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Abstract—The relation xy − yx = h(y), where h is a holomorphic function, occurs naturally in
the definitions of some quantum groups. To attach a rigorous meaning to the right-hand side of
this equality, we assume that x and y are elements of a Banach algebra (or of an Arens–Michael
algebra). We prove that the universal algebra generated by a commutation relation of this kind can
be represented explicitly as an analytic Ore extension. An analysis of the structure of the algebra
shows that the set of holomorphic functions of y degenerates, but at each zero of h, some local
algebra of power series remains. Moreover, this local algebra depends only on the order of the zero.
As an application, we prove a result about closed subalgebras of holomorphically finitely generated
algebras.
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In quantum algebra, there arise commutation relations involving not only polynomials but also
more general holomorphic functions. Similar relationships can be obtained by deforming the universal
enveloping algebra of a semisimple Lie algebra (following Drinfeld and Jimbo; see the monograph [1,
Definition 17.2.3]) or of the Lie algebra of the group of affine transformations of the line; see the paper [2]
by Aizawa and Sato. In the latter case, the condition has the simplest form:

[x, y] = h(y), (1)

where h is the hyperbolic sine [2, formula (3.1)]. (Here [x, y] := xy − yx.) We consider a general relation
of this form, assuming that h is a function holomorphic in some domain.

Certainly, such equalities make no sense for arbitrary algebras1. To overcome this difficulty, quantum
algebras over the ring of formal series in the quantization parameter are traditionally introduced. The
alternative analytical approach of considering these relations in algebras for which the holomorphic
functional calculus theorem ensures the existence of h(y) (in particular, in Banach algebras) seems to
be more natural. This point of view supposes a specialization of the quantization parameter to a complex
number. Further, one must consider the universal algebra generated by those elements x and y for which
the required relation holds, assuming additionally that these elements are contained in a Banach algebra
with unit and h is holomorphic in some neighborhood of the spectrum of y. Before investigating the
properties of the resulting “analytical form” of the quantum group, it is necessary to study the question
of whether this form is nontrivial and how rich is its structure.

The main objective of this paper is to answer this question by providing a complete description of
the universal algebra generated by elements x and y satisfying (1) for an arbitrary function h. Such
problems do not always have a solution in the class of Banach algebras without additional conditions on
the norms or the spectrum of elements; however, a solution can be found among algebras approximated
by Banach algebras, namely, among the Arens–Michael algebras. (Recall that a complete locally convex
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1Here and in what follows, by “algebra” we mean “associative algebra with unit over the field C of complex numbers.”
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algebra is called an Arens–Michael algebra if its topology is generated by a family of submultiplicative
seminorms, i.e., of seminorms ‖ · ‖ satisfying the condition ‖ab‖ ≤ ‖a‖‖b‖ for any elements a and b.)

Certainly, particular cases of (1) have been studied from different points of view, at least for
polynomials. For example, it has been established that if h is a nonconstant polynomial, then the problem
of classification (up to similarity) of pairs of finite-dimensional operators satisfying this condition is very
difficult (it is wild according to Ostrovskii and Samoilenko [3, Theorem 1]). Some spectral properties of
a pair of elements of a Banach algebra satisfying (1) were studied by Turovskii [4] (cited in [5]); see also
Shulman’s survey [5, Sec. 3]. However, as far as the author knows, the universal Arens–Michael algebra
generated by this relation has previously been identified only for constant or linear functions h. Recall
that a classical result states that if h is a nonzero constant, then a nontrivial realization of relation (1) in
a Banach algebra is impossible. The case of h(y) = y was treated by Pirkovskii [6].

Although (1) does not imply upper bounds for the norms of powers of x, it rather rigidly determines
the asymptotic behavior of ‖(y − λ)n‖ as n → ∞, where λ is some zero of the function h. For example,
it follows from [x, y] = y that

n‖yn‖ ≤ 2‖x‖‖yn‖ for all n ∈ N,

and thus ‖yn‖ = 0 beginning with some n; cf. [6, Example 5.1]. This observation was used in [6,
Proposition 5.2] in describing the corresponding universal algebra.

The relation [x, y] = y2 also implies a restriction on growth: arguing by induction, we can show that

‖yn‖ = O

(
‖x‖n
n!

)
, n → ∞.

A classical example is a pair of operators on L2[0, 1], the operator T of multiplication by the independent
variable and the indefinite integration operator

V f(x) =

ˆ x

0
f(t) dt

(which is a special case of the Volterra operator). It can readily be seen that [T, V ] = V 2. There is a vast
literature, devoted to calculation and estimation of the norms of powers of V ; of special mention are the
papers [7]–[10]. In particular, it has been proved that limn→∞ n! ‖V n‖ = 1/2; see [8, Theorem 5.4] and
[9, Remark 3].

