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Abstract—A boundary-value problem with nonlocal integral condition of Samarskii–Ionkin type is
studied for a mixed-type equation with singular coefficients in a rectangular domain. A uniqueness
criterion for the problem is established by the method of spectral analysis.
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1. INTRODUCTION AND STATEMENT OF THE PROBLEM

The theory of boundary-value problems for singular and degenerate equations is one of the most
important sections of the modern theory of partial differential equations; this is due not only to its
numerous applications in various fields of science and technology and the need to solve applied problems,
but also to the intensive development of the theory of mixed-type equations. The first boundary-value
problem for such elliptic equations with variable coefficients was first studied in [1]. A special place in this
theory is occupied by the study of equations containing the Bessel differential operator. The study of this
class of equations was begun in the works of Euler, Poisson, and Darboux and continued in the theory of
the generalized axisymmetric potential [2]. The importance of this class of equations is due to their use in
applications to various problems of gas dynamics and acoustics, jet theory in hydrodynamics, linearized
Maxwell–Einstein equations, and elasticity-plasticity theory. An extensive study of boundary-value
problems for equations of three main classes with Bessel operator was presented in [3]–[6].

In the domain

D = {(x, y) | 0 < x < l, −α < y < β}
of the coordinate plane Oxy, where l, α, and β are given positive real numbers, we consider the
elliptic-hyperbolic equation

Lu(x, y) ≡ uxx + (sgn y)uyy +
p

x
ux +

q

|y| uy = 0, (1.1)

where p and q are given real numbers such that |p| < 1, p �= 0, and |q| < 1, q �= 0. Let us introduce the
notation D+ = D ∩ {y > 0} and D− = D ∩ {y < 0}.

Statement of the problem. It is required to find a function u(x, y) that satisfies the following
conditions:

u(x, y) ∈ C(D) ∩ C2(D+ ∪D−), (1.2)

Lu(x, y) ≡ 0, (x, y) ∈ D+ ∪D−, (1.3)

lim
y→0+

yquy(x, y) = lim
y→0−

(−y)quy(x, y), 0 < x < l, (1.4)

u(x, β) = ϕ(x), u(x,−α) = ψ(x), 0 ≤ x ≤ l, (1.5)
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lim
x→0+

xpux(x, y) = 0, −α ≤ y ≤ β, (1.6)

ˆ l

0
xpu(x, y) dx = A = const, −α ≤ y ≤ β, (1.7)

where A is a given real number and ϕ(x) and ψ(x) are given sufficiently smooth functions that satisfy
the conditions limx→0+ xpϕ′(x) = limx→0+ xpψ′(x) = 0 and

ˆ l

0
xpϕ(x) dx =

ˆ l

0
xpψ(x) dx = A. (1.8)

The integral condition (1.7) previously appeared in the papers [7] and [8] dealing with the heat
equation and also in [8], for example, in the study of the stability of a rarefied plasma, where the nonlocal
condition means that the internal energy of the system is constant. At present, problems with integral
conditions for equations of various classes have been studied in great detail (see, e.g., [9]–[12] and the
bibliography given there). A nonlocal boundary-value problem for Eq. (1.1) with q = 0 was investigated
in [13].

Let us represent Eq. (1.1) in the form

x−p ∂

∂x

(
xp

∂u

∂x

)
− uyy −

q

y
uy = 0, y ∈ (−α, 0),

x−p ∂

∂x

(
xp

∂u

∂x

)
+ uyy +

q

y
uy = 0, y ∈ (0, β).

Let us multiply both equalities by xp and integrate for fixed values y ∈ (−α, 0) and y ∈ (0, β) with
respect to the variable x over the interval from ε to l − ε, where ε > 0 is a sufficiently small number. As
a result, we obtainˆ l−ε

ε

∂

∂x

(
xp

∂u

∂x

)
dx−

ˆ l−ε

ε
xpuyy dx−

ˆ l−ε

ε
xp

q

y
uy dx = 0, y ∈ (−α, 0),

ˆ l−ε

ε

∂

∂x

(
xp

∂u

∂x

)
dx+

ˆ l−ε

ε
xpuyy dx+

ˆ l−ε

ε
xp

q

y
uy dx = 0, y ∈ (0, β),

or (
xp

∂u

∂x

)∣∣∣∣
l−ε

ε

− d2

dy2

ˆ l−ε

ε
xpu(x, y) dx− q

y

d

dy

ˆ l−ε

ε
xpu(x, y) dx = 0, y ∈ (−α, 0),

(
xp

∂u

∂x

)∣∣∣∣
l−ε

ε

+
d2

dy2

ˆ l−ε

ε
xpu(x, y) dx+

q

y

d

dy

ˆ l−ε

ε
xpu(x, y) dx = 0, y ∈ (0, β).

