Nonlinear Triple Product A[∗]B + B[∗]A **for Derivations on** ∗**-Algebras***

Vahid Darvish^{1**}, Mojtaba Nouri^{2***}, and Mehran Razeghi^{2****}

1School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, 210044 China

2Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, 47416-1468 Iran

Received September 21, 2019; in final form, February 27, 2020; accepted March 18, 2020

Abstract—Let A be a prime *-algebra. In this paper, assuming that $\Phi : A \rightarrow A$ satisfies

 $\Phi(A \diamond B \diamond C) = \Phi(A) \diamond B \diamond C + A \diamond \Phi(B) \diamond C + A \diamond B \diamond \Phi(C)$

where $A \diamond B = A^*B + B^*A$ for all $A, B \in \mathcal{A}$, we prove that Φ is additive an $*$ -derivation.

DOI: 10.1134/S0001434620070196

Keywords: *triple product derivation, prime* ∗*-algebra, additive map.*

1. INTRODUCTION

Let R be a $*$ -algebra. For $A, B \in \mathcal{R}$, we write $A \bullet B = AB + BA^*$ and $[A, B]_* = AB - BA^*$ for the ∗-Jordan product and ∗-Lie product, respectively. These products play an important role in some research topics, and their study has recently attracted the attention of many authors (for example, see $[1]–[5]$).

Recall that a map $\Phi : \mathcal{R} \to \mathcal{R}$ is said to be an additive derivation if

$$
\Phi(A + B) = \Phi(A) + \Phi(B) \quad \text{and} \quad \Phi(AB) = \Phi(A)B + A\Phi(B)
$$

for all $A, B \in \mathcal{R}$. A map Φ is an additive *-derivation if it is an additive derivation and $\Phi(A^*) = \Phi(A)^*$. Derivations are very important maps both in theory and applications and have been studied intensively $([6]–[11]).$

A *von Neumann algebra* A is a self-adjoint subalgebra of $B(H)$, the algebra of all bounded linear operators acting on a complex Hilbert space, which satisfies the double commutant property: $\mathcal{A}^{''}=\mathcal{A}$ where $\mathcal{A}^{'}=\{T\in B(H),TA=AT\}$ for all $A\in\mathcal{A},$ and $\mathcal{A}^{''}=\{\mathcal{A}^{'}\}^{'}.$ We denote by $\mathcal{Z}(\mathcal{A})=\mathcal{A}^{'}\cap\mathcal{A}$ the center of A . A von Neumann algebra A is called a *factor* if its center is trivial, i.e., $\mathcal{Z}(A) = \mathbb{C}I$. For $A \in \mathcal{A}$, recall that the *central carrier* of A, denoted by \overline{A} , is the smallest central projection P such that $PA = A$. It is not difficult to see that \overline{A} is the projection onto the closed subspace spanned by $\{BAx : B \in \mathcal{A}, x \in H\}$. If A is self-adjoint, then the core of A, denoted by \underline{A} , is $\sup\{S \in \mathcal{Z}(\mathcal{A}): S = S^*, S \leq A\}$. If $A = P$ is a projection, it is clear that P is the largest central projection Q satisfying $Q \le P$. A projection P is said to be *core-free* if $P = 0$ (see [12]). It is easy to see that $P = 0$ if and only if $\overline{I - P} = I$, [13, 14].

Recently, Yu and Zhang in [15] proved that every nonlinear ∗-Lie derivation from a factor von Neumann algebra into itself is an additive ∗-derivation. Also, in [16], Li, Lu, and Fang investigated nonlinear λ -Jordan $*$ -derivations. They showed that if $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ is a von Neumann algebra without central Abelian projections and λ is a nonzero scalar, then $\Phi : A \longrightarrow B(H)$ is a nonlinear λ -Jordan ∗-derivation if and only if Φ is an additive ∗-derivation.

[∗]The article was submitted by the authors for the English version of the journal.

^{**}E-mail: vahid.darvish@mail.com

^{***}E-mail: mojtaba.nori2010@gmail.com

^{****}E-mail: razeghi.mehran19@yahoo.com

180 DARVISH et al.

On the other hand, many mathematicians have studied the $*$ -Jordan product $A \bullet B = AB + BA^*$. In [17], F. Zhang proved that every nonlinear *-Jordan derivation map $\Phi : \mathcal{A} \to \mathcal{A}$ on a factor von Neumann algebra is an additive ∗-derivation.

In [18], we showed that \ast -Jordan derivation map on every factor von Neumann algebra $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ is an additive ∗-derivation.

Quite recently, the authors of [19] discussed some bijective maps preserving the new product $A^*B + B^*A$ between von Neumann algebras with no central Abelian projections. In other words, they considered the map Φ that satisfies the following assumption:

$$
\Phi(A^*B + B^*A) = \Phi(A)^*\Phi(B) + \Phi(B)^*\Phi(A).
$$

They showed that such a map is the sum of a linear ∗-isomorphism and a conjugate linear ∗-isomorphism.

We say that A is *prime*, i.e., if $AAB = \{0\}$ for $A, B \in \mathcal{A}$, then $A = 0$ or $B = 0$.

