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1. INTRODUCTION
For a prime p and the residue field Fp modulo p, consider a multiplicative subgroup Γ ⊆ Fp \ {0}. The

classical question about the structure of Γ with respect to addition was studied in [1]–[4] and many other
papers. This question is closely related to the sum-product theorem (see [5], [6]). When studying the
structure of Γ, it is often useful to note that the difference set of Γ is Γ-invariant (see, e.g., [1], [7], [8]).
Some functions well reflecting the additive structure, such as the convolutions of Γ, and their level sets
have the same property. The present paper generalizes these ideas to the field of real numbers. The
counterpart of a subgroup is a set A such that |AA| is small compared with |A|. In particular, we show
that, for any A ⊆ R with this property, each level set P (on which the convolutions of A take values in
a narrow interval) is almost invariant under multiplication by elements of A. (See Sec. 4 for more precise
statements.) Earlier results of this kind can be found in [9], [10], and [8]. Using assertions about P , one
can obtain new estimates for the additive energy of A. The most recent result in this direction was
obtained in [9, Theorem 3] via a development of methods in [11] and [12].

Theorem 1. Let A ⊂ R be a finite set such that |AA| ≤ M |A|. Then

E+(A) := |{(a, b, c, d) ∈ A4 : a+ b = c+ d}| � M8/5|A|49/20. (1.1)

Combining combinatorial ideas with the operator method, we improve this result for small M . (Only
the simplest case of M � 1 is presented here; see the general statement in Theorem 5.)

Theorem 2. Let A ⊂ R be a finite set such that |AA| � M |A|. Then

E+(A) � |A|22/9. (1.2)

We see that the exponent 22/9 here is better than the exponent 49/20 in Theorem 1 for sets with the
same condition |AA| � |A|.

Using the same operator method, we re-prove the following theorem in [10] and [9, Theorems 2, 10]
on sum sets and difference sets. (A similar result for multiplicative subgroups in F

∗
p can be found in [13].)

Theorem 3. Let A ⊂ R be a finite set such that |AA| � M |A|. Then

|A−A| � |A|5/3 and |A+A| � |A|8/5. (1.3)

Finally, we discuss other results on sums and products in Sec. 6.
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2. NOTATION AND DEFINITIONS

Let G be an Abelian group. The characteristic function of a set S ⊆ G will sometimes be denoted by
the same letter:

S(g) =

{
1, g ∈ S,

0, g /∈ S.

The cardinality of a set S is denoted by |S|. We define the product of sets A,B ⊆ G as

AB := {ab : a ∈ A, b ∈ B}.

In a similar way, we define the sum A+B and products with a larger number of factors, say, AAA. We
will use the Plünnecke–Ruzsa inequality [14]

|nA−mA| ≤
(
|A+A|
|A|

)n+m

· |A|.

Given two functions f, g : G → C, their convolutions are defined by

(f ∗ g)(x) :=
∑
y∈G

f(y)g(x− y) and (f ◦ g)(x) :=
∑
y∈G

f(y)g(y + x). (2.1)

Accordingly, the functions (A ∗A) and (A ◦A) are the convolutions of a set A. By E+(A,B) we denote
the additive energy of two sets A,B ⊆ G (see [14]), which is defined by

E+(A,B) = |{(a1, a2, b1, b2) ∈ A2 ×B2 : a1 + b1 = a2 + b2}|.

If A = B, then we just write E+(A) instead of E+(A,A). Clearly,

E+(A,B) =
∑
x

(A ∗B)(x)2 =
∑
x

(A ◦B)(x)2 =
∑
x

(A ◦ A)(x)(B ◦B)(x).

For k ≥ 2, we also define the higher energies ([11], [15])

E+
k (A) = |{(a1, . . . , ak, a′1, . . . , a′k) ∈ A2k : a1 − a′1 = a2 − a′2 = · · · = ak − a′k}|.

