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1. INTRODUCTION

The problem of finding the chromatic number χ(Rn) of Euclidean space R
n was posed by E. Nelson

and H. Hadwiger in the middle of the 20th century. This is the quantity whose value is equal to the
smallest number of colors sufficient for coloring all points of Rn so that the distance between points of
the same color does not equal 1 (the distance 1 is called forbidden). Note that the quantity χ(Rn) does
not depend on the value of the positive number taken as the forbidden distance. At present, this problem
is one of the classical problems of combinatorial geometry. The main results for a real space are listed,
for example, in [1]–[3]. In fact, this problem can also be formulated for the case of an arbitrary metric
space X with metric ρ and forbidden distance d. We denote such a chromatic number by χ((X, ρ), d).
In 1976, Benda and Perles (see [4]) proposed considering X = Q

n, ρ = �2, where �2 is the Euclidean
metric. The value of the chromatic number of the space Q

n depends on the forbidden distance, which,
for any two points with rational coordinates, is either a rational number or a quadratic irrationality. For
the chromatic numbers of a rational space, many results were obtained. For small space dimensions,
they are listed in [5]. For increasing dimension, the following is known.

For d ∈ Q, the following bound was obtained by Raigorodskii in [6]:

χ((Qn, �1), d) ≥ (ζ2 + o(1))n, ζ2 =
(1 +

√
3 )

2
.

It was proved in that paper that, for any u ∈ N and d ∈ Q, there exists an ε = ε(u) > 0, such that the
following estimate holds:

χ((Qn, �u), d) ≥ (1 + ε+ o(1))n.

The following bounds are also known:

(1.199 + o(1))n ≤ χ((Qn, �2), 1) ≤ χ((Rn, �2), 1) ≤ (3 + o(1))n.

The lower bound is due to Ponomarenko and Raigorodskii (see [7], [8]), while the upper bound is due to
Larman and Rogers (see [9]).

In Demidovich’s paper [10], for some irrational values of d and increasing n, a number of estimates
were obtained for χ((Qn, �u), d) in the case u ≥ 2 and d = u

√
2pα, where p is a prime and α ∈ N.
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By a distance graph with forbidden distance d ∈ R+ in a metric space (X, ρ) we mean a graph
G = (V,E) whose vertex set V satisfies V ⊆ X, and the edge set E satisfies

E = {{x, y} : x, y ∈ V, ρ(x, y) = d}. (1.1)

The interest in the study of distance graphs is motivated by the fact that they arise naturally in relation
to the problem of the chromatic number of a space. Indeed, take the graph G = (V,E), which has, for
example,

V = R
n, E = {{x, y} : �2(x, y) = 1}.

Consider its chromatic number χ(G) (the minimum number of colors in which all the vertices of the
graph can be colored so that it does not have edges with ends of the same color). It is clear that
χ(Rn) = χ(G). By the Erdős–de Bruijn theorem, it suffices to limit ourselves to the study of finite
distance graphs.

In 1959, Erdős obtained the following result (see [11]).

Theorem 1. For any natural numbers k ≥ 2, � ≥ 2, there exists a graph whose chromatic number
is greater than k and the length of the minimal simple cycle is greater than �.

The length of the shortest cycle is called the girth of the graph G and is denoted by g(G). In other
words, the theorem states that there are graphs with an arbitrarily large chromatic number χ(G) and
arbitrarily large girth.

We are interested in whether there are similar graphs (without short cycles but with large chromatic
number) among distance graphs in (Qn, �2). We prove the existence of distance graphs in (Qn, �2) with
chromatic number increasing exponentially with n and without short odd cycles (in what follows, we will
explain the reason for the prohibition of odd cycles). Let us give the necessary definitions.

Let a′1 be a positive real number less than 1. For each natural n, we put a1 = �a′1n�, and let q = q(n)
be a sequence of natural numbers.

Definition. Consider the sequence {Gn(a1, q)}n∈N = {Gn}n∈N, where Gn = (Vn, En) are graphs with
vertex sets

Vn = {x = (x1, . . . , xn) : xi ∈ {0, 1}, |{i : xi = 1}| = a1}
and edge sets

En = {{x, y} : �2(x, y) =
√

2q }.