In [20], we assumed that A is a prime *-algebra and the map $\Phi : \mathcal{A} \to \mathcal{A}$ satisfies the following condition:

$$
\Phi(A \diamond B) = \Phi(A) \diamond B + A \diamond \Phi(B)
$$

where $A \diamond B = A^*B + B^*A$ for all $A, B \in \mathcal{A}$. We proved that, in this case, Φ is an additive *-derivation.

The authors of [21] introduced the concept of \ast -Lie triple derivations. A map $\Phi : \mathcal{A} \to \mathcal{A}$ is a *nonlinear* ∗-*Lie triple derivation* if

$$
\Phi([[A, B]_*, C]_*) = [[\Phi(A), B]_*, C]_* + [[A, \Phi(B)]_*, C]_* + [[A, B]_*, \Phi(C)]_*
$$

for all $A, B, C \in \mathcal{A}$, where $[A, B]_* = AB - BA^*$. They showed that if Φ preserves the above characterization of factor von Neumann algebras, then Φ is an additive $*$ -derivation.

Motivated by the above results, we introduce the triple product $A \diamond B \diamond C := (A \diamond B) \diamond C$, where $A \diamond B = A^*B + B^*A$. In this paper, let A be a prime *-algebra, and let $\Phi : A \to A$ satisfy the following equality:

$$
\Phi(A \diamond B \diamond C) = \Phi(A) \diamond B \diamond C + A \diamond \Phi(B) \diamond C + A \diamond B \diamond \Phi(C)
$$

for all $A, B, C \in \mathcal{A}$. We prove that Φ is an additive $*$ -derivation.

2. MAIN RESULTS

Our main theorem is as follows.

Theorem 1. *Let* A *be a prime* $*$ -algebra, and let $\Phi : A \rightarrow A$ *satisfy the condition*

$$
\Phi(A \diamond B \diamond C) = \Phi(A) \diamond B \diamond C + A \diamond \Phi(B) \diamond C + A \diamond B \diamond \Phi(C)
$$
\n(2.1)

for all $A, B, C \in \mathcal{A}$, then Φ *is an additive* *-*derivation.*

Proof. Let P_1 be a nontrivial projection in A, and let $P_2 = I_A - P_1$. Denote $A_{ij} = P_i AP_j$ for $i,j=1,2;$ then $\mathcal{A}=\sum_{i,j=1}^2\mathcal{A}_{ij}.$ For every $A\in\mathcal{A},$ we can write $A=A_{11}+A_{12}+A_{21}+A_{22}.$ In what follows, when we write A_{ij} , this will indicate that $A_{ij} \in A_{ij}$. In order to show additivity of Φ on A, we apply the above partitions of A and establish some claims that imply that Φ is additive on each \mathcal{A}_{ij} for $i, j = 1, 2.$

Thus, the above theorem is a consequence of the following claims.

Claim 1. $\Phi(0) = 0$.

This claim is easy to prove.

Claim 2. $\Phi(I/2) = 0$, $\Phi(-I/2) = 0$, and $\Phi(iI/2) = 0$.

To show that $\Phi(I/2) = 0$, we write

$$
\Phi\left(\frac{I}{2}\diamond\frac{I}{2}\diamond\frac{I}{2}\right)=\Phi\left(\frac{I}{2}\right)\diamond\frac{I}{2}\diamond\frac{I}{2}+\frac{I}{2}\diamond\Phi\left(\frac{I}{2}\right)\diamond\frac{I}{2}+\frac{I}{2}\diamond\frac{I}{2}\diamond\Phi\left(\frac{I}{2}\right).
$$

Thus,

$$
\Phi\left(\frac{I}{2}\right) = \frac{3}{2}\left(\Phi\left(\frac{I}{2}\right) + \Phi\left(\frac{I}{2}\right)^{*}\right). \tag{2.2}
$$

From (2.2), we deduce that $\Phi(I/2)$ is self-adjoint. Therefore, we have the desired result.

To prove that $\Phi(I/2) = 0$, we write

$$
\Phi\left(\frac{I}{2}\diamond\frac{I}{2}\diamond-\frac{I}{2}\right)=\frac{I}{2}\diamond\frac{I}{2}\diamond\Phi\bigg(-\frac{I}{2}\bigg).
$$

It follows that

$$
\Phi\left(-\frac{I}{2}\right) = \frac{1}{2}\left(\Phi\left(-\frac{I}{2}\right) + \Phi\left(-\frac{I}{2}\right)^*\right). \tag{2.3}
$$

Then

$$
\Phi\left(-\frac{I}{2}\right)^* = \Phi\left(-\frac{I}{2}\right). \tag{2.4}
$$

On the other hand, we have

$$
\Phi\left(\frac{I}{2}\diamond-\frac{I}{2}\diamond-\frac{I}{2}\right)=\frac{I}{2}\diamond\Phi\left(-\frac{I}{2}\right)\diamond\left(-\frac{I}{2}\right)+\frac{I}{2}\diamond-\frac{I}{2}\diamond\Phi\left(-\frac{I}{2}\right)
$$