Thus, E+(A) = E+
2 (A). For convenience, we set E+

1 (A) = |A|2. For two sets A,P ⊆ G, let
σP (A) :=

∑
x∈P (A ◦ A)(x). In the same way, we define the multiplicative energy

E×(A,B) = |{(a1, a2, b1, b2) ∈ A2 ×B2 : a1b1 = a2b2}|

of two setsA,B ⊆ G and, in a similar way, E×
k (A). It is clear that the multiplicative energy E×(A,B) can

be expressed via multiplicative convolutions by analogy with (2.1). We shall also use partition functions,
such as, for example, rAB(x), rA+B(x), or rAB−1(x), which count the number of ways in which x ∈ G

can be represented as the product ab, the sum a+ b, or the quotient ab−1, respectively, where a ∈ A and
b ∈ B. For example,

|A| = rAA−1(1), E(A,B) = rAA−1BB−1(1) =
∑
x

r2A−1B(x).

All logarithms are to the base 2. The symbols � and � are the usual Vinogradov symbols; i.e., a � b
means a = O(b) and a � b means b = O(a). If K is a parameter, then we write �K and �K to indicate
the polynomial dependence on K of the constants hidden in � and �. Given a set A, we write a � b,
or b � a, if a = O(b · logc |A|), where c > 0 is some absolute constant. For any prime p, the finite prime
field of characteristic p is denoted by Fp, and by F we denote any field, regardless of whether it is finite or
not.

MATHEMATICAL NOTES Vol. 108 No. 4 2020



SUMS AND DIFFERENCES FOR SETS WITH DOUBLING 559

3. PRELIMINARY REMARKS

We need a fairly well-known corollary of the Szemerédi–Trotter theorem, which can be found, e.g.,
in [11, Corollary 28]. It claims that the higher additive energies of a set A that has small multiplicative
doubling can be estimated almost optimally.

Lemma 1. Let A ⊂ R be a finite set such that |AA| ≤ M |A|. Then

E+
3 (A) � M2|A|3 log |A|.

We shall also use the lemma obtained by the operator method in [12, Theorem 5.1, inequality (5.7)].
(Formulas (3.2) and (3.3) have simple combinatorial proofs as well.)

Lemma 2. Let G be an Abelian group, and let A ⊂ G be a finite set. Assume that a set
P ⊆ A−A := D has the following property: Δ < (A ◦A)(x) ≤ 2Δ for some Δ and for any x ∈ P .
Then (

σ2
P (A)E(A)

|A|3

)2

� E3(A) ·
∑
x,y

(A ◦ A)2(x− y)P (x)P (y). (3.1)

In a similar way, it is true for any P ⊆ D that(
σ2
P (A)

|A|

)2

≤ E3(A) ·
∑
x,y

D(x− y)P (x)P (y). (3.2)

In particular,

|A|6 ≤ E3(A) ·
∑
x,y

D(x− y)D(x)D(y). (3.3)

The following lemma is a slight generalization of Exercise 1.1.8 in [14]. For example, it can be
obtained by the probabilistic method with the use of the Plünnecke–Ruzsa inequality.

Lemma 3. Let A,B ⊆ G be finite sets. Then there exists a set X ⊆ A+B −B with

|X| � |A+B −B|
|B| · log |A+B|

such that A+B ⊆ X +B. In particular, if B = A, then A+A ⊆ X +A and

|X| � |A+A|3
|A|3 · log |A|.

Indeed, take a random subset X ⊆ A+BB, each of its elements being chosen independently with
probability p = c log |A+B|/|B|, where c > 0 is a sufficiently small constant. Then the probability that
a given z ∈ A+B does not lie in X +B is (1− p)|B|. Hence the probability that A+B � X +B is at
most |A+B|(1− p)|B|, which can be made strictly less than 1 in view of our choice of the constant c. It
remains to note that the expectation of the cardinality of X is

p|A+B −B| � |A+B −B|
|B| · log |A+B|.

