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Abstract—The paper describes the topological structure of closed manifolds of dimension ≥ 4
that admit Morse–Smale diffeomorphisms whose nonwandering sets contain arbitrarily many sink
periodic points, arbitrarily many source periodic points, and two saddle periodic points. The
underlying manifolds of Morse–Smale diffeomorphisms with fewer saddle periodic points are also
described.
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INTRODUCTION

Morse–Smale systems are structurally stable dynamical systems with zero topological entropy.
These systems are remarkable in that there is a deep relationship between their dynamical properties
and the topological structure of the underlying manifolds (see the relatively recent survey [1]) and in that
they exist on any (smooth) closed manifolds [2], [3]. In this article, we restrict ourselves to discrete-time
Morse–Smale systems. A discrete-time dynamical system is generated by a diffeomorphism of the un-
derlying manifold, and such a system is the set of iterations of the generating diffeomorphism. In the case
of Morse–Smale systems, this generating diffeomorphism is called a Morse–Smale diffeomorphism.
(See the next section for precise definitions.)

Clearly, the structure of the underlying manifold does not change if the original diffeomorphism is
replaced by some of its iterations. Therefore, without loss of generality, we can (and will) consider
Morse–Smale diffeomorphisms whose periodic points are fixed points. By MS(Mn; a, b, c) we denote
the set of Morse–Smale diffeomorphisms of a closed smooth n-dimensional manifold Mn such that the
nonwandering set NW (f) of any diffeomorphism f ∈ MS(Mn; a, b, c) consists of a sink fixed points
(sinks), b source fixed points (sources), and c saddle fixed points (saddles). Smale [2] proved that a ≥ 1
and b ≥ 1. In the dimension n = 1, one always has c = 0 and a = b, and the underlying manifold is the
circle M1 = S1. For the dimensions n = 2, 3, there are quite a few papers on the relationship between the
topological structure of the underlying manifolds and the dynamics of Morse–Smale diffeomorphisms
(see the surveys [1] and [4] and the book [5], which contains an extensive bibliography). Therefore, we
consider underlying manifolds of dimension n ≥ 4 in what follows. (See the remark at the end of the
article.)

It is well known that if c = 0, then a = b = 1 and the underlying manifold Mn is the n-dimensional
sphere S

n [6]. There exists a description of the topological structure of the underlying manifold Mn and
the triples (a, b, c) for the case of c = 1; see Proposition 4. The present research deals with the topological
structure of closed underlying manifolds Mn, n ≥ 4, and triples (a, b, c) in the case of c = 2.

First, we consider the case in which both saddles of the diffeomorphism f ∈ MS(Mn; a, b, 2) are
saddles of codimension 1. (That is, one of the invariant manifolds of the saddles is one-dimensional.)
In the following theorem, N ⊗ S1 denotes the total space of a locally trivial bundle with fiber N
over S1. The manifold N ⊗ S1 is obtained from N × [0; 1] by identifying N × {0} with N × {1} via
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some diffeomorphism τ : N → N . Throughout the paper, Dk is the k-dimensional closed disk and S
k is

the k-dimensional sphere.

Theorem 1. Let both saddles of a diffeomorphism f ∈ MS(Mn; a, b, 2), n ≥ 4, be saddles of
codimension 1. Then one of the following two conditions is satisfied:

(1) f ∈ MS(Mn; 1, 1, 2) and Mn is homeomorphic to the union of two copies of Dn−1 ⊗ S1;

(2) f ∈ MS(Sn, 2, 2, 2) ∪MS(Sn, 1, 3, 2) ∪MS(Sn, 3, 1, 2).

The following result is proved for the case of only one saddle of codimension 1.

Theorem 2. Assume that one saddle of a diffeomorphism f ∈ MS(Mn; a, b, 2), n ≥ 4, is a saddle
of codimension 1 and the other saddle is not a saddle of codimension 1. If the closures of
one-dimensional separatrices of the saddle of codimension 1 form a segment, then

(1) the dimension n of the underlying manifold can only take the values n ∈ {4, 8, 16};

(2) f ∈ MS(Mn; 1, 2, 2) ∪MS(Mn; 2, 1, 2);

(3) the manifold Mn is the disjoint union of an open ball B
n and an n/2-dimensional

sphere Sn/2 topologically embedded in Mn, and if n ∈ {8, 16}, then the embedding of Sn/2

in Mn is locally flat.