It follows that

$$
\Phi\left(-\frac{I}{2}\right)^* = -\Phi\left(\frac{-I}{2}\right) \tag{2.5}
$$

Then, from (2.4) and (2.5), we obtain $\Phi(-\frac{I}{2})=0$. To show that $\Phi(i\frac{I}{2})=0$, we write

$$
\Phi\left(i\frac{I}{2}\diamond i\frac{I}{2}\diamond \frac{I}{2}\right)=\Phi\left(i\frac{I}{2}\right)\diamond i\frac{I}{2}\diamond \frac{I}{2}+i\frac{I}{2}\diamond \Phi\left(i\frac{I}{2}\right)\diamond \frac{I}{2}.
$$

Thus,

$$
\Phi\left(i\frac{I}{2}\right)^* - \Phi\left(i\frac{I}{2}\right) = 0.\tag{2.6}
$$

Also, we have

$$
\Phi\left(\frac{I}{2} \diamond \frac{I}{2} \diamond i\frac{I}{2}\right) = \frac{I}{2} \diamond \frac{I}{2} \diamond \Phi\left(i\frac{I}{2}\right).
$$

Thus,

$$
\Phi\left(i\frac{I}{2}\right)^{*} + \Phi\left(i\frac{I}{2}\right) = 0.
$$
\n(2.7)

From (2.6) and (2.7), we obtain $\Phi(i\frac{I}{2}) = 0$.

Claim 3. *Suppose that, for each* $A \in \mathcal{A}$ *,*

- 1. $\Phi(-iA) = -i\Phi(A)$.
- 2. $\Phi(iA) = i\Phi(A)$.

It is easy to see that

$$
\Phi\bigg(-iA \diamond \frac{I}{2} \diamond \frac{I}{2}\bigg) = \Phi\bigg(A \diamond i\frac{I}{2} \diamond \frac{I}{2}\bigg).
$$

Thus,

$$
\Phi(-iA) \diamond \frac{I}{2} \diamond \frac{I}{2} = \Phi(A) \diamond i\frac{I}{2} \diamond \frac{I}{2}.
$$

It follows that

$$
\Phi(-iA)^{*} + \Phi(-iA) = i\Phi(A)^{*} - i\Phi(A).
$$
\n(2.8)

On the other hand, one can check that

$$
\Phi\bigg(-iA \diamond i\frac{I}{2} \diamond \frac{I}{2}\bigg) = \Phi\bigg(-\frac{I}{2} \diamond A \diamond \frac{I}{2}\bigg).
$$

Thus,

$$
\Phi(-iA) \diamond i\frac{I}{2} \diamond \frac{I}{2} = -\frac{I}{2} \diamond \Phi(A) \diamond \frac{I}{2}.
$$

It follows that

$$
i\Phi(-iA)^{*} - i\Phi(-iA) = -\Phi(A) - \Phi(A)^{*}.
$$
\n(2.9)

Equivalently, we have

$$
-\Phi(-iA)^{*} + \Phi(-iA) = -i\Phi(A) - i\Phi(A)^{*}.
$$
\n(2.10)

By adding equeations (2.8) and (2.10) , we obtain

$$
\Phi(-iA) = -i\Phi(A).
$$

Similarly, we can show that $\Phi(iA) = i\Phi(A)$.

Claim 4. *For each* $A_{11} \in A_{11}$, $A_{12} \in A_{12}$, the following equality holds:

 $\Phi(A_{11} + A_{12}) = \Phi(A_{11}) + \Phi(A_{12}).$

Setting
$$
T = \Phi(A_{11} + A_{12}) - \Phi(A_{11}) - \Phi(A_{12})
$$
 let us prove that $T = 0$. We have
\n
$$
\Phi(A_{11} + A_{12}) \diamond C_{21} \diamond I + (A_{11} + A_{12}) \diamond \Phi(C_{21}) \diamond I + (A_{11} + A_{12}) \diamond C_{21} \diamond \Phi(I)
$$
\n
$$
= \Phi(A_{11} + A_{12} \diamond C_{21} \diamond I)
$$
\n
$$
= \Phi(A_{11} \diamond C_{21} \diamond I) + \Phi(A_{12} \diamond C_{21} \diamond I)
$$
\n
$$
= \Phi(A_{11}) \diamond C_{21} \diamond I + A_{11} \diamond \Phi(C_{21}) \diamond I + A_{11} \diamond C_{21} \diamond \Phi(I) + \Phi(A_{12}) \diamond C_{21} \diamond I
$$
\n
$$
+ A_{12} \diamond \Phi(C_{21}) \diamond I + A_{12} \diamond C_{21} \diamond \Phi(I)
$$
\n
$$
= (\Phi(A_{11}) + \Phi(A_{12})) \diamond C_{21} \diamond I + (A_{11} + A_{12}) \diamond \Phi(C_{21}) \diamond I + (A_{11} + A_{12}) \diamond C_{21} \diamond \Phi(I).
$$

