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Abstract—A discrete dynamical system generated by a homeomorphism of a compact manifold is
considered. A sequence ωn of periodic εn-trajectories converges in the mean as εn → 0 if, for any
continuous functionϕ, the mean values on the periodϕ(ωn) converge as n → ∞. It is shown that ωn

converges in the mean if and only if there exists an invariant measure μ such that ϕ(ωn) converges
to
´
ϕdμ. If a sequence ωn converges in the mean and converges uniformly to a trajectory Tr, then

the trajectory Tr is recurrent and its closure is a minimal strictly ergodic set.
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1. PERIODIC PSEUDOTRAJECTORIES

Consider the discrete system

xn+1 = f(xn), (1)

generated by a homeomorphism f : M → M on a compact manifold M . Recall that a two-sided
point sequence T = {x(n), n ∈ Z} infinite in both directions is called a trajectory of the system if
f(x(n)) = x(n+ 1). A two-sided point sequence {x(n), n ∈ Z} is infinite in both directions is called
an ε-trajectory, or a pseudotrajectory, if ρ(f(x(n)), x(n + 1)) < ε for any n (ρ denotes distance). If
such a sequence {x(n)} is periodic, then it is called a periodic ε-trajectory, and the points x(n) are
said to be ε-periodic.

It should be noted that the exact trajectory of a system is seldom known in practice, and in reality, we
deal with ε-trajectories for sufficiently small positive ε. So all computer calculations are performed with
an accuracy of ε > 10−19, and since the number of calculations is large, ε may take significant values,
which affects the qualitative result.

A point x is said to be chain-recurrent if x is ε-periodic for any ε > 0. The set all chain-recurrent
points is called the chain-recurrent set and denoted by CR. The chain-recurrent set CR is invariant
and closed, and it contains all types of reverse trajectories: periodic, almost periodic, nonwandering,
homoclinic, and so on. If a chain-recurrent point is not periodic and dimM > 1, then there exists an
arbitrarily small perturbation f in the C0-topology for which this point is periodic [1]. One can say that
chain-recurrent points generate periodic trajectories under C0-perturbations. Therefore, in computer
calculations, the chain-recurrent points look like periodic ones.

Definition 1. Two chain-recurrent points are said to be equivalent if they can be connected by a
periodic ε-trajectory for any ε > 0. The chain-recurrent set is divided into equivalence classes Ωi, which
will be called the components of the chain-recurrent set.
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We note that a component is not necessarily isolated from the other components. For example, the
equilibrium y = 0 of the differential equation y′ = y3 sin(1/y) is not an isolated equilibrium. Let f be the
shift along a trajectory of this equation by unit time. Each equilibrium of the equation generates a fixed
point of the diffeomorphism f , which is a component of the chain-recurrent set. The fixed point y = 0 is
a component that is not isolated from the other components.

We denote the set of all ε-periodic points by Q(ε). It was shown in the book [2] that the sets of
ε-periodic points have the following properties:

• the Q(ε) are open sets for ε > 0;

• if ε2 < ε1, then Q(ε2) ⊂ Q(ε1).

Each chain-recurrent point is ε-periodic for any ε > 0, and hence the chain-recurrent set CR can be
obtained as the limit

CR = lim
ε→0

Q(ε) =
⋂

ε>0

Q(ε).

Thus, the families {Q(ε), ε > 0} of open sets are embedded in one another and give the chain-recurrent
set in the limit; i.e., they form a fundamental system of neighborhoods of the chain-recurrent set. This
implies that the chain-recurrent set is measurable for any Borel measure μ and

μ(CR) = lim
ε→0

μ(Q(ε)).

It is well known [3] that any invariant measure is zero outside the chain-recurrent set. Therefore, the
chain-recurrent set is a set of full measure, i.e., μ(RC) = 1 for any invariant measure.

The limit set of a sequence of periodic pseudotrajectories Let {ωn} be a sequence of periodic
εn-trajectories, εn → 0. On each pseudotrajectory ωn, we mark a point xn. The sequence {xn} is
contained in a compact set M . Hence there exists a subsequence {xnk

} that converges to x∗. The
point x∗ is called a limit point, and the set of all limit points is called the limit set of the sequence {ωn}.

Proposition 1 ([4]). Let {ωn} be a sequence of periodic εn-trajectories, εn → 0. Then the limit set
of the sequence {ωn} consists of chain-recurrent points.

Consider a sequence {ωn} of periodic εn-trajectories, εn → 0. Let us mark a point xn on eachωn. The
fact that M is a compact set implies that there exists a subsequence xnk

that converges to a certain limit
point x∗. The point x∗ uniquely determines the component Ω that contains all limit points of the sequence
{ωnk

} of periodic pseudotrajectories. However, there exist sequences {ωn} of periodic εn-trajectories,
εn → 0, such that none of the sequences {xn ∈ ωn} has a limit. To construct such a sequence, it
suffices to take periodic pseudotrajectories {ωn} which have limit points in different components of the
chain-recurrent set.

Proposition 2 ([4]). Let {ωn} be a sequence of periodic εn-trajectories, εn → 0, and let a point xn
be marked on each pseudotrajectory ωn so that x∗ = limn→∞ xn. Suppose that the limit point x∗

lies in a component Ω of the chain-recurrent set. Then the sequence {ωn} uniformly converges
to Ω, i.e., the distance between ωn and Ω tends to zero:

ρ(ωn,Ω) = max
i

{ρ(xi,Ω), xi ∈ ωn} → 0 as n → ∞.