A description of a universal algebra in the general case is given in Theorem 5 (see below). As expected
from the above examples, it depends only on the zeros of h and their orders. Moreover, to every zero, there
corresponds a subalgebra that consists of (not necessarily convergent) power series and is local.

Note also that (1) admits the following natural generalization.

Question 1. Let U be a domain in C, let h be a nonzero function holomorphic on U , and let α be a
continuous endomorphism of the algebra of functions holomorphic on U . What is the Arens–Michael
universal algebra for the relation

xy − α(y)x = h(y)?

This question remains open in the general case. The special case of the quantum Weyl algebra with
h = 1 was described by Pirkovskii [6, Corollary 5.19].

Theorem 5 has an application to the theory of holomorphically finitely generated (or, briefly, HFG)
algebras. This class of algebras was first considered by Pirkovsky (see [11] and [12]) and is of interest
from the point of view of noncommutative geometry, since the commutative HFG algebras are Stein
algebras, i.e., algebras of holomorphic functions, or, more precisely, of global sections of the structure
sheaf on some Stein space (in the case of finite dimension of the embedding).

At present, the study of noncommutative HFG algebras remains in an embryonic state. In particular,
it is not clear how wide is the class of their closed subalgebras. However, at least, it is known that a
closed subalgebra of a Stein algebra need not be a Stein algebra, which means that the class of HFG
algebras is not stable with respect to the passage to closed subalgebras either.

When studying our main problem, a family of local algebras As, s ∈ [0,∞], of power series arises.
We show below that, for rational values of s, such an algebra can be embedded as a closed subalgebra
in some HFG algebra (Theorem 14), although it is not HFG for s �= 0 (Proposition 13). The following
questions remain open.
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THE RELATION “COMMUTATOR EQUALS FUNCTION” 325

Question 2. Is As a closed subalgebra of an HFG algebra for an arbitrary irrational positive s?

Question 3. Is As a closed subalgebra of a Stein algebra for s ∈ (0,+∞]?

1. THE UNIVERSAL ALGEBRA AND FORMULATION OF THE MAIN THEOREM

Let us begin with the definition of a family of local algebras that plays an important role in our
reasoning. For every s ≥ 0, consider the following completion of the algebra of polynomials in a formal
variable y:

As :=

{
a =

∞∑
n=0

any
n : ‖a‖r,s :=

∞∑
n=0

|an|
rn

n!s
< ∞ for all r > 0

}
. (2)

It can readily be seen that the restrictions of the seminorms ‖ · ‖r,s to the algebra of polynomials in y are
submultiplicative (cf. the proof of part (A) of Proposition 7 below), and thus As is an Arens–Michael
algebra. Let us denote the algebra C[[y]] of all formal power series in y by A∞. This is also an
Arens–Michael algebra with respect to the topology generated by the system of submultiplicative
seminorms

‖a‖m,∞ :=

m∑
n=0

|an|, m ∈ Z+.

For a given domain U in C, we denote the algebra of all holomorphic functions on U by O(U)
and choose a nonzero h ∈ O(U). Let {λj : j ∈ J} be the set of all zeros of the function h (without
repetitions), and let sj := 1/(kj − 1), where kj stands for the order of λj . For every j, we take the
algebra Asj and set

A :=
∏
j∈J

Asj . (3)

Below we show that the desired universal algebra is an analytic Ore extension of the algebra A .
This analytic version of a classical notion was suggested by Pirkovskii in [6, Sec. 4.1]. Let us recall the
necessary definitions and facts. Let d be a derivation of some algebra R. A seminorm ‖ · ‖ on R is said to
be d-stable if there is a C > 0 such that ‖d(r)‖ ≤ C‖r‖ for all r ∈ R [6, Definition 4.1]. A derivation d
of an Arens–Michael algebra R is said to be m-localizable if the topology on R is generated by a family
of d-stable submultiplicative seminorms [6, Definition 4.4].

Proposition 4 [6, Propositions 4.4 and 4.6 and Remark 4.6]. Let R be an Arens–Michael algebra,
and let d be its m-localizable derivation. Then there exists an Arens–Michael algebra E, an
x ∈ E, and a continuous homomorphism η : R → E such that [x, η(r)] = η d(r) for all r ∈ R which
has the following universal property. If B is an Arens–Michael algebra, x̆ ∈ B, and ν : R → B
is a continuous homomorphism such that [x̆, ν(r)] = ν d(r) for all r ∈ R, then there is a unique
continuous homomorphism τ : E → B such that ν = τη and τ(x) = x̆.

