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Abstract—Let A be a prime ∗-algebra. In this paper, assuming that Φ : A → A satisfies

Φ(A �B � C) = Φ(A) �B � C +A � Φ(B) � C +A �B � Φ(C)

where A �B = A∗B +B∗A for all A,B ∈ A, we prove that Φ is additive an ∗-derivation.
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1. INTRODUCTION

Let R be a ∗-algebra. For A,B ∈ R, we write A •B = AB +BA∗ and [A,B]∗ = AB −BA∗ for
the ∗-Jordan product and ∗-Lie product, respectively. These products play an important role in some
research topics, and their study has recently attracted the attention of many authors (for example,
see [1]–[5]).

Recall that a map Φ : R → R is said to be an additive derivation if

Φ(A+B) = Φ(A) + Φ(B) and Φ(AB) = Φ(A)B +AΦ(B)

for all A,B ∈ R. A map Φ is an additive ∗-derivation if it is an additive derivation and Φ(A∗) = Φ(A)∗.
Derivations are very important maps both in theory and applications and have been studied intensively
([6]–[11]).

A von Neumann algebra A is a self-adjoint subalgebra of B(H), the algebra of all bounded linear
operators acting on a complex Hilbert space, which satisfies the double commutant property: A′′

= A
where A′

= {T ∈ B(H), TA = AT} for all A ∈ A, and A′′
= {A′}′

. We denote by Z(A) = A′ ∩ A
the center of A. A von Neumann algebra A is called a factor if its center is trivial, i.e., Z(A) = CI.
For A ∈ A, recall that the central carrier of A, denoted by A, is the smallest central projection
P such that PA = A. It is not difficult to see that A is the projection onto the closed subspace
spanned by {BAx : B ∈ A, x ∈ H}. If A is self-adjoint, then the core of A, denoted by A, is
sup{S ∈ Z(A) : S = S∗, S ≤ A}. If A = P is a projection, it is clear that P is the largest central
projection Q satisfying Q ≤ P . A projection P is said to be core-free if P = 0 (see [12]). It is easy
to see that P = 0 if and only if I − P = I, [13, 14].

Recently, Yu and Zhang in [15] proved that every nonlinear ∗-Lie derivation from a factor von
Neumann algebra into itself is an additive ∗-derivation. Also, in [16], Li, Lu, and Fang investigated
nonlinear λ-Jordan ∗-derivations. They showed that if A ⊆ B(H) is a von Neumann algebra without
central Abelian projections and λ is a nonzero scalar, then Φ : A −→ B(H) is a nonlinear λ-Jordan
∗-derivation if and only if Φ is an additive ∗-derivation.
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On the other hand, many mathematicians have studied the ∗-Jordan product A •B = AB +BA∗. In
[17], F. Zhang proved that every nonlinear ∗-Jordan derivation map Φ : A → A on a factor von Neumann
algebra is an additive ∗-derivation.

In [18], we showed that ∗-Jordan derivation map on every factor von Neumann algebra A ⊆ B(H) is
an additive ∗-derivation.

Quite recently, the authors of [19] discussed some bijective maps preserving the new product
A∗B +B∗A between von Neumann algebras with no central Abelian projections. In other words, they
considered the map Φ that satisfies the following assumption:

Φ(A∗B +B∗A) = Φ(A)∗Φ(B) + Φ(B)∗Φ(A).

They showed that such a map is the sum of a linear ∗-isomorphism and a conjugate linear ∗-isomorph-
ism.

We say that A is prime, i.e., if AAB = {0} for A,B ∈ A, then A = 0 or B = 0.

In [20], we assumed that A is a prime ∗-algebra and the map Φ : A → A satisfies the following
condition:

Φ(A �B) = Φ(A) �B +A � Φ(B)

where A �B = A∗B +B∗A for all A,B ∈ A. We proved that, in this case, Φ is an additive ∗-derivation.
The authors of [21] introduced the concept of ∗-Lie triple derivations. A map Φ : A → A is a

nonlinear ∗-Lie triple derivation if

Φ([[A,B]∗, C]∗) = [[Φ(A), B]∗, C]∗ + [[A,Φ(B)]∗, C]∗ + [[A,B]∗,Φ(C)]∗

for all A,B,C ∈ A, where [A,B]∗ = AB −BA∗. They showed that if Φ preserves the above character-
ization of factor von Neumann algebras, then Φ is an additive ∗-derivation.