Let {ωn} be a sequence of periodic εn-trajectories for which the conditions of the preceding assertion
are satisfied. Without loss of generality, we assume that each marked point xn ∈ ωn is the zeroth
element xn(0) of the periodic sequence ωn. It is easy to prove the following assertion.

Proposition 3. Let ωn = {xn(k), k ∈ Z} be a sequence of periodic εn-trajectories, εn → 0, and let
limn→∞ xn(0) = x0. Then the sequence ωn = {xn(k)} converges pointwise to the trajectory Tr(x0):

lim
n→∞

xn(k) = fk(x0).
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2. INVARIANT MEASURES AND PERIODIC PSEUDOTRAJECTORIES
Definition 2. We shall say that a sequence ωn = {xn(k), k ∈ Z} of periodic εn-trajectories converges
in the mean as εn → 0 if, for any continuous function ϕ : M → R, the mean values over the period

ϕ(ωn) =
1

pn

pn∑

k=1

ϕ(xn(k))

converge as n → ∞, where pn is the period of the pseudotrajectory ωn.

Theorem 1. Assume that a sequence ωn of periodic εn-trajectories converges in the mean as
εn → 0. Then there exists an invariant measure μ such that, for any continuous function ϕ,

lim
n→∞

ϕ(ωn) =

ˆ

M
ϕdμ.

Proof. We shall define a functional Φ on the space C0 = {ϕ} of continuous functions by setting

Φ(ϕ) = lim
n→∞

ϕ(ωn).

The functional thus constructed is bounded, linear, and positive definite; hence, by the Riesz theorem [5],
it can be represented as the integral

Φ(ϕ) =

ˆ
ϕdμ,

where μ is a measure on the manifold M . To show the invariance of the constructed measure μ, it is
necessary to verify the relation Φ(ϕ) = Φ(ϕ(f)), which is equivalent to the relation

lim
n→∞

ϕ(ωn) = lim
n→∞

ϕ(f(ωn)),

where ωn = {x(1), x(2), . . . , x(p) = x(0)} and f(ωn) = {y(1), y(2), . . . , y(p) = y(0)}, y(i) = f(x(i)).
The sequence f(ωn) is periodic. Let us show that f(ωn) is an η(ε)-trajectory, where η( · ) is the
modulus of continuity of the mapping f . Indeed, since ωn is a periodic ε-trajectory, we have
ρ(f(x(i)), x(i + 1)) < ε. We have

ρ(f(y(i)), y(i + 1)) = ρ(f(y(i)), f(x(i + 1))) < η(ρ(y(i), x(i + 1)))

= η(ρ(f(x(i)), x(i + 1))) < η(ε).

Thus, f(ωn) is a periodic η(ε)-trajectory. Next,

|ϕ(x(i + 1)) − ϕ(y(i))| = |ϕ(x(i + 1))− ϕ(f(x(i)))| < θ(ρ(x(i+ 1), f(x(i)))) < θ(ε),

where θ( · ) is the modulus of continuity of the function ϕ. We have

ϕ(ω) =
1

p

p∑

i=1

ϕ(x(i)) =
1

p

p−1∑

i=0

ϕ(x(i + 1))

=
1

p

p−1∑

i=0

ϕ(y(i)) +
1

p

p−1∑

i=0

(ϕ(x(i + 1))− ϕ(y(i))) = ϕ(f(ω)) + E,

where

|E| ≤ 1

p

p−1∑

i=0

|ϕ(x(i + 1))− ϕ(y(i))| < θ(ε).

If εn → 0, then θ(εn) → 0 and, therefore, limn→∞ ϕ(ωn) = limn→∞ ϕ(f(ωn)). The proof of the theorem
is complete.

The further presentation is based on the notion of a symbolic image of a dynamical system [2], which
combines the symbolic dynamics [6]–[8] and numerical methods [9]. Let C = {M(1), . . . ,M(n)} be a
finite cover of the manifold M by closed subsets; the set M(i) will be called a cell with index i.
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Definition 3 (see [10]). The symbolic image of a dynamical system for a cover C is the directed
graph G with vertices i corresponding to the cells M(i), in which vertices i and j are connected by a
directed edge (arc) i → j if and only if

f(M(i)) ∩M(j) �= ∅.

Each symbolic image generates a symbolic dynamics, which reflects the dynamics of the system.
Studying a symbolic image allows one to understand the global structure of trajectories of the system.
A symbolic image depends on a cover C; a change of C changes the symbolic image. The existence
of an edge i → j guarantees the existence of a point x in the cell M(i) such that its image f(x) lies
in the cell M(j). In other words, an edge i → j is a trace of the mapping x → f(x) in the sense that
x ∈ M(i) and f(x) ∈ M(j). If there is no edge i → j, then there are no points x ∈ M(i) whose image
f(x) belongs to M(j).