Further, we need the already mentioned Szemerëdi–Trotter theorem itself [16] on incidences between
sets of points and lines on the plane. Recall the notation used in that theorem. Let L be a finite set of
lines and P a finite set of points on the plane. The number I(P,L) of incidences is determined by the
formula I(P,L) = |{(p, l) ∈ P × L : p ∈ l}|.

Theorem 4. Let P be a finite set of points, and let L be a finite set of lines. Then

I(P,L) � |P|2/3|L|2/3 + |P| + |L|.
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4. ON THE SUMS AND DIFFERENCES OF SETS WITH SMALL
MULTIPLICATIVE DOUBLING

First, let us discuss the following simple question about sets A in an arbitrary field F: is it true that
if |AA| � |A|, then |A(A+A)| � |A+A| and |A(A −A)| � |A−A|? This is undoubtedly the case for
a multiplicative subgroup in Fp, but what happens with sets in infinite fields, for example, in R, where
a finite set cannot be a subgroup in the strict sense of the word? Below we give a partial answer to this
question in terms of popular subsets of A+A and A−A. For now, note that the dual conjecture stating
that |A+A| � |A| implies |AA+A| � |AA| and |A/A+A| � |A/A| is obviously wrong. (It suffices to
consider intervals shifted by sufficiently large numbers.)

For a set A, we write D = A−A and Π = AA. Take a Δ > 0 and consider a set P ⊆ D such
that rA−A(x) ≥ Δ for every x ∈ P . Then the inequality rΠ−Π(xa) ≥ Δ holds for xa ∈ PA, because
distinct representations xa = (a1 − a2)a = a1a− a2a ∈ Π−Π are generated by distinct representations
x = a1 − a2. Hence

Δ|PA| ≤
∑
x∈PA

rΠ−Π(x) ≤
∑
x

rΠ−Π(x) = |AA|2 = M2|A|2.

It follows that

|PA| ≤ |AA|2
Δ

=
M2|A|2

Δ
. (4.1)

A similar argument is valid for A/A instead of AA and even for more general products AB.
Now let us obtain a different estimate. Assume that not only Δ ≤ rAA(x), but also rAA(x) ≤ 2Δ for

x ∈ P and also that the inequality ∑
x∈P

rkA−A(x) � E+
k (A)

holds for some k ≥ 1. By analogy with the preceding argument, formula (4.1) can be generalized to

|PA|Δk ≤
∑
x∈PA

rkΠ−Π(x) ≤ E+
k (AA).

Furthermore, AA ⊂ XA for some set X with |X| � M3 by Lemma 6. The following lemma was proved
in [15, Sec. 4].

Lemma 4. Let G be an Abelian group, and let A1, . . . , Al ⊂ G be its arbitrary subsets. Then

E
1/2k
k

( l⋃
j=1

Aj

)
≤

l∑
j=1

E
1/2k
k (Aj).

Using this lemma and the definition of the set P , we obtain

|PA|Δk ≤ E+
k (AA) ≤

( ∑
x∈X

(E+
k (xA))

1/(2k)

)2k

= |X|2k E+
k (A) �k M6k E+

k (A) (4.2)

� M6k
∑
x∈P

rkA−A(x) ≤ 2kM6k|P |Δk. (4.3)

This means that

|PA| �2k M6k|P |. (4.4)

It is of interest to note that it is not possible to swap addition and multiplication in formulas (4.2) and
(4.3).

For k = 1, it is easily seen that there is a stronger estimate (see (4.1)) for any sets P with
Δ|P | � |A|2; namely,

|PA| � M2|P |. (4.5)
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Finally, note that a similar argument is true for AA instead of A+A and for T+
k , E+

k,l, or other energies
having the property of being a norm in the sense of Lemma 4 above (see also [11], [15]). In a similar
way, the condition |A/A| ≤ M |A| can be considered instead of |AA| ≤ M |A|, but the dependence of the
estimate (4.4) on M in this case will be slightly worse.