Let X be either R or Q. Let us set

ζgirthk (X) = sup
{
ζ : ∃ a function δ = δ(n) such that lim

n→∞
δ(n) = 0

and ∀n∃ a distance graph G in (Xn, �2),

which has g(G) > k, χ(G) ≥ (ζ + δ(n))n
}
.

In [12]–[16], this quantity was already studied for the case of real space, i.e., for X = R. It was shown
in [12] that the graphs Gn do not help to find a bound for this quantity because of the following theorem.

Theorem 2. Let a′1 be such that, for a1, the following inequalities hold:

a1 ≤
n

2
, a1 − q ≥ 1.

Then, for any fixed natural k satisfying the condition

2 ≤ k ≤ q, (1.2)

there is a cycle of length 2k in the graph Gn(a1, q).
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The condition a1 ≤ n/2 does not restrict generality, because, in the case a1 ≥ n/2, we can consider
the graph Gn(n − a1, q) isomorphic to Gn(a1, q). By Theorem 2, the graphs Gn do not help to find a
bound for ζgirthk (X) in all cases except, possibly, a1 = q, and also for q = 1. In the latter case, the graph
Gn(a1, q) always contains C4. Indeed, it is formed by the vertices with coordinates

(1, . . . , 1, 0, . . . , 0), (0, 1, . . . , 1, 0, . . . , 0),

(0, 0, 1, . . . , 1, 0, . . . , 0), (1, 0, 1 . . . , 1, 0, 1, 0, . . . , 0).

In the case a1 = q, we obtain a Kneser graph. If a1 = q = �n/2�, then the chromatic number of the
graph is small and equal to n− 2�n/2� + 2. If a1 = q ≤ n/2− 1, then there exists a subgraph in the
graph which is isomorphic to C4, the cycle of length 4. Indeed, it is, for example, formed by the following
vertices:

(1, . . . , 1, 0, . . . , 0), (0, . . . , 0, 1, . . . , 1), (0, 1, . . . , 1, 0, . . . , 0), (0, . . . , 0, 1, . . . , 1, 0).

In the paper [12], the following lemma was proved.

Lemma 1. Let nk/(2k + 1) < q, where q is prime. Then the graph Gn(a1, q) has no odd cycles of
length at most 2k + 1.

Note that, in the paper, the lemma is formulated for a prime q (since this is sufficient to use this lemma
in the proof of the main result), but, in the proof, it is not required that q be prime.

Theorem 2 and Lemma 1 motivate the consideration of the following quantity. Denote by godd(G) the
length of the shortest odd cycle in G. For k ∈ N, we put

ζgirthk,odd(X) = sup
{
ζ : ∃ is a function δ = δ(n) such that lim

n→∞
δ(n) = 0

and ∀n ∃a distance graph G in (Xn, �2),

which has godd(G) > 2k + 1, χ(G) ≥ (ζ + δ(n))n
}
.

It was proved in [12] that

ζgirthk,odd(R) ≥ 2

(
k

2k + 1

)k/(2k+1)( k + 1

2k + 1

)(k+1)/(2k+1)

.

This statement follows from the fact that, with the right choice of the parameters, there are no small
cycles of odd length in Gn, and the chromatic number is large for large n:

χ(Gn) ≥
(
2

(
k

2k + 1

)k/(2k+1)( k + 1

2k + 1

)(k+1)/(2k+1)

+ o(1)

)n

.

Note that such a graph Gn is also a distance graph in Q
n, whence

ζgirthk,odd(Q) ≥ 2

(
k

2k + 1

)k/(2k+1)( k + 1

2k + 1

)(k+1)/(2k+1)

.

However, in the case of rational spaces, such a problem admits nonequivalent statements for different
values of d. If γ ∈ Q, then any distance graph in (Qn, �2) with d = γ in (1.1) is isomorphic to a distance
graph in (Qn, �2) with d = 1. Any distance graph with d = γ

√
p1 · · · · · pr is isomorphic to a distance

graph with d =
√
p1 · · · · · pr, where p1, . . . , pr are primes, r ∈ N. For k ∈ N and d =

√
D, where D ∈ Q

is a positive number, we put

ζgirthd,k (Q) = sup
{
ζ : ∃ is a function δ = δ(n) such that lim

n→∞
δ(n) = 0 and ∀n ∃G in (Qn, �2)

is a distance graph with forbidden distance d,

for which godd(G) > 2k + 1, chi(G) ≥ (ζ + δ(n))n
}
.