We shall consider covers C in which the cells M(i) are polyhedrons intersecting in boundary
disks. Such covers always exist; this follows from the theorem on a triangulation of a compact
manifold. We shall also assume that the cell-polyhedrons are the closures of their interiors. In numerical
calculations [2], M is a compact domain in R

d, and the cells M(i) are cubes or parallelepipeds. Let
d = diam(C) be the largest diameter of a cell of a cover C. The number d is called the diameter of the
cover C . In the sections of this paper related to measure theory, we pass from a cover C to a partition C∗

associating the boundary disks with one of the adjacent cells. In this case, C∗ is a measurable partition
of the manifold M .

Definition 4. A two-sided sequence σ = {i(k), k ∈ Z} of vertices of a graph G, which is infinite in
both directions, is called a path (or an admissible path) if, for each k, the graph G contains the arc
i(k) → i(k + 1).

A vertex of a symbolic image is said to be recurrent if a periodic path passes through this vertex. The
set of recurrent vertices is denoted by RV . Two recurrent vertices i and j are said to be equivalent if there
exists a periodic path through i and j. The set RV of recurrent vertices is partitioned into equivalence
classes Hk. In graph theory, the equivalence classes Hk of recurrent vertices are called the strongly
connected components.

Let V be the vertex set of a graph G. The symbolic image of G can be treated as a multivalued
mapping G : V → V between vertices, where the image G(i) of a vertex is the set of those vertices j
which are the endvertices of arcs i → j, i.e., G(i) = {j : i → j}. Given a symbolic image of the
dynamical system under consideration, there exists a natural multivalued mapping h : M → V from
the set M to the vertex set V of the symbolic image, which takes each point x to the set of vertices i such
that x ∈ M(i): h(x) = {i : x ∈ M(i)}. It follows from the definition of symbolic image that the diagram

M
f ��

h
��

M

h
��

V
G �� V

(2)

is commutative in the sense that

h(f(x)) ⊂ G(h(x)). (3)

Indeed, let i ∈ h(x), and let j ∈ h(f(x)). Then M(j) ∩ f(M(i)) �= ∅ and there exists an arc i → j; this
means that j ∈ G(i) or h(f(x)) ∈ G(h(x)). Therefore, h(f(x)) ⊂ G(h(x)). We cannot guarantee that
h(f(x)) = G(h(x)). But inclusion (3) is sufficient for the mapping h to transform the trajectories of the
system into admissible paths of the symbolic image:

h(Tr) = {i(n) : fn(x) ∈ M(i(n))} = σ.

In this case, we say that the path σ is the trace of the trajectory Tr on the symbolic image G. The
trace σ can be treated as a coding of the trajectory Tr.

If there is a path σ = {i(n), n ∈ Z} on the symbolic image G, then the sequence of points
ω = {x(n) : x(n) ∈ M(i(n))} is a pseudotrajectory. In this case, we say that the pseudotrajectory ω is
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the trace of the path σ. It is clear that the trace of a path is determined not uniquely. There is a natural
link between admissible paths on a symbolic image and pseudotrajectories of a dynamical system. The
following theorem describes the dependence between pseudotrajectories and admissible paths on G and
their relationship with the parameters of the symbolic image.

Theorem 2 ([2]). 1. Let a sequence σ = {i(k), k ∈ Z} be an admissible path on the symbolic
image G. Then there exists a point sequence ω = {x(k) : x(k) ∈ M(i(k))} which is an ε-trajectory
for any ε > d. In particular, if the sequence σ = {i(1), i(2), . . . , i(p) = i(0)} is periodic, then the
ε-trajectory ω = {x(1), x(2), . . . , x(p) = x(0)} is periodic.

2. Let a sequence σ = {i(k), k ∈ Z} be an admissible path on the symbolic image G, and
let x(k) ∈ M(i(k)). Then the sequence ω = {x(k)} is an ε-trajectory for any ε > d+ η(d),
where η( · ) is the modulus of continuity of the mapping f . In particular, if the sequence
σ = {i(1), i(2), . . . , i(p) = i(0)} is periodic, then the ε-trajectory ω = {x(1), x(2), . . . , x(p) = x0} is
periodic.

3. There exists a positive number r such that if a point sequence ω = {x(k), k ∈ Z} is an
ε-trajectory, ε < r, and x(k) ∈ M(i(k)), then the sequence σ = {i(k)} is an admissible path on the
symbolic image G. In particular, if an ε-trajectory ω = {x(1), x(2), . . . , x(p) = x(0)} is periodic,
then σ = {i(1), i(2), . . . , i(p) = i(0)} is a periodic path on G.

Thus, a symbolic image is a coding of the pseudotrajectories of a dynamical system.

Definition 5. Let G be a directed graph. A flow on G is defined to be a distribution {mij} on the arcs
{i → j} such that

• mij ≥ 0;

•
∑

ij mij = 1;

• for any vertex i,
∑

k mki =
∑

j mij .

The last property can be called the invariance of the flow and interpreted as the Kirchhoff law, which
says that, for each vertex, the incoming flow is equal to the outgoing flow. Given a flow {mij} on a
graph G, we can define the measure of the vertex i as

mi =
∑

k

mki =
∑

j

mij.

