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Abstract—The notions of Poisson boundedness and Poisson partial boundedness of solutions of
systems are introduced. Based on the Lyapunov function method and Krasnosel’skii’s method of
canonical domains, a sufficient condition for the existence of Poisson bounded solutions is obtained.
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In [1], Yoshizawa used the Lyapunov function method to develop the boundedness theory of solutions
of systems of differential equations. The theory of the boundedness of solutions of systems with respect to
part of the variables or, as they say, of the partial boundedness of solutions, was developed on the basis
of the Lyapunov function method by Rumyantsev and Oziraner in the monograph [2]. Based on the
Lyapunov function method, Lapin (see, e.g., [3]–[5]) developed the theory of the partial boundedness
of solutions with partially controlled initial conditions, which is ideologically parallel to the stability
theory of a “partial” equilibrium, which was created by Vorotnikov (see, e.g., [6]–[8]). In Krasnosel’skii’s
monograph [9] (also see [10]), the canonical domain method and the method of directing functions were
developed, which were used in [9] to obtain sufficient conditions for the existence of at least one solution
bounded on the whole real line of an arbitrary nonlinear system.

On the other hand, the development of a new direction in the boundedness theory of solutions of
systems of differential equations, namely, of the theory of the Poisson boundedness of the set of all
solutions, was started in [11]–[15]. The Poisson boundedness of the solution set means that the
solutions are not necessarily completely contained in the corresponding balls of the phase space but
return countably many times to these balls. The conditions under which the solution set of a system
is Poisson bounded were studied in [11]–[15], and the important and interesting problem of studying
conditions for the existence of at least one Poisson bounded solution of an arbitrary nonlinear system
naturally appeared.

In the present paper, we introduce the notions of Poisson boundedness and Poisson partial bound-
edness of solutions of a system which, in contrast to those introduced in [11]–[15], do not require
the Poisson boundedness and the Poisson partial boundedness of solutions close to a given solution.
Further, applying the Lyapunov function method and Krasnosel’skii’s method of canonical domains, we
obtain a sufficient condition for the existence of Poisson bounded (in the above sense) solutions of the
system. Now we pass to precise definitions and statements.

Suppose given an arbitrary system of differential equations of n variables:

dx

dt
= F (t, x), F (t, x) = (F1(t, x), . . . , Fn(t, x)) (1)

whose right-hand side is defined in R
+ × R

n, where R+ = {t ∈ R | t ≥ 0}. Suppose also that F (t, x) is
continuous in (t, x) and satisfies the Lipschitz condition in x.
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In what follows, ‖ · ‖ denotes the usual Euclidean norm of Rn, n ≥ 1. For a solution x = x(t)
of system (1) starting from a point (t0, x0) ∈ R

+ × R
n we use the notation x = x(t, t0, x0). For any

t0 ∈ R
+, let R+(t0) denote the set {t ∈ R | t ≥ t0}. Any nonnegative increasing number sequence

τ = {τi}i≥1, lim
i→∞

τi = +∞,

is further called a P-sequence. For each P-sequence τ = {τi}i≥1, we let M(τ) denote the set
⋃∞

i=1[τ2i−1; τ2i]. For an arbitrary function V (t, x), we let V ′+
F (t,x)(t, x) denote the limit

V ′+
F (t,x)(t, x) = lim

α→+0

(

sup
h∈(0;α]

V (t+ h, x+ F (t, x)h) − V (t, x)

h

)

,

which is called [1] the upper Dini derivative of the function V (t, x) subject to system (1). We note
that if the function V (t, x) has a continuous partial derivative with respect to the variables t and x, then
V ′+
F (t,x)(t, x) coincides with the usual derivative V̇ (t, x) of the function V (t, x) subject to (1).

Recall [1] that a solution x = x(t, t0, x0) of system (1) is said to be bounded if, for this solution, there
exists a number β > 0 such that the condition ‖x(t, t0, x0)‖ ≤ β is satisfied for all t ∈ R

+(t0).