Since $T_{11} + T_{12} + T_{21} + T_{22}$, it follows that

$$
T_{22}^*C_{21} + T_{21}^*C_{21} + C_{21}^*T_{22} + C_{21}^*T_{21} = 0.
$$

So
$$
T_{22} = T_{21} = 0
$$
. Similarly, we have
\n
$$
\Phi(A_{11} + A_{12}) \diamond C_{12} \diamond P_1 + (A_{11} + A_{12}) \diamond \Phi(C_{12}) \diamond P_1 + (A_{11} + A_{12}) \diamond C_{12} \diamond \Phi(P_1)
$$
\n
$$
= \Phi((A_{11} + A_{12}) \diamond C_{12} \diamond P_1)
$$
\n
$$
= \Phi(A_{11} \diamond C_{12} \diamond P_1) + \Phi(A_{12} \diamond C_{12} \diamond P_1)
$$
\n
$$
= (\Phi(A_{11}) + \Phi(A_{12})) \diamond C_{12} \diamond P_1 + (A_{11} + A_{12}) \diamond \Phi(C_{12}) \diamond P_1 + (A_{11} + A_{12}) \diamond C_{12} \diamond \Phi(P_1).
$$

Therefore, $T \diamond C_{12} \diamond P_1 = 0$. So $T_{11}^* C_{12} + C_{12}^* T_{11} = 0$. It follows that $T_{11}^* C_{12} = 0$. Hence, for all $C \in \mathcal{A}$, we have $T_{11}^*CP_2 = 0$. Since A is prime, it follows that $T_{11} = 0$. Similarly, we can show that $T_{12} = 0$ by applying $\overline{P_2}$ instead of P_1 in the above.

Claim 5. *For each* A_{11} ∈ A_{11} , A_{12} ∈ A_{12} , A_{21} ∈ A_{21} , and A_{22} ∈ A_{22} ,

$$
1. \ \Phi(A_{11} + A_{12} + A_{21}) = \Phi(A_{11}) + \Phi(A_{12}) + \Phi(A_{21}).
$$

2.
$$
\Phi(A_{12} + A_{21} + A_{22}) = \Phi(A_{12}) + \Phi(A_{21}) + \Phi(A_{22}).
$$

Then

$$
T = \Phi(A_{11} + A_{12} + A_{21}) - \Phi(A_{11}) - \Phi(A_{12}) - \Phi(A_{21}) = 0.
$$

From Claim 4, we obtain

$$
\Phi(A_{11} + A_{12} + A_{21}) \diamond C_{21} \diamond I + (A_{11} + A_{12} + A_{21}) \diamond \Phi(C_{21}) \diamond I + (A_{11} + A_{12} + A_{21}) \diamond C_{21} \diamond \Phi(I)
$$
\n
$$
= \Phi(A_{11} + A_{21} + A_{12} \diamond C_{21} \diamond I)
$$
\n
$$
= \Phi(A_{11} \diamond C_{21} \diamond I) + \Phi(A_{21} \diamond C_{21} \diamond I) + \Phi(A_{12} \diamond C_{21} \diamond I)
$$
\n
$$
= (\Phi(A_{11}) + \Phi(A_{12}) + \Phi(A_{21})) \diamond C_{21} \diamond I + (A_{11} + A_{12} + A_{21}) \diamond \Phi(C_{21}) \diamond I
$$
\n
$$
+ (A_{11} + A_{12} + A_{21}) \diamond C_{21} \diamond \Phi(I).
$$

It follows that $T \circ C_{21} \circ I = 0$. Since $T = T_{11} + T_{12} + T_{21} + T_{22}$, we have

$$
T_{22}^*C_{21} + T_{21}^*C_{21} + C_{21}^*T_{22} + C_{21}^*T_{21} = 0.
$$

Therefore,
$$
T_{22} = T_{21} = 0
$$
. From Claim 4, we obtain
\n
$$
\Phi(A_{11} + A_{12} + A_{21}) \diamond P_1 \diamond P_1 + (A_{11} + A_{12} + A_{21}) \diamond \Phi(P_1) \diamond P_1 + (A_{11} + A_{12} + A_{21}) \diamond P_1 \diamond \Phi(P_1)
$$
\n
$$
= \Phi((A_{11} + A_{12} + A_{21}) \diamond P_1 \diamond P_1)
$$
\n
$$
= \Phi(A_{11} \diamond P_1 \diamond P_1) + \Phi(A_{12} \diamond P_1 \diamond P_1) + \Phi(A_{21} \diamond P_1 \diamond P_1)
$$
\n
$$
= (\Phi(A_{11}) + \Phi(A_{12}) + \Phi(A_{21})) \diamond P_1 \diamond P_1 + (A_{11} + A_{12} + A_{21}) \diamond \Phi(P_1) \diamond P_1
$$
\n
$$
+ (A_{11} + A_{12} + A_{21}) \diamond P_1 \diamond \Phi(P_1).
$$

So $T \diamond P_1 \diamond P_1 = 0$ Then $2T_{11} + 2T_{11}^* + T_{12} + T_{12}^* = 0$. Therefore,

$$
T_{12} = 0, T_{11} + T_{11}^* = 0.
$$
\n(2.11)