In this case, we obtain
∑

imi = m(G) = 1. Each invariant measure μ generates a flow on the symbolic
image as follows. We construct a measurable partition C∗ = {M∗(i)}, associating the boundary disks
with one of the adjacent cells. Then to each arc i → j of the symbolic image G we assign the measure

mij = μ(M∗(i) ∩ f−1(M∗(j))) = μ(f(M∗(i)) ∩M∗(j)), (4)

where the last relation is a consequence of the invariance of the measure μ; for details, see [11].
Now consider the reverse process. Assume that a flow m = {mij} is defined on a symbolic image G.

Then one can define a measure μ on M by setting

μ(A) =
∑

i

mi
v(A ∩M(i))

v(M(i))
(5)

for any measurable set A, where v is the Lebesgue measure; it is assumed that the Lebesgue measure
of each cell is v(M(i)) �= 0. In this case, the measure of the cell M(i) coincides with the measure of the
vertex i: μ(M(i)) = mi. Generally speaking, the measure μ is not invariant for f . But it was shown
in [11] that this measure is an approximation to an invariant measure in the sense that μ converges in
the weak topology to an invariant measure as the maximal diameter of cells tends to zero.
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Proposition 4 ([11]). Assume that there exists a periodic path η of period p on the graph G. Then
there is a flow m on G such that

mij =
kij
p

,

where kij is the number of passages of the path η through the arc i → j.

The above-described flow is called a periodic flow. A periodic path η = {i(1), i(2), . . . , i(p) = i(0)}
will be called a simple path, or a cycle, if its vertices {i(1), i(2), . . . , i(p)} are distinct. In this case,
there exists a periodic flow mij = 1/p for an arc i → j in η; otherwise, mij = 0. Such a flow is said to be
simple.

Consider a directed graph G and the set M (G) of all flows on G. Let m1 = {m1
ij}, and let

m2 = {m2
ij} lie in M (G). In the space of flows, the convex sum

m = αm1 + (1− α)m2 = {αm1
ij + (1− α)m2

ij}, 0 ≤ α ≤ 1,

is defined. A distance on M (G) is defined as

ρ(m1,m2) = max
ij

{|m1
ij −m2

ij |}.

Thus, the set M (G) of flows forms a convex compact set in the metric of ρ, and the simple flows are
its extreme points. Let H be the class of equivalent recurrent vertices. Then the set M (H) of flows
concentrated on H is also a convex compact set.

Theorem 3 ([12]). Let H be a class of equivalent recurrent vertices. Then the periodic flows are
dense in M (H) in the metric of ρ.

If ωn is a sequence of periodic εn-trajectories, εn → 0, and, on each pseudotrajectory ωn, a point xn
is marked so that x∗ = limn→∞ xn, then, by Proposition 2, the limit set of the sequence ωn lies in a
component Ω of the chain-recurrent set: x∗ ∈ Ω. The component Ω is uniquely determined by the
point x∗. In this case, the sequence ωn converges uniformly to Ω.

Theorem 4. Let ωn = {xn(1), xn(2), . . . , xn(pn) = xn(0)} be a sequence of periodic εn-trajectories,
and let εn tend to zero. Then there exists a subsequence ωnk

and an invariant measure μ such
that ωnk

converges in the mean and the mean values of any continuous function ϕ on ωnk
converge

to its mean with respect to the measure μ:

ϕ(ωnk
) =

1

pnk

pnk∑

j=1

ϕ(xnk
(j)) →

ˆ
ϕdμ

as k → ∞, where each pnk
is the period of the pseudotrajectory ωnk

. Moreover, the support of the
measure μ lies in the component Ω of the chain-recurrent set.

Proof. We assume that the points xn(0) converge to a point x∗ as n → ∞. If this is not true, we can
pass to a subsequence ωnk

for which the points xnk
(0) converge.

Let C = {M(i)} be a closed cover by cells that are polyhedrons intersecting in boundary disks, and
let G be the symbolic image of the mapping f for the cover C. By Theorem 2 on tracing, if εn > 0 is
sufficiently small, then the periodic pseudotrajectory ωn is traced on G by a periodic path η of period p.
By Proposition 4, the periodic path η determines the flow

m =

{
mij =

kij
p

}
,

where kij is the number of passages of the periodic path η through the arc i → j. The flow m generates
a measure μ such that the measure of any measurable set A is given by the formula

μ(A) =
∑

i

mi
v(A ∩M(i))

v(M(i))
,
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where v is the Lebesgue measure and mi =
∑

j mij . The measure of the cell M(i) is calculated as

μ(M(i)) =
∑

j

mij =
∑

j

kij
p

=
ki
p
,

where ki is the number of passages of the periodic path η through the vertex i. Now consider the
sequence of subdivisions Ck of the cover C with partition diameters dk converging to zero. Let Gk
be the corresponding sequence of symbolic images. We use the technique described above to construct
a subsequence of periodic εk-trajectories, a sequence of flows mk on Gk, and a sequence of measures μk

on M . By Theorem 3 in [11], there is a subsequence of measures μkt which converges to the invariant
measure μ in the weak topology. This means that, for any function ϕ,

ˆ
ϕdμkt →

ˆ
ϕdμ

as t → ∞. In the process of constructing the desired sequence, we distinguished subsequences two
times: the first subsequence ωnk

was obtained when constructing the sequence of flows mk on Gk, and
the second subsequence was extracted from ωnk

to construct a converging sequence of measures μkt
on M . In what follows, to avoid difficulties in the notation, we assume that all subsequences coincide
with the initial sequence.

