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1. INTRODUCTION

In the theory of degree a fundamental role is played by the Hopf theorems about the homotopy
classification of continuous vector fields and about the extension of a vector field without singular points.
The statements and proofs of these theorems, as well as some of their generalizations, can be found,
e.g., in [1] and [2]. Most important for our purposes are the versions of the Hopf theorems for the relative
degree of a completely continuous map leaving invariant a closed convex set, which were proved in [2].

The notion of relative topological degree [1]–[5] is used in studying variational inequalities. The
variational inequality problem is usually stated as follows. Given a Banach space X and a closed convex
subset Q of X, let F be a (generally nonlinear) operator mapping X to the dual space X∗. To solve the
variational inequality means to find an element u of Q such that 〈v − u, F (u)〉 ≥ 0 for all v in Q.

Some authors studied variational inequalities by topological methods based on the notion of relative
topological degree of a multivalued vector field; we mention only the papers [6]–[8], which are closest in
the methods used. The topological methods have made it possible to more thoroughly study the question
of the number of solutions of variational inequalities and the convergence of the Galerkin method and
analyze the penalty method, which assigns a set of simpler operator inclusions to a given variational
inequality. At the same time, the potential of the theory of relative topological degree is far from being
completely exploited. The main reasons for this are both the insufficient knowledge of the qualitative
properties of the corresponding characteristics and the lack of efficient algorithms for calculating them.

In the first section, we introduce two classes of maps of monotone type. The author believes that the
properties of maps established in this section have not been recorded and are of independent interest.
The second section is devoted to the definition of approximate rotation arising in the study of variational
inequalities. Properties of approximate rotation are similar to the properties of the relative topological
degree of multivalued maps that were described in [5]. The main results of the paper are gathered in the
third section, in which analogs of the Hopf theorems about the extension of continuous maps without
singular points and the homotopy classification of continuous vector fields are proved. In the concluding
section, we study variational inequalities with a parameter and equivalent operator inclusions. We
essentially employ the homotopy invariance of approximate rotation and the infinite-dimensional version
of the Poincaré–Hopf theorem.

We use the following notation:

• M (M̊ , ∂M ) is the closure (interior, boundary) of a subset M of a metric space (R, ρ);
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• dR(x,M) = inf{ρ(x, y), y ∈ M} is the distance from a point x to a set M in the metric ρ, and

dist(M1,M2) = inf{ρ(x1, x2)},
where x1 ∈ M1 and x2 ∈ M2, is the distance between subsets M1 and M2 of the metric space R;

• the metric ρ on a Banach space X with norm ‖x‖ is defined by ρ(x, y) = ‖x− y‖;

• Cv(X) (Kv(X)) is the set of nonempty closed (compact) convex subsets of a Banach space X;

• X∗ is the space dual to X, 〈x, x∗〉 is the canonical bilinear form on X ×X∗, and

s(x∗,D) = sup{〈x, x∗〉, x ∈ D}
is the support function of a set D ⊂ X;

• Γ(X) is the set of finite-dimensional subspaces of X.

Given C ∈ Cv(X) and x ∈ C, the sets

TC(x) =
⋃

h>0

h(C − x) and NC(x) = {x∗ ∈ X∗, 〈v − x, x∗〉 ≤ 0 ∀ v ∈ C}

are called, respectively, the tangent and the normal cone to the set C at the point x. The convex hull
of a set M ⊂ X is denoted by coM . All Banach spaces under consideration are over the field R of real
numbers.

A multivalued map F from a set D1 to a set D2 is an operator assigning a nonempty set F (x) ⊂ D2

to each element x of D1; the set F (D) = ∪F (x), x ∈ D , is called the image of F on D ⊂ D1; the set

F−1(D0) = {x ∈ D1, F (x) ∩ D0 �= ∅}
is the inverse image of D0 ⊂ D2; and the set

Gr(F ) = {(x, y) ∈ D1 × D2, x ∈ D1, y ∈ F (x)}
is the graph of the map F . A multivalued map F from a topological space X1 to a topological space X2

is upper (lower) semicontinuous if the inverse image F−1(V ) of any closed (respectively, open) set
V ⊂ X2 is closed (respectively, open) in X; a multivalued map F : X1 → X2 is closed if its graph
is a closed subset of the Cartesian product X1 ×X2 of the spaces X1 and X2. A multivalued map
F : D → Y from a subset D of a Banach space X to a Banach space Y is said to be bounded if the
image F (M) of any bounded set M ⊂ D is a bounded subset of Y . The formula F : D → Cv(Y )
means that F (x) ∈ Cv(Y ) for any x in D ; the meaning of F : D → Kv(Y ) is similar.

2. MULTIVALUED MAPS OF MONOTONE TYPE

Throughout the paper, X is a separable reflexive Banach space, ‖x‖ and ‖y‖∗ are the norms on X and
on its dual X∗, and the symbols → and ⇀ denote, respectively, strong and weak convergence. Given a
closed subset M of X, by S(M) we denote the set of multivalued maps F : M → Cv(X∗) satisfying the
following condition:

(α) if sequences xn ∈ M and yn ∈ F (xn) have the properties

xn ⇀ x, yn ⇀ y, lim
n→∞

〈xn, yn〉 ≤ 〈x, y〉, (1)

then

xn → x, y ∈ F (x). (2)

Condition (α) means that the map F is closed in a certain strong sense. Such operators have been
studied by many authors (see, e.g., [9]–[11] and the references therein).