Motivated by the above results, we introduce the triple product A �B � C := (A �B) � C, where
A �B = A∗B +B∗A. In this paper, let A be a prime ∗-algebra, and let Φ : A → A satisfy the following
equality:

Φ(A �B � C) = Φ(A) �B � C +A � Φ(B) � C +A �B �Φ(C)

for all A,B,C ∈ A. We prove that Φ is an additive ∗-derivation.

2. MAIN RESULTS

Our main theorem is as follows.

Theorem 1. Let A be a prime ∗-algebra, and let Φ : A → A satisfy the condition

Φ(A �B � C) = Φ(A) �B � C +A � Φ(B) � C +A �B �Φ(C) (2.1)

for all A,B,C ∈ A, then Φ is an additive ∗-derivation.

Proof. Let P1 be a nontrivial projection in A, and let P2 = IA − P1. Denote Aij = PiAPj for
i, j = 1, 2; then A =

∑2
i,j=1Aij . For every A ∈ A, we can write A = A11 +A12 +A21 +A22. In what

follows, when we write Aij , this will indicate that Aij ∈ Aij . In order to show additivity of Φ on A, we
apply the above partitions of A and establish some claims that imply that Φ is additive on each Aij for
i, j = 1, 2.

Thus, the above theorem is a consequence of the following claims.

Claim 1. Φ(0) = 0.

This claim is easy to prove.

Claim 2. Φ(I/2) = 0, Φ(−I/2) = 0, and Φ(iI/2) = 0.
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To show that Φ(I/2) = 0, we write

Φ
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� I
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. (2.2)

From (2.2), we deduce that Φ(I/2) is self-adjoint. Therefore, we have the desired result.
To prove that Φ(I/2) = 0, we write

Φ
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Then
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On the other hand, we have
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It follows that

Φ
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= −Φ

(
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)

(2.5)

Then, from (2.4) and (2.5), we obtain Φ(− I
2) = 0. To show that Φ(i I2 ) = 0, we write
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)∗
− Φ

(

i
I

2

)

= 0. (2.6)

Also, we have

Φ

(
I

2
� I

2
� iI

2
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2
� I

2
� Φ

(
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I

2
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Thus,

Φ

(

i
I

2

)∗
+Φ

(

i
I

2

)

= 0. (2.7)

From (2.6) and (2.7), we obtain Φ(i I2 ) = 0.

Claim 3. Suppose that, for each A ∈ A,

1. Φ(−iA) = −iΦ(A).

2. Φ(iA) = iΦ(A).
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It is easy to see that

Φ

(

− iA � I

2
� I

2

)

= Φ

(

A � iI
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� I

2

)

.

Thus,

Φ(−iA) � I

2
� I

2
= Φ(A) � iI

2
� I

2
.

It follows that

Φ(−iA)∗ +Φ(−iA) = iΦ(A)∗ − iΦ(A). (2.8)

On the other hand, one can check that

Φ

(

− iA � iI
2
� I

2

)

= Φ

(

− I

2
� A � I

2

)

.

Thus,

Φ(−iA) � iI
2
� I

2
= −I

2
� Φ(A) � I

2
.

It follows that

iΦ(−iA)∗ − iΦ(−iA) = −Φ(A)− Φ(A)∗. (2.9)

Equivalently, we have

−Φ(−iA)∗ +Φ(−iA) = −iΦ(A)− iΦ(A)∗. (2.10)

By adding equeations (2.8) and (2.10), we obtain

Φ(−iA) = −iΦ(A).

Similarly, we can show that Φ(iA) = iΦ(A).

Claim 4. For each A11 ∈ A11, A12 ∈ A12, the following equality holds:

Φ(A11 +A12) = Φ(A11) + Φ(A12).

Setting T = Φ(A11 +A12)− Φ(A11)− Φ(A12) let us prove that T = 0. We have

Φ(A11 +A12) � C21 � I + (A11 +A12) �Φ(C21) � I + (A11 +A12) � C21 �Φ(I)
= Φ(A11 +A12 � C21 � I)
= Φ(A11 � C21 � I) + Φ(A12 � C21 � I)
= Φ(A11) � C21 � I +A11 �Φ(C21) � I +A11 � C21 � Φ(I) + Φ(A12) � C21 � I

+A12 �Φ(C21) � I +A12 � C21 � Φ(I)
= (Φ(A11) + Φ(A12)) � C21 � I + (A11 +A12) �Φ(C21) � I + (A11 +A12) � C21 �Φ(I).

Since T11 + T12 + T21 + T22, it follows that

T ∗
22C21 + T ∗

21C21 + C∗
21T22 + C∗

21T21 = 0.