Using Claim 3 and Claim 4, we obtain

$$
\Phi(A_{11} + A_{12} + A_{21}) \diamond iP_1 \diamond I + (A_{11} + A_{12} + A_{21}) \diamond \Phi(iP_1) \diamond I + (A_{11} + A_{12} + A_{21}) \diamond iP_1 \diamond \Phi(I)
$$
\n
$$
= \Phi(A_{11} + A_{12} \diamond iP_1 \diamond I) + \Phi(A_{21} \diamond iP_1 \diamond I)
$$
\n
$$
= \Phi(A_{11} \diamond iP_1 \diamond I) + \Phi(A_{12} \diamond iP_1 \diamond I) + \Phi(A_{21} \diamond iP_1 \diamond I)
$$
\n
$$
= \Phi(A_{11}) \diamond iP_1 \diamond I + A_{11} \diamond \Phi(iP_1) \diamond I + A_{11} \diamond iP_1 \diamond \Phi(I)
$$
\n
$$
+ \Phi(A_{12}) \diamond iP_1 \diamond I + A_{12} \diamond \Phi(iP_1) \diamond I + A_{12} \diamond iP_1 \diamond \Phi(I)
$$
\n
$$
+ \Phi(A_{21}) \diamond iP_1 \diamond I + A_{21} \diamond \Phi(iP_1) \diamond I + A_{21} \diamond iP_1 \diamond \Phi(I)
$$
\n
$$
= (\Phi(A_{11}) + \Phi(A_{12}) + \Phi(A_{21})) \diamond iP_1 \diamond I + (A_{11} + A_{12} + A_{21}) \diamond \Phi(iP_1) \diamond I
$$
\n
$$
+ (A_{11} + A_{12} + A_{21}) \diamond iP_1 \diamond \Phi(I).
$$

Thus, $T \circ iP_1 \circ I = 0$. We obtain

$$
T_{11} - T_{11}^* = 0. \t\t(2.12)
$$

Relations (2.11) and (2.12) imply $T_{11} = 0$. Similarly, we can show that

 $\Phi(A_{12} + A_{21} + A_{22}) = \Phi(A_{12}) + \Phi(A_{21}) + \Phi(A_{22}).$

Claim 6. *For each* A_{11} ∈ A_{11} , A_{12} ∈ A_{12} , A_{21} ∈ A_{21} , and A_{22} ∈ A_{22} ,

 $\Phi(A_{11} + A_{12} + A_{21} + A_{22}) = \Phi(A_{11}) + \Phi(A_{12}) + \Phi(A_{21}) + \Phi(A_{22}).$

Then

$$
T = \Phi(A_{11} + A_{12} + A_{21} + A_{22}) - \Phi(A_{11}) - \Phi(A_{12}) - \Phi(A_{21}) - \Phi(A_{22}) = 0.
$$

From Claim 5, we obtain

$$
\Phi(A_{11} + A_{12} + A_{21} + A_{22}) \diamond C_{12} \diamond I + (A_{11} + A_{12} + A_{21} + A_{22}) \diamond \Phi(C_{12}) \diamond I \n+ (A_{11} + A_{12} + A_{21} + A_{22}) \diamond C_{12} \diamond \Phi(I) \n= \Phi((A_{11} + A_{12} + A_{21} + A_{22}) \diamond C_{12} \diamond I)
$$
\n
$$
= \Phi((A_{11} + A_{12} + A_{21}) \diamond C_{12} \diamond I) + \Phi(A_{22} \diamond C_{12} \diamond I) \n= \Phi(A_{11} \diamond C_{12} \diamond I) + \Phi(A_{12} \diamond C_{12} \diamond I) + \Phi(A_{21} \diamond C_{12} \diamond I) + \Phi(A_{22} \diamond C_{12} \diamond I)
$$
\n
$$
= (\Phi(A_{11}) + \Phi(A_{12}) + \Phi(A_{21}) + \Phi(A_{22})) \diamond C_{12} \diamond I \n+ (A_{11} + A_{12} + A_{21} + A_{22}) \diamond \Phi(C_{12}) \diamond I \n+ (A_{11} + A_{12} + A_{21} + A_{22}) \diamond C_{12} \diamond \Phi(I).
$$

Thus, $T \diamond C_{12} \diamond I = 0$. It follows that

$$
C_{12}^*T_{11} + C_{12}^*T_{12} + T_{11}^*C_{12} + T_{12}^*C_{12} = 0.
$$

Therefore, $T_{11} = T_{12} = 0$. Similarly, by applying C_{21} instead of C_{12} in the above, we obtain $T_{21} = T_{22} = 0.$

Claim 7. *For each* $A_{ij}, B_{ij} \in A_i$ *such that* $i \neq j$ *, the following equality holds:*

$$
\Phi(A_{ij} + B_{ij}) = \Phi(A_{ij}) + \Phi(B_{ij}).
$$

It is easy to show that

$$
(P_i + A_{ij}^*) \diamond (P_j + B_{ij}) \diamond \frac{I}{2} = A_{ij} + B_{ij} + A_{ij}^* + B_{ij}^*.
$$