In view of what has been said above, it suffices to confine ourselves to the case d =
√
p1 · · · · · pr, where

p1, . . . , pr are primes. For convenience, the symbol b :=
√
p1 · · · · · pr will be used everywhere in what

follows.
The main result of our paper is the following theorem.
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Theorem 3. The following bound holds:

ζgirth1,k (Q) ≥
(
2 ·

(
k̃

2k̃ + 1

)
˜k/(2˜k+1)( k̃ + 1

2k̃ + 1

)(˜k+1)/(2˜k+1))1/4

,

where k̃ := 2�log2 k�+1.

As a corollary, we obtain the following result, which will be proved in Sec. 3.

Corollary 1. The following bound holds:

ζgirthb,k (Q) ≥
(
2 ·

(
k̃

2k̃ + 1

)
˜k/(2˜k+1)( k̃ + 1

2k̃ + 1

)(˜k+1)/(2˜k+1))1/4b2

,

where k̃ := 2�log2 k�+1.

Remark 1. Such a formulation of Theorem 2 and Corollary 1 is chosen for simplicity and the reader’s
convenience. In fact, the present paper proves a stronger statement.

Let k̃ = 2�log2 k�+1, and let n be large enough. We set

f(k̃, n, b) =
2k̃ + 1

k̃
2
2

⌊
log2

√

˜k�n/b2�
2(2˜k+1)

⌋
+1

.

Then, in (Qn, �2), there exists a distance graph with forbidden distance b and with godd > 2k + 1 whose
chromatic number is at least

(
2 ·

(
k̃

2k̃ + 1

)
˜k/(2˜k+1)( k̃ + 1

2k̃ + 1

)(˜k+1)/(2˜k+1)

+ o(1)

)f(˜k,n,b)

.

Thus, for example, if n is of the form (2k̃ + 1)22m+1b2/k̃, m ∈ N, then, in the exponent, we obtain n/b2,
rather than n/4b2.

To conclude the introduction, we note that if we allow a distance graph not to contain all of its edges
between pairs of vertices at a given distance, then we can get rid of even cycles. In this case, we can use
the probabilistic method, which, for the real space, was applied in [13], as well as in [17] and [18]. The
history of the problem of chromatic numbers of spaces and various results concerning distance graphs
can be found in [19]–[33] (this list includes surveys, books, and papers), which indicates the importance
of this topic.

2. PROOF OF THEOREM 3

For each k, let us find the power of two k̃ = 2�log2 k�+1, which is nearest to k among those strictly
greater than k. Note that if there are no cycles of length at most 2k̃ + 1 in the graph, then there are no
cycles of length at most 2k + 1.

For each n, we find a natural number ñ of the form ((2k̃ + 1)/k̃ )22m+1, m ∈ N nearest to n but not
exceeding it.

Note that n, ñ, and hence m are sufficiently large and, therefore, 22m+1 is divisible by k̃. Let us write
the exact expression for ñ:

ñ =
2k̃ + 1

k̃
2
2

⌊
log2

√

n˜k

2(2˜k+1)

⌋
+1

. (2.1)

Putting q equal to 22m+1, we also define it in a unique way for every n. Note that, to find a bound for
the quantity ζgirth1,k , for d in ζgirthd,k we can take any sequence of natural numbers. Let us put d =

√
2q.
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Let ã1 = �ñ/2�. Then ã1 < 2q, because

ã1 =

⌊
ñ

2

⌋
< 2q =

2k̃

2k̃ + 1
ñ. (2.2)

It is clear that Gñ = Gñ(ã1, q) is a distance graph in (Qn, �2). Thus, it suffices to prove that the graph
Gñ has sufficiently large chromatic number and does not have short odd cycles.