The universal algebra E is denoted by O(C, R; d) and called an analytic Ore extension of the
algebra R [6, Definition 4.3]. (Note that this notion still makes sense in the more general case in
which d is an α-derivation for some endomorphism α of the algebra R.) The underlying locally convex
space of the algebra O(C, R; d) is the complete projective tensor product R ⊗̂O(C), the homomorphism
η : R → O(C, R; d) is defined by the condition r 
→ r⊗ 1, and x = 1⊗ z, where z is the identity function
on C [6, Proposition 4.3].

We denote by yj the corresponding formal variable in Asj and by y the sequence (yj + λj : j ∈ J)
in A . It can readily be proved that yj ∈ Asj is quasinilpotent (since sj > 0). Thus, each of the
algebras Asj is local, and hence the spectrum of y coincides with {λj : j ∈ J}. Since the spectrum is
contained in U and A is an Arens–Michael algebra, it follows that the holomorphic functional calculus
for y is well defined [13, Chap. VI, Theorem 3.2]; in particular, there is an h(y) ∈ A .
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It can readily be seen that

δj := h(yj + λj)
d

dyj
(4)

is a derivation of Asj , i.e.,

δj(ab) = aδj(b) + δj(a)b for any a, b ∈ Asj .

Moreover, the map δ : A → A , being the product of all δj , is also a derivation.

We are now ready to state the main result of the paper, which is the following theorem on the universal
algebra.

Theorem 5. Suppose that U is a domain in C and h is a nonzero holomorphic function on U . Let
{λj : j ∈ J} be the set of all distinct zeros of h, and let sj := 1/(kj − 1), where kj is the order of λj .

(A) Let an Arens–Michael algebra A , its derivation δ, and y ∈ A be defined as above. Then δ is
m-localizable, and hence O(C,A ; δ) is well defined and is an Arens–Michael algebra; moreover,
the spectrum of y is contained in U and the relation [x, y] = h(y) holds.

(B) If an Arens–Michael algebra (in particular, a Banach algebra) B contains elements x̆ and
y̆ such that the spectrum of y̆ is contained in U and [x̆, y̆] = h(y̆), then there is a unique continuous
homomorphism

τ : O(C,A ; δ) → B

for which τ(x) = x̆ and τ(y) = y̆.

In particular, if h has no zeros, then the universal algebra is isomorphic to {0}. Thus, the theorem
includes the classical result on the relation [x, y] = 1 as a special case. On the other hand, deforming the
function h(y) = y into h(y) = sinh �y/ sinh� as in [2] (here the quantization parameter is � ∈ C \ {0}),
we see that the universal algebra contains infinitely many copies of C[[y]]. This follows from the
theorem, because the set of zeros of the hyperbolic sine is infinite and all zeros are of order 1. Since
the universal algebra in the classical case contains only one such copy, this visually demonstrates the
effect of quantization.

Remark 6. If h is identically equal to zero in a domain U , then, obviously, the universal algebra also
exists and is topologically isomorphic to O(U) ⊗̂ O(C). For the case in which U = C, this well agrees
with our notation, since O(C) ∼= A0 (if we assume that we have here a “zero of infinite order”).

We will first prove part (A) of Theorem 5 and then part (B). The idea of the proof of part (A) is to
construct a family of δ0-stable submultiplicative seminorms on O(U), where the derivation δ0 is given
by the formula δ0(f) = hf ′. To establish the validity of part (B), we will prove that this family is sufficient
for describing the topology of the universal algebra.

2. PROOF OF PART (A) OF THEOREM 5

On O(U), we consider the seminorms (cf. the definition of the algebras As in (2))

‖f‖λ,r,s :=
∞∑
n=0

|f (n)(λ)| rn

n!s+1
, ‖f‖λ,m,∞ :=

m∑
n=0

|f (n)(λ)|
n!

(5)

(here λ ∈ U , r > 0, s > 0, and m ∈ Z+) and the standard seminorms

|f |K := sup{|f(z)| : z ∈ K}
(here K stands for a compact subset of U ).

The proofs of both parts of Theorem 5 use the following two assertions.
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Proposition 7. Consider the derivation of the algebra O(U) given by the formula δ0(f) = hf ′.

(A) Each of the seminorms ‖ · ‖λ,r,s and ‖ · ‖λ,m,∞ (λ ∈ U , r > 0, s > 0, and m ∈ Z+) is submul-
tiplicative and, up to a constant, is dominated by the seminorm | · |D for some closed disk D ⊂ U
of sufficiently small radius centered at λ; hence these seminorms are continuous.

(B) If λ is a zero of the function h, then ‖ · ‖λ,m,∞ is δ0-stable for all m ∈ Z+.

(C) If λ is a zero of order k > 1 of the function h, then ‖ · ‖λ,r,s is δ0-stable for all r > 0 and
s ≥ 1/(k − 1).