We prove the following result for the case in which there are no saddles of codimension 1.

Theorem 3. Let a diffeomorphism f ∈ MS(Mn; a, b, 2), n ≥ 4, have no saddles of codimension 1.
Then f ∈ MS(Mn; 1, 1, 2), and the manifold Mn is simply connected.

Remark 1. All sets of Morse–Smale diffeomorphisms in the above statements are nonempty:

MS(Dn−1 ⊗ S1 ∪ D
n−1 ⊗ S1; 1, 1, 2) �= ∅, MS(Sn, 2, 2, 2) �= ∅,

MS(Sn, 1, 3, 2) �= ∅, MS(Sn, 3, 1, 2) �= ∅, MS(Mn; 1, 2, 2) �= ∅,

MS(Mn; 2, 1, 2) �= ∅, MS(Sn, 1, 1, 2) �= ∅.

The article is organized as follows. Section 1 contains the main definitions and auxiliary propositions
needed to prove the main results. All the main results are proved in Sec. 2.

1. AUXILIARY STATEMENTS

Let f : Mn → Mn be a diffeomorphism of a smooth closed n-dimensional manifold Mn (n ≥ 1).
Recall that a point x ∈ Mn is said to be nonwandering if, for any neighborhood U of x and any positive
integer N0, there exists an n0 ∈ Z such that

|n0| ≥ N0 and fn0(U) ∩ U �= ∅.

The set of nonwandering points of f is denoted by NW (f). Obviously, any periodic point is nonwander-
ing. A periodic point x0 ∈ Per(f), f q(x0) = x0, is said to be hyperbolic if the derivative

Df q(x0) : Tx0M
n → Tx0M

n,

viewed as a linear mapping of the tangent space to itself, has no eigenvalues with unit modulus. For a
hyperbolic point x0, there exists a stable manifold W s(x0) and an unstable manifold W u(x0), which are
defined as the sets of points y ∈ Mn such that

�M (f qkx0, f
qky) → 0 as k → +∞ and k → −∞, respectively,

where �M is a metric on Mn. Note that the unstable manifold W u(x0) is a stable manifold with respect
to f−1. It is well known that W s(x0) and W u(x0) are homeomorphic (in the intrinsic topology) to the
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Euclidean spaces R
dimW s(x0) and R

dimWu(x0), respectively, and are injective immersions of the latter
in Mn.

A diffeomorphism f is called a Morse–Smale diffeomorphism if NW (f) is hyperbolic and consists
of finitely many periodic points and the invariant manifolds W s(x) and W u(y) intersect transversally
(whenever the intersection is nonempty) for any points x, y ∈ NW (f).

Let f : Mn → Mn be a Morse–Smale diffeomorphism. A hyperbolic fixed point p ∈ NW (f) is
called a node if either dimW s(p) = n (in this case, p is a sink) or dimW u(p) = n (in this case,
p is a source). A hyperbolic fixed point σ ∈ NW (f) is called a saddle if its stable and unstable
manifolds have nonzero topological dimension. If dimW u(σ) = i, then we will refer to each component
of the set W u(σ) \ {σ} as an i-dimensional unstable separatrix and to each component of the set
W s(σ) \ {σ} as an (n − i)-dimensional stable separatrix. A saddle σ ∈ NW (f) is called a saddle
of codimension 1 if one of its separatrices is one-dimensional. Since the removal of a point disconnects
one-dimensional Euclidean space but does not disconnect Euclidean spaces of higher dimension, it
follows that a one-dimensional stable or unstable manifold of a saddle periodic point consists of the
saddle point itself and two one-dimensional separatrices, while an i-dimensional manifold for i ≥ 2
consists of the saddle point and one i-dimensional separatrix.

Let W τ (σ), where τ = u or s, be an i-dimensional invariant manifold, i ≥ 1, of a saddle σ. If i ≥ 2,
then we denote the separatrix of σ lying in W τ (σ) by W τ

sep(σ). If i = 1 (that is, the invariant manifold
W τ (σ) is one-dimensional), then W τ

sep(σ) denotes one of the two separatrices; where necessary, we
will denote them by W τ

sep,1(σ) and W τ
sep,2(σ). We say that a separatrix W τ

sep(σ) has no heteroclinic
intersections if it does not meet other separatrices. We need the following well-known statements
(see [1]).

