1

(λi+1 − λ1)
1/2|∇Hψi|2Gθ

+ (λ2n+1 − λ1)
1/2

m∑
β=2n+1

|∇Hψβ|2Gθ

≥
2n∑
i=1

(λi+1 − λ1)
1/2|∇Hψi|2Gθ

+

2n∑
i=1

(λi+1 − λ1)
1/2(1− |∇Hψi|2Gθ

)

=

2n∑
i=1

(λi+1 − λ1)
1/2. (48)

Combining (47) with (48), we obtain (35). This finishes the proof of Theorem 2.

From Theorem 2, we can derive the following corollaries for problem (6) of the sub-Laplacian on a
bounded domain Ω in the standard CR sphere S

2n+1 ⊂ C
n+1, a bounded domain Ω in the Heisenberg

group H
n.

Corollary 3. Under the same assumptions as in Corollary 1, the following result for problem (6)
for the sub-Laplacian Δb on a bounded domain Ω in the standard CR sphere S

2n+1 ⊂ C
n+1 holds:

2n∑
i=1

(λi+1 − λ1)
1/2 ≤ 2

√
2n(λ1 + n2 − V0)

1/2.

Corollary 4. Under the same assumptions as in Corollary 2, the following result for problem (6)
for the sub-Laplacian Δb on a bounded domain Ω in the Heisenberg group H

n hods:

2n∑
i=1

(λi+1 − λ1)
1/2 ≤ 2

√
2n(λ1 − V0)

1/2.
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5. APPLICATIONS OF THEOREMS 1 AND 2: RIEMANNIAN SUBMERSIONS
OVER SUBMANIFOLDS OF THE EUCLIDEAN SPACE

Let f : (M,θ) → N be a Riemannian submersion over a Riemannian manifold N of dimension 2n.
The manifold N admits infinitely many isometric immersions into Euclidean spaces. As applications of
Theorems 1 and 2, we can derive the following results for Riemannian submersions.

Theorem 3. Let (M,θ) be a strictly pseudoconvex CR manifold of real dimension 2n+ 1, and
let f : (M,θ) → N be a Riemannian submersion over a Riemannian manifold of dimension 2n
such that df(ξ) = 0. Denote by I(N,Rm) the set of all C2-isometric immersions from N to the
m-dimensional Euclidean space R

m, where m ≥ 2n. Set

Heuc(N) = inf
φ∈∪m∈NI(N,Rm)

‖H(φ)‖2∞,

where H(φ) stands for the mean curvature vector field of φ. Denote by λi the ith eigenvalue of
problem (6) for the sub-Laplacian Δb on a bounded domain Ω ⊂ M . Then

2n∑
i=1

λj+i ≤ (2n + 4)λj + sup
Ω

(
Heuc(N)− 4V

)
, (49)

2n∑
i=1

(λi+1 − λ1)
1/2 ≤

√
2n

[
4λ1 + sup

Ω

(
Heuc(N)− 4V

)]1/2
. (50)

Proof. According Nash’s famous embedding theorem [18], we know that each complete Riemannian
manifold can be isometrically immersed into a Euclidean space. Let φ : N → R

m be any isometric
immersion. We can know that the map φ ◦ f : (M,θ) → R

m is semi-isometric. Denote by Bφ the second
fundamental form of φ. Then according to Corollary 2.1 of [9], we know that βf = 0 and Hb(f) = 0.
Thus, we have

βφ◦f (X,Y ) = dφ(βf (X,Y )) +Bφ(df(X), df(Y )) = Bφ(df(X), df(Y )).

For any x ∈ M , the differential of f induces an isometry between Hx(M) and Tf(x)N . Hence if
X1, · · · ,X2n is a local orthonormal frame of H(M), then df(X1), · · · , df(X2n) is also an orthonormal
frame of TN . This yields

Hb(φ ◦ f) = H(φ).

Therefore, applying Theorem 1 and Theorem 2 to φ ◦ f , and taking the infimum with respect to φ, we
obtain (49) and (50). This finishes the proof of Theorem 3.