Proof. Let us prove (A). If s is finite, then the submultiplicativity of every seminorm of the form ‖ · ‖λ,r,s
follows from the Leibniz formula and the inequality

rl+n

(l + n)!s
≤ rl

l!s
rn

n!s
, l, n ∈ Z+.

In the case of ‖ · ‖λ,m,∞, the proof of submultiplicativity is straightforward.

The second part of the assertion follows from the Cauchy inequalities for the coefficients of the Taylor
series and from the fact that the topology on O(U) is generated by the family {| · |K} of seminorms, where
K ranges over all compact subsets of U .

Let us prove (B). Suppose that h(λ) = 0 and choose an m ∈ Z+. Since

δ0(f)
(m) = (hf ′)(m) =

m∑
p=0

(
m

p

)
h(p)f (m−p+1), f ∈ O(U), (6)

it follows that the number δ0(f)(m)(λ) is a linear function in f(λ), f ′(λ), . . . , f (m)(λ) with coefficients
independent of f . This readily implies that ‖ · ‖λ,m,∞ is δ0-stable for every m ∈ Z+.

Let us prove (C). Suppose that λ is a zero of order k > 1 of the function h. Choose an r > 0
and an s ≥ 1/(k − 1). By the Cauchy inequalities, there are positive numbers M and R such that
|h(p)(λ)/p!| ≤ M/Rp for all p ∈ Z+. Substituting (6) into (5) and taking into account the fact that

h(λ) = h′(λ) = · · · = h(k−1)(λ) = 0,

we obtain

‖δ0(f)‖λ,r,s =
∞∑
n=k

∣∣∣∣
n∑

p=k

(
n

p

)
h(p)(λ)f (n−p+1)(λ)

∣∣∣∣ rn

n!s+1
≤

∞∑
n=k

n∑
p=k

M

Rp

|f (n−p+1)(λ)|
(n− p)!

rn

n!s

for every f ∈ O(U). Making the changes p = m+ k and n = q +m+ k − 1, we can write
∞∑
q=1

∞∑
m=0

M

Rm+k

rq+m+k−1

(q +m+ k − 1)!s
|f (q)(λ)|
(q − 1)!

=

∞∑
q=1

qrq+k−1

(q + k − 1)!s
|f (q)(λ)|

q!

∞∑
m=0

M

Rm+k

rm(q + k − 1)!s

(q +m+ k − 1)!s
.

Applying the inequality

(q + k − 1)!s

Rm+k(q +m+ k − 1)!s
≤ 1

Rkm!s

to the terms of the sum over m, we arrive at

‖δ0(f)‖λ,r,s ≤
CrM

Rk

∞∑
q=1

qrq+k−1

(q + k − 1)!s
|f (q)(λ)|

q!
,
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where Cr :=
∑∞

m=0 r
m/m!s (note that Cr < ∞, because s > 0). Further, the condition s ≥ 1/(k − 1)

implies the inequality

q! q1/s ≤ (q + k − 1)!.

Thus, we have obtained the final bound

‖δ0(f)‖λ,r,s ≤
CrM

Rk

∞∑
q=1

|f (q)(λ)|r
q+k−1

q!s+1
=

CrMrk−1

Rk
‖f‖λ,r,s .

This completes the proof of the proposition.

Further, we consider the following family of seminorms on O(U):

{‖ · ‖λj ,rj ,sj
: j ∈ I}, (7)

where, as above, {λj : j ∈ J} is the set of all zeros of the functionh, kj is the order of λj , sj := 1/(kj − 1),
and the domain of variation of the parameters is given by the following rule: if λj > 1, then rj ∈ R+, and
if λj = 1, then sj = ∞ and rj ∈ N.

Proposition 8. The homomorphism

μ : O(U) → A : f 
→
( ∞∑

n=0

f (n)(λj)

n!
ynj

)
j

is well defined and continuous, and this is a completion homomorphism with respect to (7).
Moreover, μδ0 = δμ.

Proof. The definition of A (see (2) and (3)) implies that μ is well defined and continuous and that the
topologies coincide. It remains to prove that every (αj : j ∈ J) ∈ A can be approximated by elements of
the form μ(f), where f ∈ O(U). Moreover, we may assume that (αj) is a finite sequence of polynomials.

Let us choose an rj for every j such that αj �= 0. It follows from the finiteness of the set of these j
and from part (A) of Proposition 7 that there are a C > 0 and a compact subset K of U which is a
union of closed disks Dj centered at λj such that ‖f‖λj ,rj ,sj ≤ C‖f‖K for all f ∈ O(U). Reducing the
radii if necessary, we may assume that the disks Dj are pairwise disjoint. We define a function g on K
as follows: for every z ∈ Dj , g coincides with the polynomial αj in which the substitution yj = z − λj

is made. Since K is compact, C \K is connected, and g is continuous on K and holomorphic on its
interior, it follows that we can apply Mergelyan’s theorem, which claims that g can be approximated by
polynomials uniformly on K (see, e.g., [14, Theorem 20.5]). Hence g is approximated by polynomials
with respect to the topology given by (7).