The above reasoning allows us to show that the set P of popular sums or differences of the set A with
small multiplicative doubling are so-called Szemerëdi–Trotter sets. For details on such sets, see [17].

Corollary 1. Let A ⊂ R \ {0} be a finite set with |AA| ≤ M |A|, and let P be defined in the same
way as above in this subsection. Then

E+
3 (P ) �2k

M12k|P |4
|A| + |P |3, (4.6)

and it is true for any set B ⊂ R that

E+(P,B) �2k
M6k|P |3/2|B|3/2

|A|1/2
+ |P ||B|. (4.7)

Proof. If P = {0}, then the statement is trivial. We shall only consider the case τ � 1. Then it suffices
to prove the estimate

|{s : |{p− b = s : p ∈ P, b ∈ B}| ≥ τ}| �2k
M12k|B|2|P |2

|A|τ3 , (4.8)

because inequalities (4.6) and (4.7) can be obtained from it by straightforward summation. Indeed,

E+
3 (P ) �2k

log |P |∑
j=0

23jM12k|P |4
|A|23j + |P |3 �2k

M12k|P |4
|A| + |P |3,

as desired. Next, we denote the set on the left-hand side in inequality (4.8) by Sτ . Our task is to estimate
the cardinality of Sτ . By definition,

τ |Sτ ||A| ≤ |{πa−1 − b = s : π ∈ PA, b ∈ B, s ∈ Sτ , a ∈ A}|.
The equation on the right-hand side can be interpreted as a condition for the presence of an incidence
between a point and a line provided that P = A−1 × Sτ and the lines in L are indexed by pairs
(α, β) ∈ PA×B. Therefore, it follows from Theorem 4 that

τ |Sτ ||A| � (|A||Sτ ||PA||B|)2/3 + |Sτ ||A|+ |B||PA|.
If the first term is maximal in the sum on the right, then the estimate (4.4) follows directly from
inequality (4.8). The second term dominates only for τ � 1, and we do not consider this case. Finally, if
the third term exceeds the others, then it suffices to note that τ ≤ min{|P |, |B|}, which gives

|Sτ | �
|B||PA|
τ |A| =

|B|2|PA||P |
τ3|A| ,

and again use inequality (4.8).

5. PROOF OF THE MAIN RESULT

Now we are in a position to prove Theorem 2 from the introduction.

Theorem 5. Let A ⊂ R be a finite set such that |AA| ≤ M |A|. Then

E+(A) � M7/3|A|22/9. (5.1)
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Proof. Since rA−A(x) ≤ |A|, it follows by the Dirichlet principle that Δ ≥ 1 and P ⊆ A−A can be
chosen to satisfy

∑
x∈P

r2A−A(x) �
E+(A)

log |A|

and Δ < rA−A(x) ≤ 2Δ for all x ∈ P . Up to logarithms (in Lemma 1) or even without them,

Δ � M2|A|3
E+(A)

; (5.2)

see [12], Lemma 3.7 or the proofs of Theorems 5.1 and 5.4. Applying lemma 2 and the definition of the
set P , we obtain(

Δ2|P |2 E+(A)

|A|3

)2

≤
(
σ2
P (A)E

+(A)

|A|3

)2

� E+
3 (A) ·

∑
x,y

r2A−A(x− y)P (x)P (y)

= E+
3 (A) ·

∑
z

r2A−A(z)rP−P (z).

By Hölder’s inequality, (
Δ2|P |2 E+(A)

|A|3

)6

� (E+
3 (A))

5 E+
3 (P ).

To estimate the higher energies, we apply Lemma 1 and Corollary 1 (for k = 2) and find that(
Δ2|P |2 E+(A)

|A|3

)6

� |A|14M34|P |4.