Definition 1. A solution x = x(t, t0, x0) of system (1) is said to be Poisson bounded if, for such a
solution, there exists a P-sequence τ = {τi}i≥1, where t0 ∈ M(τ), and a number β > 0 such that the
condition ‖x(t, t0, x0)‖ ≤ β is satisfied for all t ∈ R+(t0) ∩M(τ).

It is clear that if a solution of Eq. (1) is bounded, then this solution is also Poisson bounded.
In the geometric language, Definition 1 means that the solution starting at a certain time from a ball

of radius β > 0 centered at the origin of the coordinate system will countably many times return to this
ball. It is clear that if a solution of system (1) is bounded, then this solution is also Poisson bounded.

Further, for each x = (x1, . . . , xn) ∈ R
n, n ≥ 2, and any fixed 1 ≤ k < n, we shall use the notation

x = (y, z), where y = (x1, . . . , xk) ∈ R
k and z = (xk+1, . . . , xn) ∈ R

n−k.
Now, following [2], we recall that a solution x(t, t0, x0) of system (1) is said to be y-bounded if, for

this solution, there exists a number β > 0 such that the condition ‖y(t, t0, x0)‖ ≤ β is satisfied for all
t ∈ R

+(t0). We also recall [2] that a solution x(t) of system (1) is said to be y-extendable to the whole
half-line R

+ if the vector function y(t) is defined for all t ≥ 0. The notions of a z-bounded solution of
system (1) and of a solution z-extendable to the whole half-line R+ are defined similarly.

Definition 2. A solution x = x(t, t0, x0) of system (1) is said to be Poisson y-bounded if, for this
solution, there exists a P-sequence τ = {τi}i≥1, t0 ∈ M(τ), and a number β > 0 such that the
condition ‖y(t, t0, x0)‖ ≤ β is satisfied for all t ∈ R+(t0) ∩M(τ). The notion of a Poisson z-bounded
solution of system (1) is defined similarly.

Further, following [9], we say that a compact subset Ω ⊂ R
k with nonempty interior is a canonical

domain in R
k if the following conditions are satisfied:

(1) Ω is defined by finitely many inequalities

Gi(y) ≤ 0, y ∈ R
k, 1 ≤ i ≤ r, (2)

where the functions Gi(y) are continuously differentiable;

(2) if Gi0(y0) = 0 at a point y0 of the boundary ∂Ω of Ω, then gradGi0(y0) 	= 0.

It should be noted that, in contrast to [9], a canonical domain Ω is not required to be convex, because
here we do not consider questions of the existence of periodic solutions.

For any canonical domain Ω in R
k and each point y ∈ ∂Ω, we let α(y) denote the set of indices i such

that the condition Gi(y) = 0 is satisfied. Moreover, for the right-hand side F (t, x) of system (1) and a
fixed positive integer k < n, we let M(t, x) denote the mapping M(t, x) = (F1(t, x), . . . , Fk(t, x))

T .
Now, we formulate and prove the following sufficient condition for the existence of Poisson bounded

solutions of system (1) in terms of canonical domains and Lyapunov functions.
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Theorem. Let Ω be a canonical domain in R
k defined by inequalities (2), and let solutions of

system (1) be z-extendable to the whole half-line R
+. Suppose also that the following conditions

are satisfied for system (1):

(1) the mapping M(t, x) defined by the right-hand side F (t, x) of system (1) satisfies the
inequality

(gradGi(y),M(t, x)) ≤ 0 (3)

for any t ∈ R
+, x = (y, z) ∈ R

n, y ∈ ∂Ω, and i ∈ α(y);

(2) there exists a P-sequence τ = {τi}i≥1, a nonincreasing function b(r) ≥ 0, r ∈ R
+, such that

b(r) → +∞ as r → +∞, and a function V (t, x) ≥ 0 defined on R
+(τ1)× (Ω ×R

n−k) which
satisfy the following conditions:

b(‖z‖) ≤ V (t, x) for all (t, x) ∈ M(τ)× (Ω× R
n−k), (4)

V ′+
F (t,x)(t, x) ≤ 0 for all (t, x) ∈ R

+(τ1)× (Ω ×R
n−k). (5)

Then each solution x(t, t0, x0) of system (1), where (t0, x0) ∈ M(τ)× (Ω × R
n−k), is Poisson

bounded.