Thus, we can write

$$
\Phi(A_{ij} + B_{ij}) + \Phi(A_{ij}^* + B_{ij}^*) = \Phi\left((P_i + A_{ij}^*) \diamond (P_j + B_{ij}) \diamond \frac{I}{2}\right)
$$

\n
$$
= \Phi(P_i + A_{ij}^*) \diamond (P_j + B_{ij}) \diamond \frac{I}{2} + (P_i + A_{ij}^*) \diamond \Phi(P_j + B_{ij}) \diamond \frac{I}{2}
$$

\n
$$
+ (P_i + A_{ij}^*) \diamond (P_j + B_{ij}) \diamond \Phi\left(\frac{I}{2}\right)
$$

\n
$$
= (\Phi(P_i) + \Phi(A_{ij}^*)) \diamond (P_j + B_{ij}) \diamond \frac{I}{2} + (P_i + A_{ij}^*) \diamond (\Phi(P_j) + \Phi(B_{ij})) \diamond \frac{I}{2} + (P_i + A_{ij}^*) \diamond (\Phi(P_j) + \Phi(B_{ij})) \diamond \frac{I}{2} + (P_i + A_{ij}^*) \diamond (P_j + B_{ij}) \diamond \Phi\left(\frac{I}{2}\right)
$$

\n
$$
= \Phi\left(P_i \diamond B_{ij} \diamond \frac{I}{2}\right) + \Phi\left(A_{ij}^* \diamond P_j \diamond \frac{I}{2}\right)
$$

\n
$$
= \Phi(B_{ij}) + \Phi(B_{ij}^*) + \Phi(A_{ij}) + \Phi(A_{ij}^*)
$$

Thus, we have shown that

$$
\Phi(A_{ij} + B_{ij}) + \Phi(A_{ij}^* + B_{ij}^*) = \Phi(A_{ij}) + \Phi(B_{ij}) + \Phi(A_{ij}^*) + \Phi(B_{ij}^*).
$$
\n(2.13)

By an easy computation, we obtain

$$
(P_i + A_{ij}^*) \diamond (iP_j + iB_{ij}) \diamond \frac{I}{2} = iA_{ij} + iB_{ij} - iA_{ij}^* - iB_{ij}^*.
$$

Then, we have

$$
\Phi(iA_{ij} + iB_{ij}) + \Phi(-iA_{ij}^* - iB_{ij}^*) = \Phi\left((P_i + A_{ij}^*) \diamond (iP_j + iB_{ij}) \diamond \frac{I}{2}\right)
$$

\n
$$
= \Phi(P_i + A_{ij}^*) \diamond (iP_j + iB_{ij}) \diamond \frac{I}{2} + (P_i + A_{ij}^*) \diamond \Phi(iP_j + iB_{ij}) \diamond \frac{I}{2}
$$

\n
$$
+ (P_i + A_{ij}^*) \diamond (iP_j + iB_{ij}) \diamond \Phi\left(\frac{I}{2}\right)
$$

\n
$$
= (\Phi(P_i) + \Phi(A_{ij}^*)) \diamond (iP_j + iB_{ij}) \diamond \frac{I}{2} + (P_i + A_{ij}^*) \diamond (\Phi(iP_j) + \Phi(iB_{ij})) \diamond \frac{I}{2} + (P_i + A_{ij}^*) \diamond (\Phi(iP_j) + \Phi(iB_{ij})) \diamond \frac{I}{2} + (P_i + A_{ij}^*) \diamond (iP_j + iB_{ij}) \diamond \Phi\left(\frac{I}{2}\right)
$$

\n
$$
= \Phi\left(P_i \diamond iB_{ij} \diamond \frac{I}{2}\right) + \Phi\left(A_{ij}^* \diamond iP_j \diamond \frac{I}{2}\right)
$$

\n
$$
= \Phi(iB_{ij}) + \Phi(-iB_{ij}^*) + \Phi(iA_{ij}) + \Phi(-iA_{ij}^*).
$$

We have shown that

$$
\Phi(iA_{ij} + iB_{ij}) + \Phi(-iA_{ij}^* - iB_{ij}^*) = \Phi(iA_{ij}) + \Phi(iB_{ij}) + \Phi(-iA_{ij}^*) + \Phi(-iB_{ij}^*).
$$

From Claim 3 and the above equation, we have

$$
\Phi(A_{ij} + B_{ij}) - \Phi(A_{ij}^* + B_{ij}^*) = \Phi(B_{ij}) - \Phi(B_{ij}^*) + \Phi(A_{ij}) - \Phi(A_{ij}^*).
$$
\n(2.14)

By adding equations (2.13) and (2.14), we obtain

$$
\Phi(A_{ij} + B_{ij}) = \Phi(A_{ij}) + \Phi(B_{ij}).
$$

Claim 8. *For each* A_{ii} , $B_{ii} \in A_{ii}$ *such that* $1 \le i \le 2$ *, the following equality holds:* $\Phi(A_{ii} + B_{ii}) = \Phi(A_{ii}) + \Phi(B_{ii}).$