The equality μδ0 = δμ is obtained by a straightforward calculation using (6). This completes the
proof of the proposition.

We can now complete the proof of the first part of the main theorem.

Proof of Theorem 5. Part (A). Recall that δ is the product of all derivations δj defined in (4). There-
fore, to prove that δ is m-localizable, it suffices to prove this for every δj . By Proposition 8 and parts (B)
and (C) of Proposition 7, every seminorm in the defining system for Asj is δj-stable, as desired.

The fact that the spectrum of y consists of those zeros of the function h that belong to U , and hence
h(y) is well defined, was already noted above. The relation [x, y] = h(y) follows from the construction of
the algebra O(C,A ; δ) (see Proposition 4).
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3. PROOF OF PART (B) OF THEOREM 5

We set δ0(f) = hf ′, as above. We need the following assertion.

Proposition 9. Every continuous submultiplicative δ0-stable seminorm on O(U) is dominated by
the family (7) of seminorms.

To prove this proposition, we use two lemmas. Below we denote by SpBb the spectrum of the
element b of the algebra B.

Lemma 10. Let d be a continuous derivation of a commutative Banach algebra B, let b ∈ B, and
let h ∈ O(V ), where V is a domain in C containing SpBb. If d(b) = h(b), then SpBb consists of
zeros of h and is finite.

Proof. The Singer–Wermer theorem [15, Theorem 7.2.10] claims that the range of a continuous
derivation of a commutative Banach algebra is contained in the Jacobson radical. In particular, it follows
from h(b) = d(b) that h(b) belongs to the radical. Since B is commutative, every element of the radical
is topologically nilpotent [15, Theorem 2.1.34]; hence the spectrum SpBh(b) is {0}. Since SpBb ⊂ V ,
it follows from the spectral mapping theorem [15, Theorem 2.2.23] that SpBb is contained in the set of
zeros of h. Since this set does not have limit points in V and SpBb is compact, it is finite. This completes
the proof of the lemma.

Let ‖ · ‖ be a continuous submultiplicative δ0-stable seminorm on O(U). We denote the completion
of O(U) with respect to ‖ · ‖ by B and the image of the identity function under the completion
homomorphism O(U) → B by y̆. Obviously, δ0 extends to a continuous derivation of B. We denote
the norm and the derivation extended to B by the same symbols.

Choose a λ ∈ SpB y̆. By Lemma 10, the number λ is a zero of h. Let k denote the order of this zero.
Then there is a g ∈ O(U) such that

g(λ) �= 0 and h(z) = (z − λ)kg(z)

for all z ∈ U . Let V be an open neighborhood of λ contained in U and such that g(z) �= 0 for z ∈ V . Then
V contains no other points of SpB y̆. Since SpB y̆ is finite, it follows from the holomorphic functional
calculus theorem that the characteristic function χ of the set V can be applied to y̆. For brevity, we will
write g and χ instead of g(y̆) and χ(y̆), respectively.

Lemma 11. (A) If k = 1, then ‖(y − λ)nχ‖ = 0 for all sufficiently large n.

(B) If k ≥ 2, then there are K > 0 and r > 0 such that

‖(y − λ)nχ‖ ≤ K
rn

k−1
√

(n+ k − 1)!
, n ≥ k − 1. (8)

Proof. Without loss of generality, we can assume that λ = 0. Let us first estimate the norm of y̆ngχ.
Let C > 0 be such that ‖δ0(b)‖ ≤ C‖b‖ for all b ∈ B. Further, we note that, first, χ is an idempotent and,
therefore, it follows from δ0(χ) = 2δ0(χ)χ and (1− 2χ)2 = 1 that δ0(χ) = 0. Thus, δ0(bχ) = δ0(b)χ for
every b ∈ B. Second, since the function g has no zeros in V , there is a w ∈ B such that gχw = χ.
Therefore, for every n ∈ N, we obtain the following equality from h(z) = zkg(z):

δ0(y̆
nχ) = δ0(y̆

n)χ = ny̆n+k−1gχ.

Hence

‖y̆n+k−1gχ‖ ≤ n−1C‖y̆nχ‖ ≤ n−1C‖y̆ngχ‖ ‖w‖. (9)
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Let us prove (A). Suppose that k = 1. Then n+ k − 1 = n and, for sufficiently large n, we obtain
‖yngχ‖ = 0, whence ‖ynχ‖ ≤ ‖yngχ‖ ‖w‖ = 0.