So T22 = T21 = 0. Similarly, we have

Φ(A11 +A12) � C12 � P1 + (A11 +A12) � Φ(C12) � P1 + (A11 +A12) � C12 � Φ(P1)

= Φ((A11 +A12) � C12 � P1)

= Φ(A11 � C12 � P1) + Φ(A12 � C12 � P1)

= (Φ(A11) + Φ(A12)) � C12 � P1 + (A11 +A12) � Φ(C12) � P1 + (A11 +A12) � C12 � Φ(P1).

Therefore, T �C12 � P1 = 0. So T ∗
11C12 +C∗

12T11 = 0. It follows that T ∗
11C12 = 0. Hence, for all C ∈ A,

we have T ∗
11CP2 = 0. Since A is prime, it follows that T11 = 0. Similarly, we can show that T12 = 0 by

applying P2 instead of P1 in the above.
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Claim 5. For each A11 ∈ A11, A12 ∈ A12, A21 ∈ A21, and A22 ∈ A22,

1. Φ(A11 +A12 +A21) = Φ(A11) + Φ(A12) + Φ(A21).

2. Φ(A12 +A21 +A22) = Φ(A12) + Φ(A21) + Φ(A22).

Then

T = Φ(A11 +A12 +A21)− Φ(A11)− Φ(A12)−Φ(A21) = 0.

From Claim 4, we obtain

Φ(A11 +A12 +A21) � C21 � I + (A11 +A12 +A21) � Φ(C21) � I + (A11 +A12 +A21) � C21 � Φ(I)
= Φ(A11 +A21 +A12 � C21 � I)
= Φ(A11 � C21 � I) + Φ(A21 � C21 � I) + Φ(A12 � C21 � I)
= (Φ(A11) + Φ(A12) + Φ(A21)) � C21 � I + (A11 +A12 +A21) �Φ(C21) � I

+ (A11 +A12 +A21) � C21 �Φ(I).

It follows that T � C21 � I = 0. Since T = T11 + T12 + T21 + T22, we have

T ∗
22C21 + T ∗

21C21 + C∗
21T22 + C∗

21T21 = 0.

Therefore, T22 = T21 = 0. From Claim 4, we obtain

Φ(A11 +A12 +A21) � P1 � P1 + (A11 +A12 +A21) �Φ(P1) � P1 + (A11 +A12 +A21) � P1 � Φ(P1)

= Φ((A11 +A12 +A21) � P1 � P1)

= Φ(A11 � P1 � P1) + Φ(A12 � P1 � P1) + Φ(A21 � P1 � P1)

= (Φ(A11) + Φ(A12) + Φ(A21)) � P1 � P1 + (A11 +A12 +A21) � Φ(P1) � P1

+ (A11 +A12 +A21) � P1 � Φ(P1).

So T � P1 � P1 = 0 Then 2T11 + 2T ∗
11 + T12 + T ∗

12 = 0. Therefore,

T12 = 0, T11 + T ∗
11 = 0. (2.11)

Using Claim 3 and Claim 4, we obtain

Φ(A11 +A12 +A21) � iP1 � I + (A11 +A12 +A21) � Φ(iP1) � I + (A11 +A12 +A21) � iP1 � Φ(I)
= Φ(A11 +A12 � iP1 � I) + Φ(A21 � iP1 � I)
= Φ(A11 � iP1 � I) + Φ(A12 � iP1 � I) + Φ(A21 � iP1 � I)
= Φ(A11) � iP1 � I +A11 �Φ(iP1) � I +A11 � iP1 � Φ(I)

+ Φ(A12) � iP1 � I +A12 � Φ(iP1) � I +A12 � iP1 �Φ(I)
+ Φ(A21) � iP1 � I +A21 � Φ(iP1) � I +A21 � iP1 �Φ(I)

= (Φ(A11) + Φ(A12) + Φ(A21)) � iP1 � I + (A11 +A12 +A21) � Φ(iP1) � I
+ (A11 +A12 +A21) � iP1 � Φ(I).

Thus, T � iP1 � I = 0. We obtain

T11 − T ∗
11 = 0. (2.12)

Relations (2.11) and (2.12) imply T11 = 0. Similarly, we can show that

Φ(A12 +A21 +A22) = Φ(A12) + Φ(A21) + Φ(A22).

Claim 6. For each A11 ∈ A11, A12 ∈ A12, A21 ∈ A21, and A22 ∈ A22,

Φ(A11 +A12 +A21 +A22) = Φ(A11) + Φ(A12) + Φ(A21) + Φ(A22).
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Then

T = Φ(A11 +A12 +A21 +A22)−Φ(A11)− Φ(A12)− Φ(A21)− Φ(A22) = 0.