To complete the proof, we must show that
∣∣∣∣ϕ(ωn)−

ˆ
ϕdμn

∣∣∣∣ → 0

as n → ∞, where ωn = {x(1), x(2), . . . , x(p) = x(0)}. Taking into account the fact that the Lebesgue
measure of boundary disks is zero, we can write

ˆ
ϕdμn =

∑

i

ˆ

M(i)
ϕdμn =

∑

i

ϕ(xi)μn(M(i)) =
∑

i

ϕ(xi)
ki
p
,

where xi is a point in M(i) determined by the mean value theorem. The number ki coincides with the
number of passages of the pseudotrajectory ωn through the cell M(i). The mean value

ϕ(ωn) =
1

p

p∑

j=1

ϕ(x(j))

can be written as follows. We collect all terms corresponding to the points x(j) ∈ M(i) and then sum
over i. We obtain

ϕ(ωn) =
1

p

∑

i

∑

xj∈M(i)

ϕ(x(j)).

The number of terms in the last sum is the number of passages of the pseudotrajectory ωn through the
cell M(i). Then we can write

∣∣∣∣ϕ(ωn)−
ˆ

ϕdμn

∣∣∣∣ =
1

p

∑

i

∑

x(j)∈M(i)

|ϕ(x(j)) − ϕ(xi)| < θ(dn),

where xi and x(j) lie in the cell M(i), θ( · ) is the modulus of continuity of the function ϕ, dn is the
diameter of the cover Cn, and dn → 0. Therefore, the limit of the mean over the period coincides with the
mean with respect to the measure.

By Proposition 2, the limit set of the sequence ωn lies in a component of the chain-recurrent set.
By the choice of the subsequence, the limit point x∗ = limn→∞ xn(0) lies in the component Ω. The
sequence {ωn} converges to Ω uniformly. The multivalued mapping h : M → V takes each point x to
the set of all vertices i such that x ∈ M(i). By Proposition 7 in [4], the image h(x) of a chain-recurrent
point consists of recurrent vertices, and there exists a unique class H(Ω) of equivalent recurrent vertices
such that h(Ω) ⊂ H(Ω). By the theorem on the localization of the chain-recurrent set [2], the union
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U = {
⋃

M(i), i ∈ H(Ω)} is a closed neighborhood of the component Ω, and if the diameter d of the
cover tends to zero, then U converges to Ω. By construction, the support of the measure μk lies in
Uk = {

⋃
M(i), i ∈ H(Ω), M(i) ∈ Ck}, and hence the support of the measure μ lies in the component

Ω =
⋂

k Uk. The proof of the theorem is complete.

Theorem 4 states that a sequence of periodic pseudotrajectories determines a certain invariant
measure. The next theorem states the converse: an invariant measure generates a sequence of periodic
pseudotrajectories that converges in the mean to the average with respect to the given measure.

Theorem 5. If the support of an invariant measure μ lies in one component of the chain-recurrent
set, then there exists a sequence of periodic εn-trajectories ωn, εn → 0, such that, for any
continuous function ϕ, the mean over the period ϕ(ωn) converges to

´
M ϕdμ.

Proof. Let Ω be a component of the chain-recurrent set, and let μ be an invariant measure whose
support lies in Ω. Assume that C = {M(i)} is a cover of the manifold M whose cells are closed
polyhedrons that intersect in boundary disks and that d is the diameter of the cover. Consider the
symbolic image G of the mapping f with respect to the cover C. For each vertex i, we define a number b[i]
as follows. We fix a point xi in each cell M(i) and put b[i] = ϕ(xi). It is clear that such a labeling depends
on the choice of points xi ∈ M(i). If x∗i is another point in M(i), then

|ϕ(xi)− ϕ(x∗i )| < θ(d),

where θ( · ) is the modulus of continuity of the function ϕ.
We use the cover C = {M(i)} to construct a measurable partition C∗ = {M∗(i)} consisting of

polyhedrons, in which boundary disks belong to only one of neighboring cells. Setting

mij = μ(f(M∗(i)) ∩M∗(j)) = μ(M∗(i) ∩ f−1M∗(j)),

we construct a flow on the symbolic image; for details, see [11]. The mapping h : M → V takes each
point x to the set of all vertices i such that x ∈ M(i). The image h(x) of a chain-recurrent point consists
of recurrent vertices, and the class H(Ω) of equivalent recurrent vertices is such that h(Ω) ⊂ H(Ω). The
union U = {

⋃
M(i), i ∈ H(Ω)} is a closed neighborhood of the component Ω, and U converges to Ω as

d → 0. Since the measure μ is concentrated on Ω ⊂ {
⋃

M(i), i ∈ H(Ω)}, it follows that the flow m is
concentrated on H(Ω). In this case, the quantity

μ(M∗(i)) =
∑

j

mij =
∑

k

mki = mi

determines the measure of the vertex i. The average of the labeling over the flow mij is the number
∑

ij

mijb[i] =
∑

i

mib[i] =
∑

i

μ(M∗(i))ϕ(xi).

We obtain an integral sum which depends on the choice of the points xi in M(i). If {x∗i ∈ M(i)} is
another set of points, then we have the inequality

∣∣∣∣
∑

i

ϕ(xi)μ(M
∗(i)) −

∑

i

ϕ(x∗i )μ(M
∗(i))

∣∣∣∣ ≤ θ(d)
∑

i

μ(M∗(i)) = θ(d).