In the last equalities, we pass to the limit as ε → 0. In view of conditions (1.6) and (1.7), we obtain the
following local boundary condition:

ux(l, y) = 0, −α ≤ y ≤ β. (1.9)

In what follows, we will consider problem (1.2)–(1.6), (1.9).

2. UNIQUENESS OF THE SOLUTION OF THE PROBLEM

Substituting the function u(x, y) = X(x)Y (y) into Eq. (1.1) and conditions (1.6), (1.9), after
separating the variables, we obtain the spectral problem

X ′′(x) +
p

x
X ′(x) + λ2X(x) = 0, 0 < x < l, (2.1)

lim
x→0+

xpX ′(x) = 0, X ′(l) = 0, (2.2)

where λ2 is the split constant.

MATHEMATICAL NOTES Vol. 109 No. 4 2021



UNIQUENESS OF THE SOLUTION OF A NONLOCAL PROBLEM 565

The general solution of Eq. (2.1) for |p| < 1, p �= 0, is given by the formula

X(x) = C1x
(1−p)/2J(1−p)/2(λx) + C2x

(1−p)/2J(p−1)/2(λx). (2.3)

Since (1− p)/2 is not an integer, it follows that J(1−p)/2(λx) and J(p−1)/2(λx) are linearly independent
solutions of Eq. (2.1). Here C1 and C2 are arbitrary constants.

From this formula we calculate

X ′(x) = C1λx
(1−p)/2J−(p+1)/2(λx)− C2λx

(1−p)/2J(p+1)/2(λx).

Since, as x → 0+, the equality xpX ′(x) = O(C1 + C2x
p+1) holds, it follows that, for the func-

tion (2.3) to satisfy the first condition in (2.2), we must put C1 = 0. Let C2 = 1.

Then the solution of Eq. (2.1) satisfying the first condition of (2.2) is defined by the equality

X(x) = x(1−p)/2J(p−1)/2(λx).

We now require that this function satisfy the second boundary condition from (2.2). Calculating

dX(x)

dx

∣∣∣∣
x=l

= (x(1−p)/2J(p−1)/2(λx))
′∣∣
x=l

= −λl(1−p)/2J(p+1)/2(λl) = 0,

we obtain

λ0 = 0,

J(p+1)/2(μn) = 0, μn = λnl. (2.4)

Thus, the system of eigenfunctions of problem (2.1), (2.2) has the form

X̃0(x) = 1, λ0 = 0, (2.5)

X̃n(x) = x(1−p)/2J(p−1)/2

(
μnx

l

)
= x(1−p)/2J(p−1)/2(λnx), n ∈ N, (2.6)

where the eigenvalues λn are defined as the zeros of Eq. (2.4).

Note that the system of eigenfunctions (2.5) and (2.6) of problem (2.1), (2.2) is orthogonal in the
space L2[0, l] with weight xp; moreover, it constitutes a complete system in this space [14, c. 343].

In further calculations, we will use the orthonormal system of functions

Xn(x) =
1

‖X̃n(x)‖
X̃n(x), n = 0, 1, 2, . . . , (2.7)

where

‖X̃n(x)‖2 =

ˆ l

0
xpX̃2

n(x) dx. (2.8)

Let u(x, y) be a solution of problem (1.2)–(1.6), (1.9). Following [13], we consider the functions

un(y) =

ˆ l

0
u(x, y)xpXn(x) dx, n = 0, 1, 2, . . . , (2.9)

where Xn(x) is defined by (2.7).

On the basis of (2.9), we introduce auxiliary functions of the form

un,ε(y) =

ˆ l−ε

ε
u(x, y)xpXn(x) dx, n = 0, 1, 2, . . . , (2.10)

where ε > 0 is a sufficiently small number. Let us differentiate equality (2.10) twice with respect to the
variable y for y ∈ (−α, 0) ∪ (0, β). Taking into account Eq. (1.1), we obtain the equalities
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u′′n,ε(y) =

ˆ l−ε

ε
uyy(x, y)x

pXn(x) dx

=

ˆ l−ε

ε

(
−
(
uxx +

p

x
ux

)
− q

y
uy

)
xpXn(x) dx

= −
ˆ l−ε

ε

∂

∂x
(xpux)Xn(x) dx − q

y

d

dy

ˆ l−ε

ε
u(x, y)xpxn(x) dx

= −
(
xpuxXn(x)