Proposition 1. Let W
u(s)
sep (σ) be a d-dimensional separatrix of a saddle σ of a Morse–Smale

diffeomorphism, and assume that W u(s)
sep (σ) has no heteroclinic intersections. Then W

u(s)
sep (σ) lies

in the attraction domain W s(p) (respectively, the repulsion domain W u(p)) of exactly one sink
(respectively, source) periodic point p.

Moreover, if d ≥ 2, then the topological closure closW
u(s)
sep (σ) of W u(s)

sep (σ) coincides with

closW u(s)
sep (σ) = W u(s)

sep (σ) ∪ {p}
and is a topologically embedded d-sphere.

If d = 1 and each one-dimensional separatrix W
u(s)
sep,j(σ), j = 1, 2, lies in the attraction do-

main W s(pj) (respectively, the repulsion domain W u(pj)) of exactly one sink (respectively,

source) periodic point pj , then the topological closure clos(W
u(s)
sep,1(σ) ∪W

u(s)
sep,2(σ)) is either a

topologically embedded closed segment (for p1 �= p2) or a topologically embedded circle (for
p1 = p2).

Proposition 2. Suppose that σ is a codimension-1 saddle of a Morse–Smale diffeomorphism
f : Mn → Mn, n ≥ 4, and assume that neither of the one-dimensional separatrices Sep1(σ) and
Sep2(σ) of σ has heteroclinic intersections.

If clos(Sep1(σ) ∪ Sep2(σ)) is a topologically embedded circle S0, then S0 has a closed neigh-
borhood T homeomorphic to D

n−1 ⊗ S1 and containing only two fixed points, the saddle σ and
some node n0.

Moreover, if n0 is a sink, then T is forward invariant, and if n0 is a source, then T is backward
invariant.

Proposition 3. Suppose that σ is a codimension-1 saddle of a Morse–Smale diffeomorphism
f : Mn → Mn, n ≥ 4, and assume that neither of the one-dimensional separatrices Sep1(σ) and
Sep2(σ) σ has heteroclinic intersections.

If clos(Sep1(σ) ∪ Sep2(σ)) is a topologically embedded segment I, then I has a closed neigh-
borhood B homeomorphic to an n-dimensional disk and containing only three fixed points, the
saddle σ and two nodes n1 and n2.

Moreover, if n1 and n2 are sinks, then B is forward invariant, and if n1 and n2 are sources, then
B is backward invariant.
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The following proposition, which we give here for reference and which can be extracted from [7] and
[8], holds for a Morse–Smale diffeomorphism f : Mn → Mn, n ≥ 4, with exactly one saddle (i.e., for
f ∈ MS(Mn; a, b, 1)).

Proposition 4. Let f : Mn → Mn be a Morse–Smale diffeomorphism of a closed n-dimensional
manifold Mn, n ≥ 4, and assume that the nonwandering setNW (f) consists of a sinks ω1, . . . , ωa,
b sources α1, . . . , αb, and one saddle σ. Then one of the following cases takes place:

(1) a+ b = 3 (i.e., either a = 1 and b = 2 or a = 2 and b = 1) and the manifold Mn is the sphere
S
n; moreover, the unstable Morse index of σ is n− 1 for a = 1 and b = 2 and 1 for a = 2 and

b = 1;

(2) a = b = 1, and the dimension n of the manifold takes one of the values n ∈ {4, 8, 16};
moreover, Mn is the disjoint union of an open ball Bn and an n/2-dimensional sphere Sn/2

topologically embedded in Mn, the embedding of Sn/2 in Mn is locally flat if n ∈ {8, 16},
and the saddle σ has n/2-dimensional separatrices.

2. PROOFS OF THE MAIN RESULTS

In this section, the main results of the article are proved. We use the following operation of cutting
a manifold Mn along a submanifold of codimension 1. Let Nn−1 ⊂ Mn be an (n− 1)-dimensional
submanifold. By cutting Mn along Nn−1 we mean removing a sufficiently small neighborhood U
of Nn−1 homeomorphic to Nn−1 × (0; 1) from Mn. The resulting (possibly disconnected) manifold
clos(Mn \U) has two additional boundary components, each of which is homeomorphic to Nn−1; see [9]
for a rigorous justification of the possibility of this operation.