By the mean value theorem, we have
ˆ

M
ϕ(x) dμ =

∑

i

ˆ

M∗(i)
ϕ(x) dμ =

∑

i

ϕ(x∗i )μ(M
∗(i)),

where the mean point x∗i lies in the closed cell M(i). As a result, we obtain the inequality
∣∣∣∣
∑

i

mib[i]−
ˆ

M
ϕ(x) dμ

∣∣∣∣ ≤ θ(d). (6)
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Choosing a cover C of sufficiently small diameter d, we can obtain a sufficiently small difference between
the average over the flow and the average with respect to the measure.

By Theorem 3, the periodic flows are dense in the space of all flows. This means that, for any δ > 0,
there exists a periodic flow m∗ = {m∗

ij} for which
∑

ij |mij −m∗
ij| < δ. The flow m∗ is generated by a

periodic path γ∗ = {i(k), k = 1, 2, . . . , p}, so that m∗
ij = kij/p, where kij is the number of passages of

the path γ∗ through the arc i → j. We have
∣∣∣∣
∑

i

mib[i]−
∑

i

m∗
i b[i]

∣∣∣∣ =
∣∣∣∣
∑

i

b[i]
∑

j

(mij −m∗
ij)

∣∣∣∣ ≤ K
∑

ij

|mij −m∗
ij | < Kδ,

where K = max |ϕ|. The average over the periodic flow m∗ has the form

∑

i

m∗
i b[i] =

∑

ij

m∗
ijb[i] =

1

p

∑

ij

kijb[i] =
1

p

∑

i

kib[i] =
1

p

p∑

k=1

ϕ(xi(k)),

where ki =
∑

j kij is the number of passages of the periodic path γ∗ through the vertex i,
∑

i ki = p, and
xi(k) ∈ M(i(k)), k = 1, 2, . . . , p. We see that the average of the labeling {b[i]} over the flow m∗ coincides
with the average of this labeling over the periodic path γ∗

b(γ∗) =
1

p

∑

i

kib[i].

By Theorem 2 on tracing, the periodic path γ∗ on the symbolic image generates the periodic pseudotra-
jectory ω = {x(k), k = 1, 2, . . . , p}, so that x(k) ∈ M(i(k)) and ω is a ε1-trajectory for any ε1 > d. Let
ε1 = (3/2)d; then ε1 converges to zero together with d. Since the points xi(k) and x(k) lie in M(ik), we
have

∣∣∣∣
1

p

p∑

k=1

ϕ(xi(k))−
1

p

p∑

k=1

ϕ(x(k))

∣∣∣∣ < θ(d).

Summing the obtained inequalities, we obtain
∣∣∣∣
ˆ

M
ϕdμ − 1

p

p∑

k=1

ϕ(x(k))

∣∣∣∣ ≤
∣∣∣∣
ˆ

M
ϕdμ −

∑

i

mib[i]

∣∣∣∣ +
∣∣∣∣
∑

ij

mijb[i]−
∑

ij

m∗
ijb[i]

∣∣∣∣

+

∣∣∣∣
∑

ij

m∗
ijb[i]−

1

p

∑

k

ϕ(x(k))

∣∣∣∣

< 2θ(d) +Kδ.

Let ε be an arbitrary positive number; then we can choose d > 0 and δ > 0 so that 2θ(d) +Kδ < ε. In
this case, the difference between the average of the function ϕ over the periodic pseudotrajectory ω and
the average of this function with respect to the measure μ is less than ε.

Now consider a sequence of subdivisions Ck of the cover C with partition diameters dk converging
to zero. Let Gk be the corresponding sequence of symbolic images. The above-described procedure
allows us to construct a sequence of periodic εn-trajectories {ωn, εn → 0} such that the mean values
ϕ(ωn) on them converge to the average

´
M ϕdμ with respect to the measure. The proof of the theorem

is complete.

3. RECURRENT TRAJECTORIES AND PERIODIC PSEUDOTRAJECTORIES

Let {ωn} be a sequence of periodic εn-trajectories, εn → 0. On each pseudotrajectory ωn, we mark a
point xn such that x∗ = limn→∞ xn, and the limit point x∗ lies in a component Ω of the chain-recurrent
set. Then the sequence {ωn} uniformly converges to the component Ω (by Proposition 2), and the
pseudotrajectories {ωn} converge poinwise to the trajectory Tr(x∗) (by Proposition 3).
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Definition 6. A sequence ωn = {xn(k), k ∈ Z} of periodic εn-trajectories, εn → 0, converges uni-
formly to a trajectory Tr = {y(k) = fk(y0), k ∈ Z} if supk ρ(xn(k), y(k)) converges to zero as n → ∞.

A recurrent trajectory is defined by different authors in different ways. Thus, Definition 3.3.2 of a
recurrent trajectory in [3] coincides with the definition in [5, p. 363] of a trajectory stable in the sense of
Poisson. Here we shall use the definition of a recurrent trajectory in the sense of Birkhoff.

Definition 7. A trajectory K is said to be recurrent if, for each ε > 0, there exists an integer p > 0 such
that the ε-neighborhood of any segment of this trajectory of length p contains the whole trajectory K.