Let us introduce the following condition for some real t:

k̃

4(2k̃ + 1)
≤ t <

1

8
. (2.3)

Note that then, for q, the following relations hold:

q =
k̃ñ

2k̃ + 1
>

kñ

2k + 1
, (2.4)

q ≤ 4tñ <
ñ

2
. (2.5)

The last inequality ñ/2− q > 0 guarantees the correct choice of ã1 and q in the following sense: pairs
of vertices of the distance graph Gñ as ñ-dimensional vectors with coordinates from the set {0, 1} must
have nonnegative inner product. Indeed, the inner product of two vectors joined by an edge is equal to
ã1 − q = �ñ/2� − q and is nonnegative.

Let us now find a bound for the chromatic number of the graph Gñ.

By the independence number of a graph G = (V,E) we will mean the maximum cardinality of the
subset of vertices without edges. This quantity is usually denoted by α(G). The chromatic number of
the graph G obviously satisfies the inequality χ(G) ≥ |V |/α(G). Thus,

χ(Gñ) ≥
|Vñ|

α(Gñ)
=

C ã1
ñ

α(Gñ)
.

Lemma 2. The following bound holds:

α(Gñ) ≤
�4tñ�∑

i=0

Ci
ñ.

Proof. Let W = {x1, . . . , xs} ⊂ Vñ be an arbitrary set of vertices without edges, i.e., such that, for any
distinct i and j, we have �2(xi, xj) �=

√
2q. Note that (�2(xi, xj))2 is an even number.

Let θ be the exponent of 2 in the prime factorization of the number (q − 1)!. To each vector xi ∈ W
we assign the polynomial

Pxi(y) =
1

2θ

q−1∏

ν=1

(
ν − 1

2
(�2(xi, y))

2

)
=

1

2θ

q−1∏

ν=1

(
ν − 1

2

ñ∑

j=1

(xij − yj)
2

)
, y = (y1, . . . , yñ), (2.6)

from the space Q[y1, . . . , yñ].

Suppose that, in Q[y1, . . . , yñ], there exists a nontrivial linear combination of polynomials identically
equal to 0:

c1Px1 + · · · + csPxs = 0, c1, . . . , cs ∈ Q. (2.7)

Then, for any xi ∈ W ,

c1Px1(xi) + · · ·+ csPxs(xi) = 0.
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It is not difficult to verify that, for all i and j, we have Pxj(xi) ∈ Z. We can assume that all the
coefficients in (2.7) are integers and that, moreover, one of these coefficients is not divisible by 2. Further,
on the one hand,

Pxi(xi) =
1

2θ

q−1∏

ν=1

(
ν − 1

2
(�2(xi, xi))

2

)
=

1

2θ

q−1∏

ν=1

ν =
(q − 1)!

2θ
�≡ 0 (mod 2).

On the other hand, for j �= i, we have

(1)
1

2
(�2(xj, xi))

2 ≤ ã1;

(2)
1

2
(�2(xj, xi))

2 �= q;

(3)
1

2
(�2(xj, xi))

2 > 0,

where, in view of the inequality ã1 − 2q < 0 (see (2.2)), (�2(xj, xi))
2/2 �≡ 0 (mod q). And this, in turn,

yields Pxj (xi) ≡ 0 (mod 2). Indeed, the product of (q − 1) consecutive residues modulo q contains
more than d factors 2 in the cyclic shift by (�2(xj, xi))

2/2 �≡ 0 (mod q). It turns out that ci ≡ 0 (mod 2)
for any i. We have obtained a contradiction to the oddness of one of the coefficients, and hence to the
nontriviality of the linear combination (2.7); i.e., the polynomials Px1 , . . . ,Pxs are linearly independent
over Q.

Let us transform each of the polynomials as follows. Multiplying all the brackets, we write the
polynomial as a linear combination of monomials and, in each monomial, we replace the factors of the
form yαν

ν , αν ≥ 1, by the cofactors yν , because yν ∈ {0, 1}. The new polynomials as functions of vectors
from W are identically equal to the original polynomials. Hence, the new polynomials are also linearly
independent over Q. We multiply q − 1 brackets in ñ variables, and each variable is contained in them
to the power 0 or 1. All such polynomials are known to be generated by the basis of

∑q−1
i=0 C

i
ñ elements.