Let us prove (B). Suppose that k ≥ 2. Let m ∈ {0, . . . , k − 1}, and let j ∈ N. Applying inequality (9)
j times, we obtain

‖y̆m+j(k−1)χ‖ ≤ ‖y̆m+j(k−1)gχ‖ ‖w‖ ≤ Cj‖w‖j+1‖y̆mgχ‖
m(m+ k − 1) · · · (m+ (j − 1)(k − 1))

.

Every positive integer n which is not less than k − 1 can be written in the form m+ j(k − 1) with the
above conditions on m and j. Since

mk−1(m+ k − 1)k−1 · · · (m+ (j − 1)(k − 1))k−1 ≥ (m+ (j − 1)(k − 1))!,

there are K > 0 and r > 0 for which (8) holds. This completes the proof of the lemma.

Proof of Proposition 9. We use the notation introduced before Lemma 11. It follows from Lemma 10
that SpB y̆ = {λ1, . . . , λl}, where λ1, . . . , λl are pairwise distinct zeros of h. For every j ∈ {1, . . . , l},
there is a function gj in O(U) such that

gj(λj) �= 0 and h(z) = (z − λj)
kjgj(z),

where kj is the order of λj as a zero of h. Let us choose, for every j, a neighborhood Vj of the point λj

such that gj(z) �= 0 in Vj and Vj ⊂ U . It can be assumed that the neighborhoods V1, . . . , Vl are pairwise
disjoint. Let χj be the characteristic function of Vj . As above, we write χj instead of χj(y̆).

For an arbitrary f in O(U), we write out the Taylor expansion in a neighborhood of the point λj and
use the bounds from Lemma 11. For some Kj with j for which rj > 0, we have

‖f(y̆)χj‖ ≤ Kj‖f‖λj ,rj ,sj ,

where sj := 1/(kj − 1) (if the order of λj is equal to 1, then sj = ∞ and rj ∈ N). It follows readily from
the representation of holomorphic functional calculus in the form of Cauchy integral that

∑
j χj = 1.

Hence

‖f‖ ≤
∑
j

Kj‖f(y̆)χj‖,

and we obtain the desired assertion.

We can now complete the proof of the second part of the main theorem.

Proof of Theorem 5. Part (B). Suppose that B is an Arens–Michael algebra, x̆, y̆ ∈ B, the spectrum
of y̆ is contained in U , and [x̆, y̆] = h(y̆). Then, for every open V ⊂ U containing the spectrum, there is
a holomorphic functional calculus O(V ) → B for y̆.

(1) First, we show that

[x̆, f(y̆)] = h(y̆)f ′(y̆) (10)

for every f ∈ O(U).
Suppose first that B is a Banach algebra. It can readily be seen that (10) holds if f is a polynomial.
Let B0 denote the closed subalgebra of B generated by y̆. Since B0 is commutative, we can apply

Lemma 10 to the continuous derivation

B0 → B0 : b 
→ [x̆, b].

Thus, SpB0
y̆ is finite and, therefore, so is SpB y̆. Let V be a finite union of open disks of finite radius

with pairwise disjoint closures such that SpB y̆ ⊂ V ⊂ U . Since the holomorphic functional calculus is
continuous, it follows that there is a compact subset K of V such that | · |K dominates the norm on B
up to constant. We may assume that K is a finite union of closed disks.
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Since K is a compact set contained in U , it follows that every function in O(V ) is continuous on K
and holomorphic in its interior. Moreover, the complement of K is connected; therefore, by Mergelyan’s
theorem, this function can be approximated by polynomials uniformly on K. This implies that (10) holds
for al arbitrary f ∈ O(V ). The uniqueness of holomorphic functional calculus implies the equality (10)
for an arbitrary f ∈ O(U).

For the general case, in which B is an Arens–Michael algebra, we consider an arbitrary continuous
submultiplicative seminorm ‖ · ‖ on B. It follows from what was proved above that the desired equality
holds in the completion with respect to ‖ · ‖; in particular,

‖[x̆, f(y̆)]− h(y̆)f ′(y̆)‖ = 0.

Since ‖ · ‖ is arbitrary, it follows that (10) holds in B.

(2) Further, we show that there is a continuous homomorphism ν : A → B such that f(y̆) = νμ(f)
for all f ∈ O(U) (here μ : O(U) → A stands for the completion homomorphism of Proposition 8).
Recall that δ0(f) = hf ′ for f ∈ O(U). It follows from (10) that

δ0(f)(y̆) = h(y̆)f ′(y̆) = [x̆, f(y̆)], f ∈ O(U). (11)

If ‖ · ‖ is a continuous submultiplicative seminorm on B, then ‖f‖1 := ‖f(y̆)‖ defines a continuous
submultiplicative seminorm on O(U). It follows from (11) that

‖δ0(f)‖1 = ‖δ0(f)(y̆)‖ = ‖[x̆, f(y̆)]‖ ≤ 2‖x̆‖ ‖f(y̆)‖ = 2‖x̆‖‖f‖1, f ∈ O(U).