An invariant closed set B is said to be minimal if it has no invariant closed proper subsets.

Theorem 6. If a sequence ωn of periodic εn-trajectories, εn → 0, converges uniformly to a
trajectory Tr, then this trajectory is recurrent. The limit set of the sequence ωn coincides with
the closure of the trajectory Tr and is a minimal set.

Proof. The pseudotrajectory ωn = {xn(k), k ∈ Z} is pn-periodic, i.e., xn(k + pn) = xn(k) for any
k ∈ Z. We fix n and put rn = supk ρ(xn(k), y(k)). Then, by the proposition on uniform convergence,
we have rn → 0 as n → ∞. Let B(x, r) be the ball of radius r centered at a point x. Since the
pseudotrajectory ωn is pn-periodic, it follows that the union of pn balls of the form

Un =

{ pn⋃

k=1

B(xn(k), rn), xn(k) ∈ ωn

}

contains the whole trajectory Tr = {y(k), k ∈ Z}. In this case, xn(k) = xn(k + zpn), z ∈ Z, and

ρ(y(k + zpn), xn(k)) = ρ(y(k + zpn), xn(k + zpn)) ≤ rn for z ∈ Z.

Therefore, the distance ρ(y(k + zpn), yk) is less that 2rn for z ∈ Z, and the ball of radius 2rn centered
at yk contains all points of the form y(k + zpn), z ∈ Z. Thus, the union of pn balls of the form

U∗
n(k0) =

{⋃

z

B(y(k0 + z), 2rn), 0 < z ≤ pn

}

contains the whole trajectory Tr for any number k0 ∈ Z. We shall show that the trajectory Tr is recurrent.
We fix ε > 0. Since rn → 0, we can find rn < ε/2, which determines the number n and the period pn
of the pseudotrajectory ωn. It follows from the above construction that the 2rn-neighborhood of any
segment of length pn of the trajectory Tr contains the whole trajectory Tr. Therefore, Tr is a recurrent
trajectory. Since rn → 0 as n → ∞, we see that the limit set of the sequence {ωn} coincides with the
closure of the trajectory Tr. The Birkhoff theorem (see p. 404 in [5]) states that the closure of a recurrent
trajectory is a compact minimal set. The proof of the theorem is complete.

Assume that a semitrajectory T = {x(k) = fk(x(0)), k ∈ Z
+} has a limit point x∗, i.e., for

some sequence, x(km) → x∗ as m → ∞. Thus, for any ε > 0, there exist points x(k1) and
x(k2) such that the distance between them is ρ(xk1 , xk2) < ε and k2 �= k1. Let k2 > k1; then
ρ(fk2−k1(fk1(x0)), f

k1(x0)) < ε. Therefore,

ω =
{
y(0) = fk1(x(0)), y(1) = fk1+1(x(0)), . . . , y(p− 1) = fk2−1(x(0)), y(p) = y(0)

}

is a p-periodic ε-trajectory. In this way, we construct a sequence ωn of periodic εn-trajectories εn → 0.
On each pseudotrajectory ωn, the point yn = fkn(x(0)) is marked, and yn = fkn(x(0)) → x∗ as n → ∞.
By Theorem 4, there exists a subsequence ωnm and an invariant measure μ such that the mean value
over ωnm of any continuous function converges to its average with respect to the measure μ:

ϕ(ωnm) =
1

pm

pm−1∑

k=0

ϕ(y(k)) →
ˆ

M
ϕdμ

as m → ∞. The support of the measure μ lies in the ω-limit set of the trajectory T .
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Now we consider a recurrent trajectory Tr = {x(k) = fk(x(0)), k ∈ Z}. In this case, the marked and
limit points coincide with the initial point yn = x(0) = x∗, k1 = 0, and y(k) = fk(x∗). This implies that,
for the recurrent trajectory Tr, there exists a sequence of integers pn → ∞ and an invariant measure μ
such that

lim
n→∞

1

pn

pn−1∑

k=0

ϕ(fk(x∗)) =

ˆ

M
ϕdμ. (7)

Moreover, the support of μ coincides with the closure Tr = Ω of the recurrent trajectory, which is a
minimal set.

The following question arises: How is the invariant measure related to the subsequence pn → ∞?
Here we need results obtained in [13]. A point x ∈ Ω is said to be quasiregular if, for any continuous
function ϕ, the limit

lim
n→∞

1

n

n−1∑

k=0

ϕ(fk(x)) (8)

exists. An example of a minimal set with an irregular point is given in [13]. This means that the limit
of the subsequence (7) always exists, but the general limit (8) does not necessarily exist. The following
assertion holds.

Theorem 7 ([13]). Each minimal set is either an ergodic set or contains at least one nonquasireg-
ular point, i.e., a point x ∈ Ω for which there exists a continuous function ϕ : M → R such that
the limit

ϕ(x) = lim
n→∞

1

n

n∑

k=1

ϕ(fk(x))

does not exist.

In the latter case, the closure Tr = Ω of the recurrent trajectory is the support of more than one
ergodic measure.

The following theorem was proved in [13, Proposition 5.5].