Let us show that

$$
T = \Phi(A_{ii} + B_{ii}) - \Phi(A_{ii}) - \Phi(B_{ii}) = 0.
$$

We have

$$
\Phi(A_{ii} + B_{ii}) \diamond P_j \diamond I + (A_{ii} + B_{ii}) \diamond \Phi(P_j) \diamond I + (A_{ii} + B_{ii}) \diamond P_j \diamond \Phi(I)
$$
\n
$$
= \Phi((A_{ii} + B_{ii}) \diamond P_j \diamond I)
$$
\n
$$
= \Phi(A_{ii} \diamond P_j \diamond I) + \Phi(B_{ii} \diamond P_j \diamond I)
$$
\n
$$
= \Phi(A_{ii}) \diamond P_j \diamond I + A_{ii} \diamond \Phi(P_j) \diamond I + A_{ii} \diamond P_j \diamond \Phi(I) + \Phi(B_{ii}) \diamond P_j \diamond I
$$
\n
$$
+ B_{ii} \diamond \Phi(P_j) \diamond I + B_{ii} \diamond P_j \diamond \Phi(I)
$$
\n
$$
= (\Phi(A_{ii}) + \Phi(B_{ii})) \diamond P_j \diamond I + (A_{ii} + B_{ii}) \diamond \Phi(P_j) \diamond I + (A_{ii} + B_{ii}) \diamond P_j \diamond \Phi(I).
$$

Therefore,

$$
T \diamond P_j \diamond I = 0.
$$

Thus, $T_{ij} = T_{ji} = T_{jj} = 0$.

On the other hand, for every $C_{ij} \in \mathcal{A}_{ij}$, we have

$$
\Phi(A_{ii} + B_{ii}) \diamond C_{ij} \diamond I + (A_{ii} + B_{ii}) \diamond \Phi(C_{ij}) \diamond I + (A_{ii} + B_{ii}) \diamond C_{ij} \diamond \Phi(I)
$$

=
$$
\Phi((A_{ii} + B_{ii}) \diamond C_{ij} \diamond I)
$$

=
$$
\Phi(A_{ii} \diamond C_{ij} \diamond I) + \Phi(B_{ii} \diamond C_{ij} \diamond I)
$$

=
$$
(\Phi(A_{ii}) + \Phi(B_{ii})) \diamond C_{ij} \diamond I + (A_{ii} + B_{ii}) \diamond \Phi(C_{ij}) \diamond I
$$

+
$$
(A_{ii} + B_{ii}) \diamond C_{ij} \diamond \Phi(I).
$$

Thus, $T \diamond C_{ij} \diamond I = 0$; then $T_{ii} \diamond C_{ij} \diamond I = 0$. We have $T_{ii}^* C_{ij} + C_{ij}^* T_{ii} = 0$. We know that if A is prime, then $T_{ii} = 0$. Hence the additivity of Φ follows from the above claims.

In the rest of this paper, we show that Φ is a $*$ -derivation.

Claim 9. Φ *preserves stars.*

Since $\Phi(I/2) = 0$, we have

$$
\Phi\left(\frac{I}{2}\diamond\frac{I}{2}\diamond A\right)=\frac{I}{2}\diamond\frac{I}{2}\diamond\Phi(A).
$$

Therefore,

$$
\Phi(A + A^*) = \Phi(A) + \Phi(A)^*.
$$

Thus, we have shown that Φ preserves stars.

Claim 10. Φ *is a derivation.*

For every
$$
A, B \in \mathcal{A}
$$
, we have
\n
$$
\Phi(AB + A^*B + B^*A + B^*A^*) = \Phi(I \diamond A \diamond B)
$$
\n
$$
= I \diamond \Phi(A) \diamond B + I \diamond A \diamond \Phi(B)
$$
\n
$$
= (\Phi(A) + \Phi(A)^*) \diamond B + (A + A^*) \diamond \Phi(B)
$$
\n
$$
= \Phi(A)B + \Phi(A)^*B + B^*\Phi(A) + B^*\Phi(A)^*
$$
\n
$$
+ A\Phi(B) + A^*\Phi(B) + \Phi(B)^*A + \Phi(B)^*A^*.
$$

Therefore,

$$
\Phi(AB + A^*B + B^*A + B^*A^*) = \Phi(A)B + \Phi(A)^*B + B^*\Phi(A) + B^*\Phi(A)^* + A\Phi(B)
$$

+ $A^*\Phi(B) + \Phi(B)^*A + \Phi(B)^*A^*.$ (2.15)

Also

$$
\Phi(AB - A^*B - B^*A + B^*A^*) = \Phi(I \diamond (-iA) \diamond iB)
$$

= $I \diamond \Phi(-iA) \diamond iB + I \diamond (-iA) \diamond \Phi(iB)$
= $\Phi(A)B - \Phi(A)^*B - B^*\Phi(A) + B^*\Phi(A)^*$
+ $A\Phi(B) - A^*\Phi(B) - \Phi(B)^*A + \Phi(B)^*A^*.$

So we have

$$
\Phi(AB - A^*B - B^*A + B^*A^*) = \Phi(A)B - \Phi(A)^*B - B^*\Phi(A) \n+ B^*\Phi(A)^* + A\Phi(B) - A^*\Phi(B) \n- \Phi(B)^*A + \Phi(B)^*A^*.
$$
\n(2.16)