Proof of Theorem 1. First, consider the case in which the codimension-1 separatrices of both saddles
do not meet the one-dimensional separatrices. Let Sep1(σi) and Sep2(σi) be the one-dimensional
separatrices of the saddle σi, i = 1, 2. By assumption,

(Sep1(σ1) ∪ Sep2(σ1)) ∩ (W s(σ2) ∪W u(σ2)) = ∅,

(Sep1(σ2) ∪ Sep2(σ2)) ∩ (W s(σ1) ∪W u(σ1)) = ∅.

By Proposition 1, the following three cases are possible:

(a) clos(Sep1(σ1) ∪ Sep2(σ1)) = S1 and clos(Sep1(σ2) ∪ Sep2(σ2)) = S2 are circles;

(b) clos(Sep1(σ1) ∪ Sep2(σ1)) and clos(Sep1(σ2) ∪ Sep2(σ2)) are segments;

(c) clos(Sep1(σ1) ∪ Sep2(σ1)) is a circle and clos(Sep1(σ2) ∪ Sep2(σ2)) is a segment.

In case (a), the circle Si, i = 1, 2, has a neighborhood Ti homeomorphic to D
n−1 ⊗ S1 by Proposi-

tion 2. Let us show that one of the Ti is forward invariant and the other is backward invariant.
Assume the contrary. To be definite, we assume that both T1 and T2 are backward invariant; i.e.,

f−1(Ti) ⊂ Ti, i = 1, 2. Since the Morse–Smale diffeomorphism f has only two stable separatrices
Sep1(σi) and Sep2(σi), i = 1, 2, lying in T1 ∪ T2, it follows that there exist no sources in Mn \ (T1 ∪ T2).
The set Mn \ (T1 ∪ T2) is connected and hence contains exactly one sink. Therefore, f has three nodes.
Since the unstable manifolds W u(σ1) and W u(σ2) do not meet, it follows by [10] that the number of
nodes of f must be even. The resulting contradiction proves that one of the Ti is forward invariant and
the other is backward invariant.

To be definite, assume that T1 is backward invariant and T2 is forward invariant. Then T1 contains
a source α ∈ S1 ⊂ T1 and T2 contains a sink ω ∈ S2 ⊂ T2. Let us show that the set Mn \ (T1 ∪ T2)
contains no fixed points of f .

Assume the contrary. Without loss of generality, we can assume that there exists a sink
ω0 ∈ Mn \ (T1 ∪ T2). Note that since the invariant manifold W u(σ1) is simply connected, it follows
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that its limit set Lim(W u(σ1)) is connected. By assumption, f has only two unstable mani-
folds. This, together with the inclusions W u(σ2) ⊂ T2, ω0 ∈ Mn \ (T1 ∪ T2), implies the inclusion
ω0 ∈ Lim(W u(σ1)). Since Lim(W u(σ1)) is connected, it follows that Lim(W u(σ1)) cannot contain
W u(σ2) ∪ {ω} ⊂ T2. Consequently,

W u(σ1) ∩W s(σ2) = ∅.

By Proposition 1, the unionW u(σ1)∪{ω0} = Sn−1
0 is a topologically embedded (n− 1)-dimensional

sphere, which we denote by Sn−1
0 . Since its codimension is strictly greater than 2, it follows that this

embedding is locally flat [11], [12]. Removing it does not disconnect the manifold Mn, because the circle
clos(Sep1(σ1)∪ Sep2(σ1)) meets Sn−1

0 at exactly one point and the intersection is transversal. Therefore,

cutting Mn along Sn−1
0 gives a connected manifold ̂Mn with two boundary components M1 and M2,

each of which is homeomorphic to Sn−1
0 . We glue M1 and M2 with n-dimensional balls Bn

1 and Bn
2 ,

respectively.

Then we obtain a closed manifold ˜Mn. Since the sphere Sn−1
0 had a backward invariant neighborhood

in the original manifold Mn, it follows that f extends to ˜Mn as a Morse–Smale diffeomorphism
˜f : ˜Mn → ˜Mn with two sinks ωi ∈ Bn

i , i = 1, 2. Then the nonwandering set of ˜f consists of the
saddle σ2, the source α, and at least three sinks ω and ωi, i = 1, 2, which contradicts Proposition 4.