Proof. First, we show that any solution x(t, t0, x0) of system (1), where (t0, x0) ∈ R
+ × (Ω× R

n−k),
is y-bounded. For system (1), we consider the system

dx

dt
= F (t, x) + γ · (s0 − x) (6)

with parameter γ > 0, where s0 = (p0, q0) ∈ R
k × R

n−k is a fixed point for which p0 is an interior point
of Ω. The geometrically obvious inequality (gradGi(y), p0 − y) < 0, y ∈ ∂Ω, i ∈ α(y), and condition (3)
imply that the right-hand side of system (6) satisfies the condition

(gradGi(y),M(t, x) + γ · (p0 − y)) < 0 (7)

for all t ∈ R
+, x ∈ R

n, y ∈ ∂Ω, and i ∈ α(y). Now we choose an arbitrary point x0 ∈ Ω× R
n−k.

For each fixed γ > 0, we consider the solution xγ(t, t0, x0) of system (6), where t0 ≥ 0, and show
that yγ(t, t0, x0) ∈ Ω for all t ≥ t0. Assume that, on the contrary, for a vector function yγ(t, t0, x0),
there exists a number t′γ > t0 such that yγ(t

′
γ , t0, x0) /∈ Ω. Since the vector function yγ(t, t0, x0) is

continuous in t and Ω is a compact set, we see that there is a t0 ≤ tγ < t′γ such that yγ(tγ , t0, x0) ∈ Ω

and yγ(t, t0, x0) /∈ Ω for t > tγ sufficiently close to tγ . It is clear that yγ(tγ , t0, x0) ∈ ∂Ω and hence

Gi(yγ(tγ , t0, x0)) = 0 for i ∈ α(yγ(tγ , t0, x0)),

Gi(yγ(tγ , t0, x0)) < 0 for i /∈ α(yγ(tγ , t0, x0)).

Using condition (7), we obtain the inequality

Gi(yγ(t, t0, x0))

dt

∣
∣
∣
∣
t=tγ

< 0, i ∈ α(yγ(tγ , t0, x0)),

which implies Gi(yγ(t, t0, x0)) < 0, i ∈ α(yγ(tγ , t0, x0)), for t > tγ sufficiently close to tγ . For such
t > tγ , we can assume that Gi(yγ(t, t0, x0)) < 0 for i /∈ α(ym,γ(tγ , t0, x0)), because the functions Gi(y)
are continuous. Thus, for t > tγ sufficiently close to tγ , the inequalities Gi(yγ(t, t0, x0)) < 0 hold for
all 1 ≤ i ≤ r, i.e., yγ(t, t0, x0) ∈ Ω. This contradicts the fact that yγ(t, t0, x0) /∈ Ω for t > tγ sufficiently
close to tγ . Therefore, the above assumption is false, and hence the solution xγ(t, t0, x0) of (6) under
consideration satisfies the condition yγ(t, t0, x0) ∈ Ω for all t ≥ t0.

Now we consider system (6) for γ ≥ 0 and a solution x0(t, t0, x0) of this system for γ = 0, i.e., a
solution of system (1), which we denote by x(t, t0, x0) in what follows. We shall show that, for all t ≥ t0,
the condition y(t, t0, x0) ∈ Ω is satisfied. For this purpose, we choose an arbitrary number sequence
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(γi > 0)i≥1 converging to zero. Since the conditions of the theorem on the continuous dependence of
solutions on a parameter (see, e.g., [16]) are satisfied for system (6) whose right-hand side is considered
with parameter γ ≥ 0, it follows that the sequence (xγi(t, t0, x0))i≥1 of points in R