By adding equations (2.15) and (2.16), we obtain

$$
\Phi(AB + B^*A^*) = \Phi(A)B + A\Phi(B) + \Phi(A)^*B^* + A^*\Phi(B)^*.
$$
\n(2.17)

From (2.17), Claims 3 and 9, it follows that

$$
\Phi(AB - B^*A^*) = i\Phi(A(-iB) + (-iB)^*A^*)
$$

= $i(\Phi(A)(-iB) + A\Phi(-iB) + \Phi(A)^*(-iB)^* + A^*\Phi(-iB)^*)$
= $\Phi(A)B + A\Phi(B) - \Phi(A)^*B^* - A^*\Phi(B)^*.$

Therefore,

$$
\Phi(AB - B^*A^*) = \Phi(A)B + A\Phi(B) - \Phi(A)^*B^* - A^*\Phi(B)^*.
$$
\n(2.18)

From (2.17) and (2.18) , we obtain

$$
\Phi(AB) = \Phi(A)B + A\Phi(B).
$$

This completes the proof.

MATHEMATICAL NOTES Vol. 108 No. 2 2020

 \Box

FUNDING

The research of the first author was supported by the Talented Young Scientist Program of the Ministry of Science and Technology of China (Iran-19-001).

REFERENCES

- 1. J. Cui and C. K. Li, "Maps preserving product $XY YX^*$ on factor von Neumann algebras," Linear Algebra Appl. **431**, 833–842 (2009).
- 2. V. Darvish, H. M. Nazari, H. Rohi, and A. Taghavi, "Maps preserving η -product $A^*B + \eta BA^*$ on C∗-algebras," J. Korean Math. Soc. **54**, 867–876 (2017).
- 3. C. Li, F. Lu, and X. Fang, "Nonlinear mappings preserving product $XY + YX^*$ on factor von Neumann algebras," Linear Algebra Appl. **438**, 2339–2345 (2013).
- 4. L. Molnár, "A condition for a subspace of $B(H)$ to be an ideal," Linear Algebra Appl. $235, 229-234$ (1996).
- 5. A. Taghavi, V. Darvish, and H. Rohi, "Additivity of maps preserving products $AP \pm PA^*$ on C^* -algebras," Mathematica Slovaca **67**, 213–220 (2017).
- 6. E. Christensen, "Derivations of nest algebras," Ann. Math. **229**, 155–161 (1977).
- 7. V. Darvish, M. Nouri, M. Razeghi, and A. Taghavi, "Maps preserving Jordan and ∗-Jordan triple product on operator ∗-algebras," Bull. Korean Math. Soc. **56** (2), 451–459 (2019).
- 8. S. Sakai, "Derivations of W∗-algebras," Ann. Math. **83**, 273–279 (1966).
- 9. P. Semrl, ˇ "Additive derivations of some operator algebras," Illinois J. Math. **35**, 234–240 (1991).
- 10. P. Semrl, ˇ "Ring derivations on standard operator algebras," J. Funct. Anal. **112**, 318–324 (1993).
- 11. A. Taghavi, M. Nouri, M. Razeghi, and V. Darvish, "Nonlinear λ-Jordan triple ∗-derivation on prime ∗-algebras," Rocky Mountain J. Math. **48** (8), 2705–2716 (2018).
- 12. C. R. Miers, "Lie homomorphisms of operator algebras," Pacific J Math. **38**, 717–735 (1971).
- 13. R. V. Kadison and J. R. Ringrose, *Fundamentals of the Theory of Operator Algebras.* I (Academic Press, New York, 1983).
- 14. R. V. Kadison and J. R. Ringrose, *Fundamentals of the Theory of Operator Algebras.* II (Academic Press, New York, 1986).
- 15. W. Yu and J. Zhang, "Nonlinear ∗-Lie derivations on factor von Neumann algebras," Linear Algebra Appl. **437**, 1979–1991 (2012).
- 16. C. Li, F. Lu, and X. Fang, "Nonlinear ξ-Jordan ∗-derivations on von Neumann algebras," Linear and Multilinear Algebra **62**, 466–473 (2014).
- 17. F. Zhang, "Nonlinear skew Jordan derivable maps on factor von Neumann algebras," Linear Multilinear Algebra **64**, 2090–2103 (2016).
- 18. A. Taghavi, H. Rohi, and V. Darvish, "Nonlinear ∗-Jordan derivations on von Neumann algebras," Linear Multilinear Algebra **64**, 426–439 (2016).
- 19. C. Li, F. Zhao, and Q. Chen, "Nonlinear maps preserving product X[∗]Y + Y [∗]X on von Neumann algebras," Bull. Iran. Math. Soc. **44** (3), 729–738 (2018).
- 20. V. Darvish, M. Nouri, and M. Razeghi, "Nonlinear new product derivations on ∗-algebras" (in press).
- 21. C. Li, F. Zhao, and Q. Chen, "Nonlinear skew Lie triple derivations between factors," Acta Mathematica Sinica **32**, 821–830 (2016).