Thus,

NW (f) = {α} ∪ {ω} ∪ {σ1} ∪ {σ2} ∈ T1 ∪ T2.

Moreover, the set S1 ⊂ T1 is repulsive, and the set S2 ⊂ T2 is attracting. Since ∂T1 is compact, it
follows that there exists a k ∈ N such that fk(∂T1) ⊂ T2. Consequently, f ∈ MS(Mn; 1, 1, 2), and the
manifold Mn is homeomorphic to the union of two copies of Dn−1 ⊗ S1.

In case (b), we denote the segments clos(Sep1(σ1) ∪ Sep2(σ1)) and clos(Sep1(σ2) ∪ Sep2(σ2)) by I1
and I2, respectively. First, consider the case in which I1 is a repelling set and I2 is an attracting set.
Then there exist neighborhoods Ui ⊃ Ii, i = 1, 2, such that U1 ⊂ f(U1) and f(U2) ⊂ U2. Therefore,
one can modify f in U1 ∪ U2 so as to obtain a Morse–Smale diffeomorphism ˜f : Mn → Mn that
has one source α0 ∈ U1 and one sink ω0 ∈ U2 and coincides with f outside U1 ∪ U2. Thus, ˜f is a
Morse–Smale diffeomorphism without saddle periodic points. Consequently, ˜f ∈ MS(Sn, 1, 1, 0) and
f ∈ MS(Sn, 2, 2, 2).

Now assume that I1 and I2 are repelling sets. Using the above saddle removal method and
Proposition 4, one can show that ˜f ∈ MS(Sn, 1, 2, 1) ∪MS(Sn, 2, 1, 1) and hence

f ∈ MS(Sn, 1, 3, 2) ∪MS(Sn, 3, 1, 2).

Let us prove that case (c) cannot be realized. Assume the contrary. Removing the saddle
σ2 lying in the segment clos(Sep1(σ2) ∪ Sep2(σ2)), we obtain a Morse–Smale diffeomorphism
˜f ∈ MS(Mn; 1, 1, 1). By Proposition 4, both separatrices of the remaining saddle σ1 must be
n/2-dimensional. This contradicts the assumption that σ1 is a saddle of codimension 1.

Now consider the case in which the codimension-1 separatrix of one of the saddles, say σ1, meets
the one-dimensional separatrix of the other saddle σ2. Let us show that then f ∈ MS(Sn, 2, 2, 2). To be
definite, assume that the one-dimensional separatrices of the saddles σi, i = 1, 2, are stable separatrices.
Since periodic points do not form cycles in the Smale graph, it follows that

W u(σ2) ∩W s(σ1) = ∅.

This, together with Proposition 1, implies that clos(W u(σ2)) = Sn−1 is a topologically embedded
(n− 1)-dimensional sphere containing the sink ω. Since n ≥ 4, it follows that the embedding of
Sn−1 is locally flat [11], [12]. Cutting Mn along Sn−1, we obtain a manifold ̂Mn with two boundary
components M1 and M2, each of which is homeomorphic to S

n−1. By gluing n-dimensional balls Bn
1

and Bn
2 to M1 and M2, respectively, we obtain a closed manifold ˜Mn. Since Sn−1 is an attracting set,
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it follows that f extends to ˜Mn as a Morse–Smale diffeomorphism ˜f : ˜Mn → ˜Mn with sinks ωi ∈ Bn
i ,

i = 1, 2. Note that ˜f has only one saddle σ1 and does not have the fixed points σ2 and ω.

If ˜Mn is connected, then the nonwandering set NW ( ˜f ) contains only one saddle σ1 with unstable
Morse index (n− 1) and at least two sinks ωi, i = 1, 2. This contradicts Proposition 4. If the manifold
˜Mn is disconnected, then one of its components ˜Mn

2 does not contain saddles. Therefore, ˜Mn
2 = S

n,
and the nonwandering set NW ( ˜f ) ∩ ˜Mn

2 in ˜Mn
2 consists of a sink and a source. It follows that

Mn = ˜Mn
1 � Sn is homeomorphic to ˜Mn

1 and NW ( ˜f ) contains only one source. By Proposition 4,
˜f ∈ MS(Sn; 1, 2, 1). Therefore, f ∈ MS(Sn, 2, 2, 2).