n converges to the
point x(t, t0, x0) ∈ R

n for each fixed number t ≥ t0. In particular, for each fixed number t ≥ 0, the
sequence (yγi(t, t0, x0))i≥1 of points in R

k converges to the point y(t, t0, x0) ∈ R
k. This implies that

the condition y(t, t0, x0) ∈ Ω is satisfied for the solution x(t, t0, x0) of system (1) for all t ≥ t0. Indeed,
assume that, on the contrary, the condition y(τ, t0, x0) /∈ Ω is satisfied for some τ > t0. Since the set Ω
is convex and the sequence (yγi(τ, t0, x0))i≥1 of points in R

k converges to the point y(τ, t0, x0) /∈ Ω, we
have yγi(τ, t0, x0) 	∈ Ω for sufficiently large i. This contradicts the fact that yγi(τ, t0, x0) ∈ Ω for all i ≥ 1.
Therefore, the above assumption is false, and hence the solution x(t, t0, x0) of system (1) satisfies the
condition y(t, t0, x0) ∈ Ω for all t ≥ t0. The fact that the solutions of system (1) are z-extendable implies
that the solution x(t, t0, x0) is defined for all t ≥ t0. Moreover, since y(t, t0, x0) ∈ Ω for any t ≥ t0, it
follows that x(t, t0, x0) is a y-bounded solution. Indeed, since the set Ω is compact in R

k, it follows
that there exists a ball of radius β > 0 centered at the origin of Rk such that Ω is contained in this ball,
and hence the inequality ‖y(t, t0, x0)‖ ≤ β holds for all t ≥ t0. Thus, we have shown that any solution
x(t, t0, x0) of system (1), where (t0, x0) ∈ R

+ × (Ω× R
n−k), is y-bounded.

Now we show that any solution x(t, t0, x0), where (t0, x0) ∈ M(τ)× (Ω× R
n−k), of system (1) is

Poisson z-bounded. Indeed, for any such solution x(t, t0, x0), using requirement (4) in condition (2) of
the theorem, we obtain the inequality

b(‖z(t, t0, x0)‖) ≤ V (t, x(t, t0, x0)) for all t ∈ R+(t0) ∩M(τ).

Since it has previously been shown that the solution x = x(t, x0, t0) is y-bounded, it follows from
requirement (5) in condition (2) of the theorem that the function V (t, x(t, x0, t0)) of the variable t is
nonincreasing for this solution. This implies that the inequality V (t, x(t, x0, t0)) ≤ V (t0, x0) holds for
all t ∈ R+(t0) ∩M(τ). Now, using the condition that b(r) → ∞ as r → ∞, we choose a number β > 0
for which V (t0, x0) ≤ b(β). This implies the inequality

b(‖z(t, x0, t0)‖) ≤ b(β) for t ∈ R+(t0) ∩M(τ).

Since b(r) is nonincreasing, it follows from the last inequality that

‖z(t, x0, t0)‖ ≤ β for all t ∈ R+(t0) ∩M(τ).

Thus, we have shown that any solution x(t, t0, x0) of system (1), where (t0, x0) ∈ M(τ)× (Ω× R
n−k),

is Poisson z-bounded.

Now we note that the number β > 0 in the proof of the z-boundedness of the solution x(t, t0, x0) can
be chosen arbitrarily large. Taking into account the Poisson z-boundedness and the y-boundedness
of the solution x(t, t0, x0) and using the obvious inequality ‖x‖ ≤ ‖y‖+ ‖z‖, we see that any solution
x(t, t0, x0) of system (1), where (t0, x0) ∈ M(τ)× (Ω× R

n−k), is Poisson bounded.

In conclusion, we note that one might introduce the notion of a solution Poisson bounded on the
whole real line R. However, the above-proposed method for constructing Poisson bounded solutions
cannot generally be used to construct Poisson bounded solutions on the whole real line, because, in
such constructions, sequences of points in (Ω×R

n−k) that may be unbounded in part of the variables z
arise.
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