Theorem 8. For a compact dynamical system (Ω, f), the following conditions on a point p ∈ Ω
are equivalent:

• for each continuous function ϕ, the sequence

1

m

m−1∑

k=0

ϕ(fk+s(p))

converges uniformly in s ∈ Z as m → ∞;

• the subsystem (Tr(p), f) is strictly ergodic (admits a unique invariant measure).

Theorem 9. If a sequence ωn of periodic εn-trajectories converges in the mean as εn → 0 and
converges uniformly to a trajectoryTr asn → ∞, then the closure of the trajectoryTr is a minimal
strictly ergodic set.

Proof. Theorem 6 states that, under our conditions, the trajectory Tr is recurrent and the closure
Tr = Ω is a minimal set. It follows from Theorem 8 that, to complete the proof, it is necessary to show
that the sequence

1

m

m−1∑

k=0

ϕ(fk+s(p))
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converges uniformly in s ∈ Z as m → ∞, where p ∈ Tr.
Let ωn = {xn(k), k ∈ Z} be a sequence of periodic εn-trajectories, εn → 0, and let pn be the period

of ωn. The mean value of the function ϕ is

ϕ(ωn) = lim
m→∞

1

m

m−1∑

k=0

ϕ(xn(k)) =
1

pn

pn−1∑

k=0

ϕ(xn(k)).

Without loss of generality, we assume that xn(0) converges to a point p. Then y(0) = p, the trajectory is
Tr = {y(k) = fk(p), k ∈ Z}, and rn = supk ρ(xn(k), y(k)) converges to zero as n → ∞. The difference
of mean values satisfies the relation

∣∣∣∣
1

m

m−1∑

k=0

ϕ(fk+s(p))− 1

m

m−1∑

k=0

ϕ(xn(k + s))

∣∣∣∣ ≤
1

m

m−1∑

k=0

|ϕ(fk+s(p))− ϕ(xn(k + s))| ≤ θ(rn),

where θ( · ) is the modulus of continuity of the function ϕ and the numbers m and s are arbitrary. By
assumption, the sequence ωn converges in the mean; thus, by Theorem 1,

lim
n→∞

ϕ(ωn) =

ˆ

M
ϕdμ,

where μ is an invariant measure. Let us show that

lim
m→∞

1

m

m−1∑

k=0

ϕ(fk+s(p)) =

ˆ

M
ϕdμ

as m → ∞, and this convergence is uniform in s. We have
∣∣∣∣
1

m

m−1∑

k=0

ϕ(fk+s(p))−
ˆ

M
ϕdμ

∣∣∣∣ ≤
∣∣∣∣
1

m

m−1∑

k=0

ϕ(fk+s(p))− 1

m

m−1∑

k=0

ϕ(xn(k + s))

∣∣∣∣

+

∣∣∣∣
1

m

m−1∑

k=0

ϕ(xn(k + s))− ϕ(ωn)

∣∣∣∣ +
∣∣∣∣ϕ(ωn)−

ˆ

M
ϕdμ

∣∣∣∣

≤ θ(rn) +

∣∣∣∣
1

m

m−1∑

k=0

ϕ(xn(k + s))− 1

pn

pn−1∑

k=0

ϕ(xn(k))

∣∣∣∣ + δn,

where δn → 0 as n → ∞. Choosing an appropriate n, we can make the first and last terms sufficiently
small for any m and s. Let us show that if m is sufficiently large, then the quantity

∣∣∣∣
1

m

m−1∑

k=0

ϕ(xn(k + s))− 1

pn

pn−1∑

k=0

ϕ(xn(k))

∣∣∣∣

is sufficiently small uniformly in s for fixed n. Since the sequence ωn is pn-periodic, we have

pn−1∑

k=0

ϕ(xn(k + s)) = pnϕ(ωn)

for any s. Let m = tpn + r, where t is the integer part of the fraction m/pn and the remainder r satisfies
the inequality 0 ≤ r < pn. Then

1

m

m−1∑

k=0

ϕ(xn(k + s)) =
1

m

(pn−1∑

k=0

ϕ(xn(k + s)) +

pn−1∑

k=0

ϕ(xn(k + pn + s)) + · · ·

+

pn−1∑

k=0

ϕ(xn(k + (t− 1)pn + s)) +
r−1∑

k=0

ϕ(xn(k + tpn + s))

)
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=
1

m

(
tpnϕ(ωn) +

r−1∑

k=0

ϕ(xn(k + tpn + s))

)
= ϕ(ωn) + α(t),

where

α(t) =
−r

tpn + r
ϕ(ωn) +

1

tpn + r

r−1∑

k=0

ϕ(xn(k + tpn + s))).

Taking into account the boundedness of the function ϕ (|ϕ| < C) and the inequality r < pn, we obtain
the estimate |α(t)| ≤ 2C/(t − 1). Thus, we have shown that, for any ε > 0, one can choose n for which
θ(rn) + δn ≤ 2ε/3 and then choose t∗ so that 2C/(t∗ − 1) ≤ ε/3. Then

∣∣∣∣
1

m

m−1∑

k=0

ϕ(fk+s(p))−
ˆ

M
ϕdμ

∣∣∣∣ ≤ ε

for m > t∗pn uniformly in s. In this case, by Theorem 6, the limit set of the sequence ωn coincides with
the closure of the recurrent trajectory Tr and is a minimal set with unique ergodic measure μ. The proof
of the theorem is complete.
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