Thus, using inequality (5.2) and the fact that E+(A) � Δ2|P |, we readily obtain

(E+(A))14 � M34|A|32Δ4 � M34|A|32
(
M2|A|3
E+(A)

)4

,

whence

E+(A) � M7/3|A|22/9.

Arguing in a similar way, we prove Theorem 3. We set D = A−A and S = A+A. Take a Δ ≥ 1 and
a set P ⊆ D such that σP (A) � |A|2 and Δ < rAA(x) ≤ 2Δ for all x ∈ P . It follows from inequality (3.2)
in Lemma 2 that

|A|6 � E+
3 (A)

∑
z∈D

rP−P (z),

and therefore, by Hölder’s inequality,

|A|18 � (E+
3 (A))

3 E+
3 (P )|D|2.

We again apply Lemma 1 and Corollary 1 and arrive at the inequality

|A|10 � M10|D|6, (5.3)

as desired. It is of interest to note that our estimate (5.3) coincides with the classical estimate for Elekes’
sum-products [18] (if we ignore the logarithms).

Following the proof of [17, Theorem 11, inequality (4.9)], we have

|A|10 � |S|2 E+
3 (A)

∑
z

r2A−A(z)rS′−S′(z),
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where S′ ⊆ {x : rA+A(x) ≥ |A|2/(2|S|)} and Δ < rA+A(x) ≤ 2Δ for x ∈ S′. Applying Hölder’s in-
equality, we see that

|A|30 � |S|6(E+
3 (A))

5 E+
3 (S

′).

Applying Lemma 1 and Corollary 1, we obtain

|A|16 � M14|S|10,
which completes the proof of Theorem 3.

6. GENERAL PROBLEM

For sets A ⊆ F, one can pose the problem of finding good estimates for fractional-rational expres-
sions R(A) in terms of sums and products of the set A. In other words, let K = |A+A|/|A| and
M = |AA|/|A|. Then we are interested in estimates of the form |R(A)| �K,M |A| for R(A). The
first results of this kind were obtained in [19]. For R(A) = nA−mA and R(A) = An/Am, where
n and m are positive integers, the corresponding estimate is called the Plünnecke–Ruzsa inequality,
which we have already mentioned in Sec. 2. Moreover, the theory of sum-products (see [19], [14])
implies that the inequality KM � |A|c, c > 0, holds in many fields F. This obviously gives the estimate
|R(A)| �K,M |A| (for sufficiently large exponents K and M ), and the only question may be to find the
optimal dependence on K and M . We can assume that R(A) simultaneously includes summation
(or subtraction) and multiplication (or division), which means that the exponents K and M in the
precise “optimal” estimate will be at least 1. Thus, we can start studying the problem from the simplest
polynomial R(x, y, z) = x(y + z).

Question. Assume that A is a finite subset of R or a sufficiently small subset of Fp. Also suppose that
K = |A+A|/|A|, and let M = |AA|/|A|. Is it true that

|A(A+A)| �M K|A|? (6.1)

As we have seen in Sec. 4, the answer to the “dual” question as to whether |AA+A| �K M |A| is
obviously negative. Further, if inequality (6.1) holds, then, by the Cauchy–Schwarz inequality,

∑
x

r2A(A+A)(x) �M
|A|5
K

. (6.2)

However, it can readily be seen that the stronger form (6.2) of the inequality follows from (4.4) and (4.5).

Proposition 1. Let A ⊆ F and ε ∈ {−1, 1}. Then∑
x

r2Aε(A±A)(x) � |A|8
|AAε|2|A±A| , (6.3)

∑
x

r2Aε(A±A)(x) �|AAε|/|A| (E
+
3/2(A))

2. (6.4)

Proof. We put Δ∗ = |A|2/(2|A ±A|). By the Dirichlet principle, there exists a Δ ≥ Δ∗ and a set
P = {x : Δ < rA±A(x) ≤ 2Δ} such that∑

x∈P
rA±A(x) � |A|2.