∣∣l−ε

ε
−
ˆ l−ε

ε
xpuxX

′
n(x) dx

)

− q

y

d

dy

ˆ l−ε

ε
u(x, y)xpxn(x) dx, y > 0, (2.11)

u′′n,ε(y) =

ˆ l−ε

ε
uyy(x, y)x

pXn(x) dx

= xpuxXn(x)|l−ε
ε −

ˆ l−ε

ε
xpuxX

′
n(x) dx

− q

y

d

dy

ˆ l−ε

ε
u(x, y)xpxn(x) dx, y < 0. (2.12)

By virtue of Eq. (2.1), from (2.10) we obtain

un,ε(y) = − 1

λ2
n

ˆ l−ε

ε
u(x, y)xp

[
X ′′

n(x) +
p

x
X ′

n(x)

]
dx

= − 1

λ2
n

ˆ l−ε

ε
u(x, y)

d

dx
(xpX ′

n(x)) dx

= − 1

λ2
n

[
u(x, y)xpX ′

n(x)|l−ε
ε −

ˆ l−ε

ε
xpuxX

′
n(x) dx

]
,

whence we have
ˆ l−ε

ε
xpuxX

′
n(x) dx = λ2

nun,ε(y) + u(x, y)xpX ′
n(x)|l−ε

ε .

Substituting this expression into (2.11) and (2.12), we obtain

u′′n,ε(y) = −
(
xpuxXn(x)|l−ε

ε − λ2
nun,ε(y)− u(x, y)xpX ′

n(x)|l−ε
ε

)

− q

y

d

dy

ˆ l−ε

ε
u(x, y)xpxn(x) dx, y > 0,

u′′n,ε(y) = xpuxXn(x)|l−ε
ε − λ2

nun,ε(y)− u(x, y)xpX ′
n(x)|l−ε

ε

− q

y

d

dy

ˆ l−ε

ε
u(x, y)xpxn(x) dx, y < 0.

Since we have −1 < k < 1 and k �= 0, it follows by virtue of (1.2) that, in the last two equalities, we
can pass to the limit as ε → 0, which yields, due to conditions (1.6), (1.9), and (2.2), the differential
equation

u′′n(y) +
q

y
u′n(y)− (sgn y)λ2

nun(y) = 0, y ∈ (−α, 0) ∪ (0, β), (2.13)
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from which we find the functions (2.9). For |q| < 1 and q �= 0, the general solution of Eq. (2.13) is of the
form

un(y) =

{
any

(1−q)/2I(1−q)/2(λny) + bny
(1−q)/2I(q−1)/2(λny), y > 0,

cn(−y)(1−q)/2J(1−q)/2(−λny) + dn(−y)(1−q)/2J(q−1)/2(−λny), y < 0,
(2.14)

where Jν(ξ) and J−ν(ξ) are the Bessel functions of the first kind, ν = (1− k)/2, Iν(ξ) and I−ν(ξ) are
the modified Bessel functions, and an, bn, cn, and dn are arbitrary constants.

Now, bearing in mind (1.2), we choose the constants an, bn, cn, and dn in (2.14) so that the following
matching conditions hold:

un(0+) = un(0−), u′n(0+) = u′n(0−). (2.15)

Calculate

u′n(y) =

{
anλny

(1−q)/2I−(q+1)/2(λny) + bnλny
(1−q)/2I(q+1)/2(λny), y > 0,

cnλn(−y)(1−q)/2J−(q+1)/2(−λny)− dnλn(−y)(1−q)/2J(q+1)/2(−λny), y < 0.
(2.16)

Taking into account the formula Iν(z) = e−νπi/2Jν(iz)[15] and using (2.14) and (2.16), we obtain

un(y) =

⎧⎪⎨
⎪⎩
ane

((q−1)π/4)iy(1−q)/2J(1−q)/2(iλny)

+bne
((1−q)π/4)iy(1−q)/2J(q−1)/2(iλny), y > 0,

cn(−y)(1−q)/2J(1−q)/2(−λny) + dn(−y)(1−q)/2J(q−1)/2(−λny), y < 0,

(2.17)

u′n(y) =

⎧⎪⎨
⎪⎩
ane

((q+1)π/4)iλny
(1−q)/2J−(q+1)/2(iλny)

+bne
−((q+1)π/4)iλny

(1−q)/2J(q+1)/2(iλny), y > 0,

cnλn(−y)(1−q)/2J−(q+1)/2(−λny)− dnλn(−y)(1−q)/2J(q+1)/2(−λny), y < 0.