Thus, ‖ · ‖1 is δ0-stable. It follows from Proposition 9 that ‖ · ‖1 is dominated by the family (7) of
seminorms. By Proposition 8, the algebra A is the completion with respect to (7); hence there is a
continuous homomorphism ν : A → B such that f(y̆) = νμ(f) for all f ∈ O(U).

(3) In conclusion, we show that [x̆, ν(a)] = νδ(a) for all a ∈ A . Since the image of μ is dense,
it suffices to prove the equality for the case in which a = μ(f), where f ∈ O(U). Using (11) and
Proposition 8, we obtain

[x̆, ν(a)] = [x̆, f(y̆)] = δ0(f)(y̆) = νμδ0(f) = νδμ(f) = νδ(a).

By Proposition 4, there is a unique continuous homomorphism

τ : O(C,A ; δ) → B

such that τ(x) = x̆ and ν = τη. It follows from the last equality that τ(y) = y̆. This completes the proof
of Theorem 5.

4. EMBEDDING OF ALGEBRAS OF POWER SERIES IN HFG ALGEBRAS

A Fréchet–Arens–Michael algebra is said to be holomorphically finitely generated, or an HFG
algebra for short, if it is the quotient of the algebra of free entire functions with finitely many generators
by some closed two-sided ideal (up to topological isomorphism) [12, Definition 3.16, Proposition 3.20].

For the sake of the completeness of our presentation, we recall that the algebra of free entire
functions with generators ζ1, . . . , ζm [16], [17] is the set of series{

a =
∑

α∈Wm

cαζα : ‖a‖ρ =
∑

α∈Wm

|cα|ρ|α| < ∞ for all ρ > 0

}

(with complex coefficients) equipped with the multiplication extending the concatenation operation
on the semigroup Wm of words in the alphabet {1, . . . ,m} (for a given α ∈ Wm, the corresponding
monomial is denoted by ζα). It can readily be seen that this algebra is a Fréchet–Arens–Michael
algebra.
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Proposition 12. For every domain U in C and any h ∈ O(U), the algebra O(C,A ; δ) considered
in Theorem 5 is holomorphically finitely generated.

Proof. Although this assertion can be derived from [12, Proposition 6.2], we present a detailed proof.
Let C denote the free product (or, which is the same thing, the coproduct) of O(C) and O(U) in the

category of (unital) Arens–Michael algebras [12, Sec. 4]. We denote the elements of C corresponding
to the identity functions on C and U by X and Y , respectively, and consider the the closed two-sided
ideal I of C generated by the element [X,Y ]− h(Y ). Since O(C) and O(U) are Stein algebras and the
finiteness condition on the dimension of the embedding is satisfied, it follows that these two algebras are
HFG [12, Theorem 3.22]. The property of being an HFG algebra is preserved under the formation of free
products [12, Corollary 4.7] and passage to quotients by closed ideals [12, Proposition 3.18]; hence C/I
is also an HFG algebra.

We claim that C/I is topologically isomorphic to O(C,A ; δ). To see this, it suffices to prove that
the universal property of Theorem 5 holds. Note first that the element Y + I is the image of the identity
function on U under the composition O(U) → C → C/I of homomorphisms, and thus its spectrum
also belongs to U . Suppose further that the Arens–Michael algebra B contains elements x̆ and y̆ such
that the spectrum SpB y̆ is contained in U and [x̆, y̆] = h(y̆). Since C is a free product, it follows that
the correspondence X 
→ x̆, Y 
→ y̆ uniquely determines a homomorphism C → B, which takes I to 0.
Hence we obtain a continuous homomorphism C/I → B satisfying the desired conditions.

Proposition 13. For any s ∈ (0,∞], the algebra As is not HFG.

Proof. (The idea of the argument below was suggested by Pirkovskii in the case of s = ∞; it is also
applicable for the other values of s.) Suppose that As is an HFG algebra. Since As is commutative,
it is a Stein algebra [12, Theorem 3.22]. Since s > 0, it is easy to see that the ideal generated by y is
maximal and coincides with the Jacobson ideal. Thus, As is local. Therefore, the Gel’fand spectrum
of the algebra consists of a single point. Hence As coincides with the algebra of germs of holomorphic
functions at this unique point of the spectrum.