According to the estimate (4.5), |PAε| � M2|P |, where M = |AAε|/|A|. Therefore, using the
Cauchy–Schwarz inequality, we obtain

E×(P,Aε) ≥ |A|2|P |2
|PAε| � |A|2|P |

M2
.
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Then we multiply the last estimate by Δ2 and arrive at∑
x

r2Aε(A+A)(x) ≥ Δ2 E×(P,Aε) ≥ |A|2Δ2|P |
M2

� |A|4Δ∗
M2

≥ |A|6
2M2|A±A| , (6.5)

as desired. To obtain (6.4), it suffices to apply the estimate (6.5) and inequality (4.4) with k = 3/2. This
completes the proof.

Remark 1. It is possible to get rid of the logarithms in the estimate (6.3) by using the same proof scheme
and resorting to more precise but voluminous calculations. We leave this to the interested reader and
give a shorter proof with slightly weaker results.

The estimates (6.3) and (6.4) are sharp provided that A has small product AA. Now let us obtain
another lower bound for

∑
x r

2
A(A+A)(x), which is, on the contrary, sharp, provided that A has small sum

A+A.

Proposition 2. Let A,B ⊆ F be finite sets. Then

|A/B| ·
∑
s

r2(A±B)/B(s) ≥ E+(A,B)2.

Proof. Consider s ∈ A±B and let n(s) denote the number of pairs (ai, bi) ∈ A×B such that
s = ai ± bi, i ∈ {1, . . . , n(s)}. It is clear that∑

s

n2(s) = E+(A,B).

Consider the mapping ϕ : A±B → 2A×B×B defined as ϕ(s) = {(ai, bi, bj) : i, j ∈ {1, . . . , n(s)}}, for
which, obviously, |ϕ(s)| = n2(s) and if ϕ(s) = ϕ(s′), then s = s′, i = i′, and j = j′. Therefore, there are
at least E+(A,B) distinct triples of the form (ai, bi, bj). Further,

ai ± bi
bj

=
s

bj
=

aj ± bj
bj

=
aj
bj

± 1 ∈ A

B
± 1,

and hence the image of the function f(x, y, z) = (x± y)/z on the set of our triples has cardinality at
least |A/B|. By the Cauchy–Schwarz inequality,∑

s

r2(A±B)/B(s) ≥
∑
α∈F

|{x ∈ A, y, z ∈ B : f(x, y, z) = α}|2 ≥ E+(A,B)2

|A/B| ,

which completes the proof.

Finally, let us make one more remark. As we have already seen in Sec. 4, if

P = {s ∈ A±A : rA±A(s) ≥ Δ},
then Δ|AP | ≤ M2|A|2. In other words, the sets of “popular sums” (of those s for which rA±A(s) is
bounded below by the mean value) have small product with the set A. However, if we take

P̃ =

{
s ∈ A±A : ∃x, y ∈ A, x+ y = s, rA/A

(
x

y

)
≥ Δ

}
,

i.e., if P̃ is popular in terms of “division,” then a similar estimate holds for P̃ . Indeed, let
Λ̃ = {λ ∈ A/A : rA/A(λ) ≥ Δ}. Then a(b± c) = ab(1± c/b), whence |AP̃ | ≤ |AA(1 ± Λ̃)|. It is clear,

however, that the mapping ϕ : AA(1± Λ̃) → AA/A× (A±A) defined as

ϕ(x) = (π(x)/c(x), b(x) ± c(x)),

where π(x) ∈ AA and b(x)/c(x) = λ(x) ∈ Λ̃ for x ∈ AA(1± Λ̃), is injective (which can be verified by
considering the product of elements of the image). By the Plünnecke–Ruzsa inequality,

Δ|AP̃ | ≤ Δ|AA(1 + Λ̃)| ≤ |AA/A||A ±A| ≤ |AA|3|A±A|
|A|2 .
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