This implies that conditions (2.15) hold for

an = e−((q+1)π/4)icn, bn = e((q−1)π/4)idn, n = 0, 1, 2, . . . .

Substituting the expressions for an and bn into (2.17), we obtain

un(y) =

{
cne

−(π/2)iy(1−q)/2J(1−q)/2(iλny) + dny
(1−q)/2J(q−1)/2(iλny), y > 0,

cn(y)
(1−q)/2J(1−q)/2(−λny) + dn(−y)(1−q)/2J(q−1)/2(−λny), y < 0,

or

un(y) =

{
−cniy

(1−q)/2J(1−q)/2(iλny) + dny
(1−q)/2J(q−1)/2(iλny), y > 0,

cn(−y)(1−q)/2J(1−q)/2(−λny) + dn(−y)(1−q)/2J(q−1)/2(−λny), y < 0.
(2.18)

Now we substitute (2.9) into the boundary conditions (1.5):

un(β) =

ˆ l

0
ϕ(x)xpXn(x) dx = ϕn, un(−α) =

ˆ l

0
ψ(x)xpXn(x) dx = ψn. (2.19)

From (2.18) and (2.19) we obtain the following system for finding the constants cn and dn:{
cniJ(1−q)/2(iλnβ)− dnJ(q−1)/2(iλnβ) = −ϕnβ

(q−1)/2,

cnJ(1−q)/2(λnα) + dnJ(q−1)/2(λnα) = ψnα
(q−1)/2.

(2.20)

If, for all n ∈ N0 = N ∪ {0}, the determinant of system (2.20) satisfies

Δn(α, β) = iJ(q−1)/2(λnα)J(1−q)/2(iλnβ) + J(1−q)/2(λnα)J(q−1)/2(iλnβ) �= 0, (2.21)

then the system has a unique solution, which is given by
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cn =
−ϕnβ

(q−1)/2J(q−1)/2(λnα) + ψnα
(q−1)/2J(q−1)/2(iλnβ)

Δ(n)
,

dn =
ϕnβ

(q−1)/2J(1−q)/2(λnα) + ψniα
(q−1)/2J(1−q)/2(iλnβ)

Δ(n)
.

Substituting the obtained values of cn and dn into (2.18), we find the final form of the functions:

un(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕn

√
(αy)1−q Δn(α, y) + ψn

√
(βy)1−q An(y, β)

Δn(α, β)
√

(αβ)1−q
, y > 0,

ϕn

√
(−αy)1−q Bn(α,−y) + ψn

√
(−βy)1−q Δn(−y, β)

Δn(α, β)
√

(αβ)1−q
, y < 0,

(2.22)

where

An(y, β) = (−J(q−1)/2(iλnβ)J(1−q)/2(iλny) + J(1−q)/2(iλnβ)J(q−1)/2(iλny))i,

Bn(α,−y) = −J(q−1)/2(λnα)J(1−q)/2(−λny) + J(1−q)/2(λnα)J(q−1)/2(−λny).

Using the obtained partial solutions, we write the solution of problem (1.2)–(1.6), (1.9) formally as
the Fourier–Bessel series

u(x, t) =
∞∑
n=0

un(t)Xn(x),

where the functions un(t) are defined by (2.22) and Xn(x), n = 0, 1, 2, . . . , are defined by (2.7), after
which it is not difficult to show the equivalence of problems (1.2)–(1.6), (1.9), and (1.2)–(1.7), provided
that conditions (1.8) are fulfilled.

If condition (2.21) holds, then problem (1.2)–(1.6), (1.9) has a unique solution. Indeed, let
ϕ(x) = ψ(x) ≡ 0. Then it follows from (2.19) and (2.22) that un(y) = 0 for all n ∈ N0 = N ∪ {0}. By
virtue of (2.9), we have

ˆ l

0
u(x, y)xpXn(x) dx = 0.

Hence the completeness of the system Xn(x) in the space L2[0, l] with weight xp implies that u(x, y) = 0
almost everywhere on the interval x ∈ [0, l] for any y ∈ [−α, β]. Since, in view of (1.2), the function
u(x, y) belongs to C(D), we have u(x, y) ≡ 0 in D.

Thus, we have proved the following theorem.

Theorem (uniqueness criterion for solutions). If there exists a solution of problem (1.2)–(1.6), (1.9),
then it is unique if and only if condition (2.21) holds for all n ∈ N0.
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