Thus, using (2.5), we obtain |W | = s ≤
∑q−1

i=0 C
i
ñ ≤

∑�4tñ�
i=0 Ci

ñ. The lemma is proved.

From Lemma 2, we obtain

χ(Gñ(ã1, q)) ≥
C ã1
ñ

∑�4tñ�
i=0 Ci

ñ

. (2.8)

Denote

A = C ã1
ñ , B =

�4tñ�∑

i=0

Ci
ñ. (2.9)

Using Stirling’s formula, we can write

A = (2 + o(1))ñ, B =

(
1

(4t)4t(1− 4t)1−4t
+ o(1)

)ñ

. (2.10)

Hence, in view of (2.8)–(2.10), χ(Gñ(ã1, q)) ≥ (2 · (4t)4t(1− 4t)1−4t + o(1))ñ.
It follows from (2.1) that ñ ≥ n/4. It follows from (2.3) that the base of the exponential is greater

than 1. Thus, χ(Gñ(ã1, q)) ≥ (2 · (4t)4t(1− 4t)1−4t + o(1))n/4.
In the graph Gñ, there are no odd cycles of length at most 2k+1 due to inequality (2.4) and Lemma 1.
Now let us use condition (2.3). We obtain

ζ̃girthk,odd(Q) ≥ max
˜k/(4(2˜k+1))≤t<1/8

(2 · (4t)4t(1− 4t)1−4t)1/4

=

(
2 ·

(
k̃

2k̃ + 1

)
˜k/(2˜k+1)( k̃ + 1

2k̃ + 1

)(˜k+1)/(2˜k+1))1/4

.

Theorem 3 is proved.
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3. PROOF OF COROLLARY 1

For each n, we put n0 = �n/b2�. For each k, let us find k̃ = 2�log2 k�+1, which is the power of 2 nearest
to k among those strictly greater than k. As before, from the fact that there are no cycles of length at
most 2k̃ + 1 in the graph, it follows that there are no cycles of length at most 2k + 1. In turn, for each
n0, let us find the natural number

ñ0 =
2k̃ + 1

k̃
2
2

⌊
log2

√

n0
˜k

2(2˜k+1)

⌋
+1

nearest to it and not exceeding it. Define

q = 2
2

⌊
log2

√

n0
˜k

2(2˜k+1)

⌋
+1

=
k̃

2k̃ + 1
ñ0.

Let ã0
1 = �ñ0/2�, and let t be a real number satisfying condition (2.3). Note that relations (2.2), (2.4),

and (2.5) still hold for ã0
1 , q, ñ0, and t instead of ã1, q, ñ, and t, respectively. Let us put

ã1 = ã0
1 · b2 =

⌊
ñ0

2

⌋
· b2, ñ = ñ0 · b2.

It is seen that relations (2.2), (2.3), (2.4), and (2.5) hold for ã1, q · b2, ñ, and t instead of ã1, q, ñ,
and t, respectively. Consider the graph Gñ(ã1, q · b2) and note that it is embedded in Q

n. In view of
inequality (2.4) with the new parameters, the requirements of Lemma 1 will hold for this graph, and
there are no odd cycles of length at most 2k + 1.

Consider the induced subgraph of the graph Gñ(ã1, q · b2) on all those vertices whose coordinates
x1, . . . , xñ are the concatenation of the b2 identical sets of coordinates of ã1 1’s and ñ0 − ã1 0’s. Note that
this induced subgraph is isomorphic to Gñ0

(ã0
1 , q). Thus, the following lower bound on the chromatic

number χ(Gñ(ã1, q · b2)) holds: χ(Gñ(ã1, q · b2)) ≥ χ(Gñ0
(ã0

1 , q)).
In turn, by Theorem 3, we have

χ(Gñ0
(ã0

1 , q)) ≥ (2 · (4t)4t(1− 4t)1−4t + o(1))n0/4 = (2 · (4t)4t(1− 4t)1−4t + o(1))�n/b
2�/4.

Thus,

ζgirthb,k (Q) ≥
(
2 ·

(
k̃

2k̃ + 1

)
˜k/(2˜k+1)( k̃ + 1

2k̃ + 1

)(˜k+1)/(2˜k+1))1/4b2

.

Corollary 1 is proved.
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