Proof of Theorem 2. To be definite, we assume that f has a saddle σ of codimension 1 with stable
one-dimensional separatrices and a saddle σ0 that is not a saddle of codimension 1. Since the invariant
manifolds of saddle periodic points of a Morse–Smale diffeomorphism must intersect transversally,
it follows that the one-dimensional separatrices of σ do not have heteroclinic intersections. By
Proposition 3, the topological closure closW s(σ) is a segment I with sources α1 and α2 at the endpoints.

Further, I has a closed backward invariant neighborhood B homeomorphic to an n-dimensional disk;
i.e., int f(B) ⊂ B. Therefore, one can modify f in B so as to obtain a Morse–Smale diffeomorphism
˜f : Mn → Mn that has one source α0 in B and coincides with f outside B. In other words, ˜f has one
source less and one saddle less than f . Since ˜f has exactly one saddle of codimension greater than 1, it
follows by Proposition 4 that the dimension of Mn can only take one of the values n ∈ {4, 8, 16}, that Mn

is the disjoint union of an open ball Bn and an n/2-dimensional sphere Sn/2, and that if n ∈ {8, 16}, then
the embedding of Sn/2 in Mn is locally flat; in addition, the saddle σ0 has n/2-dimensional separatrices.
Moreover, since ˜f ∈ MS(Mn; 1, 1, 1), it follows that f ∈ MS(Mn; 1, 2, 2).

Clearly, if we assume that the saddle σ of codimension 1 has unstable one-dimensional separatrices,
then we obtain f ∈ MS(Mn; 2, 1, 2).

Proof of Theorem 3. It is well known that if a Morse–Smale diffeomorphism does not contain saddles
of codimension 1, then it is a polar diffeomorphism; i.e., a = b = 1 [1], [6]. It remains to prove that
the manifold Mn is simply connected. Consider a mapping γ : S1 → Mn representing an element of the
fundamental group π1(M

n). Without loss of generality, we can assume γ to be a smooth embedding [13].
Further, by deforming γ, one can ensure that the image γ(S1) contains no fixed points of f .

Since the invariant manifolds of the saddles are the images of smooth immersions of Euclidean spaces
and there are finitely many of them, we can ensure by successive deformations of γ that γ(S1) intersects
all the invariant manifolds of the saddles transversally. Indeed, first, we can ensure the transversality of
the intersection with separatrices that do not have heteroclinic intersections, because, outside some
neighborhoods of fixed points, these separatrices are embeddings of compact domains of Euclidean
spaces [13]. Outside some neighborhoods of these separatrices, the remaining separatrices (with
heteroclinic intersections) are embeddings of compact domains of Euclidean spaces as well. Thus, we
can assume that γ(S1) intersects all the invariant manifolds of the saddles transversally.

By assumption, the codimension of all invariant manifolds of the saddles is greater than 1. Since
γ(S1) is a circle, we see that the transversality of the intersection of γ(S1) with the invariant manifolds
of the saddles means that γ(S1) belongs to the attraction or repulsion domain of a sink or source,
respectively. Since such a domain is homeomorphic to an open ball, it follows that the curve γ(S1)
is contractible to a point. Consequently, the manifold Mn is simply connected.

Remark 2. An analysis of the proof of Theorem 3 shows that its statement remains true for an arbitrary
number of saddles. We thank the referee for bringing this to our attention.

Remark 3. For the reader’s convenience, we present a list of closed two- and three-dimensional man-
ifolds admitting Morse–Smale diffeomorphisms with one and two saddles. The only two-dimensional
manifolds that admit Morse–Smale diffeomorphisms with one saddle are the sphere and the projective
plane. The only 3-manifold admitting Morse–Smale diffeomorphisms with one saddle is the sphere. The
only two-dimensional manifolds that admit Morse–Smale diffeomorphisms with two saddles are the
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sphere, the torus, the Klein bottle, and the projective plane. The 3-manifolds admitting Morse–Smale
diffeomorphisms with two saddles are lenses, the sphere, and the direct and skew products of the
two-dimensional sphere and the circle.
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