By using Theorem 3, we can now state the following results for a minimal submanifold in R
m, the

standard sphere S
2n and the projective space FPm.

Corollary 5. Let (M,θ) be a strictly pseudoconvex CR manifold of real dimension 2n + 1 and let
f : (M,θ) → N be a Riemannian submersion over a Riemannian manifold of dimension 2n such
that df(ξ) = 0. Denote by λi the ith eigenvalue of problem (6) for the sub-Laplacian Δb on a
bounded domain Ω ⊂ M . Set V0 = inf

Ω
V . Then:

(1) If N is an open set of R2n, or a minimal submanifold in R
m, then

2n∑
i=1

λj+i ≤ (2n + 4)λj − 4V0, (51)

2n∑
i=1

(λi+1 − λ1)
1/2 ≤ 2

√
2n

(
λ1 − V0

)1/2

. (52)
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(2) If N is a domain D of the standard sphere S
2n, then

2n∑
i=1

λj+i ≤ (2n + 4)λj + 4
(
n2 − V0

)
, (53)

2n∑
i=1

(λi+1 − λ1)
1/2 ≤ 2

√
2n

[
λ1 + (n2 − V0)

]1/2
. (54)

(3) Denote by FPm the projective space of dimension m over F (or real dimension 2n, i.e.,
m = 2n/dF). That is to say, if F = R, then FPm is the m-dimensional real projective space; if
F = C, then FPm is the complex real projective space of real dimension 2m; if F = Q, then FPm

is the quanternionic projective space of real dimension 4m. If N is a domain D of the projective
space FPm of real dimension 2n, then

2n∑
i=1

λj+i ≤ (2n + 4)λj + 4n(2n+ dF)− 4V0, (55)

2n∑
i=1

(λi+1 − λ1)
1/2 ≤ 2

√
2n

[
λ1 + n(2n+ dF)− V0

]1/2
, (56)

where

dF = dimRF =

⎧⎨
⎩

1 if F = R,

2 if F = C,

4 if F = Q.

Proof. (1) If N is an open set of R2n, or a minimal submanifold in Rm, then

Heuc(N) = 0. (57)

Substituting (57) into (49) and (50), we obtain (51) and (52).
(2) If N is a domain of the standard sphere S

2n, then

Heuc(N) = 4n2, (58)

which follows from the fact that |H(τ)|2
R2n+1 = 4n2, where τ : S2n → R

2n+1 is the natural embedding of
the standard sphere into the Euclidean space. Substituting (58) into (49) and (50), we obtain (53) and
(54).

(3) As we know, the projective space FPm carries a natural metric such that the Hopf fibration
π : SdF(m+1)−1 ⊂ F

m+1 → FPm is a Riemannian fibration. Let

Hm+1(F) = {A ∈ Mm+1(F)|A∗ :=t A = A}
be the vector space of (m+ 1)× (m+ 1) Hermitian matrices with coefficients in F, endowed with the
inner product 〈A,B〉 = 1

2trace(AB). The map Ψ : SdF(m+1)−1 ⊂ F
m+1 → Hm+1(F) given by

Ψ(z) =

⎛
⎜⎜⎜⎝

|z0|2 z0z1 · · · z0zm
z1z0 |z1|2 · · · z1zm
· · · · · · · · · · · ·

zmz0 zmz1 · · · |zm|2

⎞
⎟⎟⎟⎠

induces through the Hopf fibration an isometric embedding φ from FPm into Hm+1(F). Moreover,

φ(FPm) is a minimal submanifold of the hypersurfaces S( I
m+1 ,

√
m

2m+1 ) of Hm+1(F) of radius
√

m
2m+1

centered at I
m+1 . One deduces that the mean curvature H(φ) satisfies

|H(φ)|2 = 2m(m+ 1)d2F.
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Hence we know that

Heuc(FPm) ≤ 2m(m+ 1)d2F. (59)

Therefore, we can obtain (55) and (56) by using (49), (50) and (59). This completes the proof of
Corollary 5.
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