From Claim 5, we obtain

Φ(A11 +A12 +A21 +A22) � C12 � I + (A11 +A12 +A21 +A22) � Φ(C12) � I
+ (A11 +A12 +A21 +A22) � C12 � Φ(I)

= Φ((A11 +A12 +A21 +A22) � C12 � I)
= Φ((A11 +A12 +A21) � C12 � I) + Φ(A22 � C12 � I)
= Φ(A11 � C12 � I) + Φ(A12 � C12 � I) + Φ(A21 � C12 � I) + Φ(A22 � C12 � I)
= (Φ(A11) + Φ(A12) + Φ(A21) + Φ(A22)) � C12 � I

+ (A11 +A12 +A21 +A22) �Φ(C12) � I
+ (A11 +A12 +A21 +A22) � C12 � Φ(I).

Thus, T � C12 � I = 0. It follows that

C∗
12T11 + C∗

12T12 + T ∗
11C12 + T ∗

12C12 = 0.

Therefore, T11 = T12 = 0. Similarly, by applying C21 instead of C12 in the above, we obtain
T21 = T22 = 0.

Claim 7. For each Aij, Bij ∈ Ai such that i 	= j, the following equality holds:

Φ(Aij +Bij) = Φ(Aij) + Φ(Bij).

It is easy to show that

(Pi +A∗
ij) � (Pj +Bij) �

I

2
= Aij +Bij +A∗

ij +B∗
ij .

Thus, we can write

Φ(Aij +Bij) + Φ(A∗
ij +B∗

ij) = Φ

(

(Pi +A∗
ij) � (Pj +Bij) �

I

2

)

= Φ(Pi +A∗
ij) � (Pj +Bij) �

I

2
+ (Pi +A∗

ij) �Φ(Pj +Bij) �
I

2

+ (Pi +A∗
ij) � (Pj +Bij) �Φ

(
I

2

)

= (Φ(Pi) + Φ(A∗
ij)) � (Pj +Bij) �

I

2
+ (Pi +A∗

ij) � (Φ(Pj)

+ Φ(Bij)) �
I

2
+ (Pi +A∗

ij) � (Pj +Bij) � Φ
(
I

2

)

= Φ

(

Pi �Bij �
I

2

)

+Φ

(

A∗
ij � Pj �

I

2

)

= Φ(Bij) + Φ(B∗
ij) + Φ(Aij) + Φ(A∗

ij).

Thus, we have shown that

Φ(Aij +Bij) + Φ(A∗
ij +B∗

ij) = Φ(Aij) + Φ(Bij) + Φ(A∗
ij) + Φ(B∗

ij). (2.13)

By an easy computation, we obtain

(Pi +A∗
ij) � (iPj + iBij) �

I

2
= iAij + iBij − iA∗

ij − iB∗
ij .
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Then, we have

Φ(iAij + iBij) + Φ(−iA∗
ij − iB∗

ij) = Φ

(

(Pi +A∗
ij) � (iPj + iBij) �

I

2

)

= Φ(Pi +A∗
ij) � (iPj + iBij) �

I

2
+ (Pi +A∗

ij) �Φ(iPj + iBij) �
I

2

+ (Pi +A∗
ij) � (iPj + iBij) �Φ

(
I

2

)

= (Φ(Pi) + Φ(A∗
ij)) � (iPj + iBij) �

I

2
+ (Pi +A∗

ij) � (Φ(iPj)

+ Φ(iBij)) �
I

2
+ (Pi +A∗

ij) � (iPj + iBij) � Φ
(
I

2

)

= Φ

(

Pi � iBij �
I

2

)

+Φ

(

A∗
ij � iPj �

I

2

)

= Φ(iBij) + Φ(−iB∗
ij) + Φ(iAij) + Φ(−iA∗

ij).

We have shown that

Φ(iAij + iBij) + Φ(−iA∗
ij − iB∗

ij) = Φ(iAij) + Φ(iBij) + Φ(−iA∗
ij) + Φ(−iB∗

ij).

From Claim 3 and the above equation, we have

Φ(Aij +Bij)− Φ(A∗
ij +B∗

ij) = Φ(Bij)− Φ(B∗
ij) + Φ(Aij)− Φ(A∗

ij). (2.14)

By adding equations (2.13) and (2.14), we obtain

Φ(Aij +Bij) = Φ(Aij) + Φ(Bij).

Claim 8. For each Aii, Bii ∈ Aii such that 1 ≤ i ≤ 2, the following equality holds:

Φ(Aii +Bii) = Φ(Aii) + Φ(Bii).