On the other hand, every algebra of germs of holomorphic functions is a (DF )-space (see the case
of manifolds in the original paper by Grothendieck [18, pp. 97–98 (Russian transl.)] or in Mallios’
monograph [13, pp. 136–137]; the proof in the general case is similar). The topology on the space As

is generated by a countable family of seminorms and hence is metrizable. However, every metrizable
(DF )-space is normable [19, Observation 8.3.6].

If s ∈ (0,∞), then As is not normable, since it is isomorphic as a locally convex space to the space
O(C) of entire functions, which is well known to be nonnormable (one can also apply Kolmogorov’s
normability criterion [20, II.2.1] directly to As). The space A∞ cannot be normable, because it admits
no continuous norm at all. Thus, we arrive at a contradiction.

Note that A0
∼= O(C) and, therefore, this is an HFG algebra.

Theorem 14. Let s be a rational positive number or ∞. Then As is isomorphic to a closed
subalgebra of some HFG algebra.

Let us denote by S the set of all positive real numbers s such that As is isomorphic to a closed
subalgebra of some HFG algebra and prove an auxiliary lemma.

Lemma 15. If s, t ∈ S, then s+ t ∈ S.

Proof. Suppose that As and At are isomorphic to closed subalgebras of HFG algebras B and C,
respectively. By the Grothendieck–Pietsch criterion [21, Theorem 28.15], As and At are nuclear
Fréchet spaces. Hence the homomorphism As ⊗̂ At → B ⊗̂ C is topologically injective (see, e.g., [22,
Theorem A1.6]). Since the class of HFG algebras is stable with respect to projective tensor prod-
ucts [12], it follows that As ⊗̂ At is isomorphic to a closed subalgebra of the HFG algebra B ⊗̂ C.
Thus, it suffices to prove that the diagonal embedding As+t → As ⊗̂ At : y

n 
→ yn ⊗ yn determines a
well-defined topologically injective homomorphism of Fréchet algebras.

MATHEMATICAL NOTES Vol. 109 No. 3 2021



THE RELATION “COMMUTATOR EQUALS FUNCTION” 333

Note that As is the Köthe space λ(Ps) corresponding to the Köthe set Ps := {rnn!−s : r > 0} (a
similar fact holds for At). As noted by Pirkovskii [23, Proposition 3.3], Pietsch’s results [24] readily
imply

λ(Ps) ⊗̂ λ(Pt) ∼= λ(Ps × Pt),

where

Ps × Pt = {rnqmn!−sm!−t : r, q > 0}.
Moreover, we may assume that r = q; thus, the natural diagonal embedding λ(Ps+t) → λ(Ps × Pt) is a
well-defined topologically injective continuous homomorphism.

Proof of Theorem 14. Let k ∈ N. By Theorem 5, O(C,A1/k; δ) is the universal Arens–Michael
algebra generated by the elements x and y satisfying the relation [x, y] = yk+1. The homomorphism
η : A1/k → O(C,A1/k; δ) has the form a 
→ a⊗ 1 and hence is topologically injective. Therefore, A1/k

is a closed subalgebra of O(C,A1/k; δ), and the latter is an HFG algebra by Proposition 12. Thus,
1/k ∈ S. It follows from Lemma 15 that all positive rational numbers belong to S.

If s = ∞, then it suffices to apply Theorem 5 to the relation [x, y] = y. This completes the proof of the
theorem.

For positive integer values of s, the assertion of Theorem 14 can be obtained also in another way, by
using the author’s results in [25].
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19. P. Pérez Carreras and J. Bonet, Barrelled Locally Convex Spaces, in North-Holland Math. Stud.

(North-Holland, Amsterdam, 1987), Vol. 131.
20. H. H. Schaefer, Topological Vector Spaces (Springer, New York–Berlin, 1971).
21. R. Meise and D. Vogt, Introduction to Functional Analysis, in Oxf. Grad. Texts Math. (The Clarendon

Press, New York, 1997), Vol. 2.
22. J. Eschmeier and M. Putinar, Spectral Decompositions and Analytic Sheaves, in London Math. Soc.

Monogr. (N. S.) (The Clarendon Press, New York, 1996), Vol. 10.
23. A. Yu. Pirkovskii, “Biprojective topological algebras of homological bidimension 1,” J. Math. Sci. (New York)

111 (2), 3476–3495 (2002).
24. A. Pietsch, “Zur Theorie der topologischen Tensorprodukte,” Math. Nachr. 25, 19–30 (1963).
25. O. Yu. Aristov (2018); “Arens–Michael envelopes of nilpotent lie algebras, functions of exponential type, and

homological epimorphisms,” Tr. Mosk. Mat. Obshch. 81 (1) (2020); arXiv:1810.13213, 2018.

MATHEMATICAL NOTES Vol. 109 No. 3 2021