Let us show that

T = Φ(Aii +Bii)− Φ(Aii)− Φ(Bii) = 0.

We have

Φ(Aii +Bii) � Pj � I + (Aii +Bii) �Φ(Pj) � I + (Aii +Bii) � Pj � Φ(I)
= Φ((Aii +Bii) � Pj � I)
= Φ(Aii � Pj � I) + Φ(Bii � Pj � I)
= Φ(Aii) � Pj � I +Aii �Φ(Pj) � I +Aii � Pj � Φ(I) + Φ(Bii) � Pj � I

+Bii � Φ(Pj) � I +Bii � Pj �Φ(I)
= (Φ(Aii) + Φ(Bii)) � Pj � I + (Aii +Bii) � Φ(Pj) � I + (Aii +Bii) � Pj � Φ(I).

Therefore,

T � Pj � I = 0.

Thus, Tij = Tji = Tjj = 0.
On the other hand, for every Cij ∈ Aij , we have

Φ(Aii +Bii) � Cij � I + (Aii +Bii) � Φ(Cij) � I + (Aii +Bii) � Cij �Φ(I)
= Φ((Aii +Bii) � Cij � I)
= Φ(Aii � Cij � I) + Φ(Bii � Cij � I)
= (Φ(Aii) + Φ(Bii)) � Cij � I + (Aii +Bii) � Φ(Cij) � I

+ (Aii +Bii) � Cij �Φ(I).
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Thus, T � Cij � I = 0; then Tii � Cij � I = 0. We have T ∗
iiCij + C∗

ijTii = 0. We know that if A is prime,
then Tii = 0. Hence the additivity of Φ follows from the above claims.

In the rest of this paper, we show that Φ is a ∗-derivation.

Claim 9. Φ preserves stars.

Since Φ(I/2) = 0, we have

Φ

(
I

2
� I

2
�A

)

=
I

2
� I

2
�Φ(A).

Therefore,

Φ(A+A∗) = Φ(A) + Φ(A)∗.

Thus, we have shown that Φ preserves stars.

Claim 10. Φ is a derivation.

For every A,B ∈ A, we have

Φ(AB +A∗B +B∗A+B∗A∗) = Φ(I �A �B)

= I �Φ(A) �B + I �A � Φ(B)

= (Φ(A) + Φ(A)∗) �B + (A+A∗) � Φ(B)

= Φ(A)B +Φ(A)∗B +B∗Φ(A) +B∗Φ(A)∗

+AΦ(B) +A∗Φ(B) + Φ(B)∗A+Φ(B)∗A∗.

Therefore,
Φ(AB +A∗B +B∗A+B∗A∗) = Φ(A)B +Φ(A)∗B +B∗Φ(A) +B∗Φ(A)∗ +AΦ(B)

+A∗Φ(B) + Φ(B)∗A+Φ(B)∗A∗. (2.15)

Also
Φ(AB −A∗B −B∗A+B∗A∗) = Φ(I � (−iA) � iB)

= I �Φ(−iA) � iB + I � (−iA) � Φ(iB)

= Φ(A)B − Φ(A)∗B −B∗Φ(A) +B∗Φ(A)∗

+AΦ(B)−A∗Φ(B)− Φ(B)∗A+Φ(B)∗A∗.

So we have
Φ(AB −A∗B −B∗A+B∗A∗) = Φ(A)B − Φ(A)∗B −B∗Φ(A)

+B∗Φ(A)∗ +AΦ(B)−A∗Φ(B)

− Φ(B)∗A+Φ(B)∗A∗. (2.16)

By adding equations (2.15) and (2.16), we obtain

Φ(AB +B∗A∗) = Φ(A)B +AΦ(B) + Φ(A)∗B∗ +A∗Φ(B)∗. (2.17)

From (2.17), Claims 3 and 9, it follows that

Φ(AB −B∗A∗) = iΦ(A(−iB) + (−iB)∗A∗)

= i(Φ(A)(−iB) +AΦ(−iB) + Φ(A)∗(−iB)∗ +A∗Φ(−iB)∗)

= Φ(A)B +AΦ(B)− Φ(A)∗B∗ −A∗Φ(B)∗.

Therefore,

Φ(AB −B∗A∗) = Φ(A)B +AΦ(B)−Φ(A)∗B∗ −A∗Φ(B)∗. (2.18)

From (2.17) and (2.18), we obtain

Φ(AB) = Φ(A)B +AΦ(B).

This completes the proof.
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