In the sequel, by S0(M) we denote the set of multivalued maps F : M → Cv(X∗) satisfying the
following condition:
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(α0) if sequences xn ∈ M and yn ∈ F (xn) have properties (1), then

x ∈ M, y ∈ F (x), lim
n→∞

〈xn, yn〉 = 〈x, y〉. (3)

Following [12], we refer to maps in the class S0(M) as pseudomonotone.

Condition (α) implies (α0); therefore, S(M) ⊂ S0(M). For a finite-dimensional space X, the
classes S(M) and S0(M) coincide and consist of upper semicontinuous maps F : M → Kv(X∗). For
an infinite-dimensional space X, these classes are already different.

We mention some properties of multivalued maps in the classes defined above. Any pseudomonotone
multivalued map F is upper quasi-continuous in the sense that the function

(v, x) → s(v, F (x)) = max{〈v, y〉, y ∈ F (x)}
is jointly upper semicontinuous in the variables v ∈ X and x ∈ M . The sum F + F0 of a multivalued
map F in the class S(M) and a multivalued map F0 in the class S0(M) belongs to S(M). We say that a
multivalued map F1 : M1 → X∗ is a closed part of a multivalued map F : M → X∗ if the graph Gr(F1)
is a subset of Gr(F ) closed in the topology on X ×X∗ generated by the strong topology on X and
the weak topology on X∗. Any closed part of a multivalued map in the class S(M) belongs to the
class S(M1).

Let M × T be the Cartesian product of a closed set M ⊂ X and a compact metric space T , and let
F be a multivalued map from M × T to Cv(X∗). We set RBX = {x ∈ X, ‖x‖ ≤ R}. We say that the
multivalued map F belongs to a class S(M × T ) if

(I) F is bounded on each set of the form (M ∩RBX)× T for any R < ∞;

(II) the following parametric version of condition (α) holds: if

xn ∈ M, tn ∈ T, yn ∈ F (xn, tn), tn → t in the metric of T ,

and sequences xn and yn have properties (1), then xn → x and y ∈ F (x, t).

The convexification of a multivalued map F : M × T → Cv(X∗) is the multivalued map

F : M → Cv(X∗) defined by F (x) = co

( ⋃

t∈T
F (x, t)

)
. (4)

The support function s(v, F (x)) = max{〈v, y〉, y ∈ F (x)} of each set F (x) is related to the support
functions of the sets F (x, t) by

s(v, F (x)) = sup{s(v,F (x, t)), t ∈ T}. (5)

Relations (4) and (5) are equivalent.

Lemma 1. The convexification of a multivalued map in the class S(M × T ) is a multivalued map
in the class S(M).

Proof. Let F ∈ S(M,T ), and let F be the multivalued map defined by (4). It is easy to verify that
F (x) ∈ Cv(X∗) for all x ∈ M and F is bounded on each bounded subset of M . Let us check that F
satisfies condition (α). Fix sequences xn ∈ M and yn ∈ F (xn) and elements x and y with properties (1).
Relations (1) and (4) imply the inequality

〈xn − x, yn〉 ≥ inf{〈xn − x, u〉, u ∈ F (xn, t), t ∈ T};
hence there exist tn ∈ T and un ∈ F (xn, tn) such that

〈xn − x, yn〉 ≥ 〈xn − x, un〉 −
1

n
. (6)
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We can assume without loss of generality that tn → t in the metric space T and un ⇀ u. By virtue of (1)
and (6), we have

lim
n→∞

〈xn, un〉 ≤ 〈x, u〉.

This inequality implies the convergence xn → x, because F ∈ S(M × T ).
To complete the proof, it remains to show that y ∈ F (x). Fix an element v in X and, for each positive

integer n, choose a parameter tn in T so that s(v, F (xn)) ≤ s(v,F (xn, tn)) + 1/n. There exists a zn
in F (xn, tn) for which s(v,F (xn, tn)) = 〈v, zn〉. We can assume without loss of generality that tn → t
in the metric of T and zn ⇀ z. Since xn → x, it follows that

lim
n→∞

〈xn, zn〉 = 〈x, z〉.

These properties of the sequences xn, zn, and tn imply z ∈ F (x, t), because F belongs to the
class S(M × T ). We have

〈v, y〉 = lim
n→∞

〈v, yn〉 ≤ lim
n→∞

s(v, F (xn)) ≤ lim
n→∞

s(v,F (xn, tn))

= lim
n→∞

〈v, zn〉 = 〈v, z〉 ≤ s(v,F (x, t)) ≤ s(v, F (x)).

Since F (x) ∈ Cv(X∗), it follows from the validity of the inequality 〈v, y〉 ≤ s(v, F (x)) for all v ∈ X that
y ∈ F (x). This completes the proof of the lemma.

Corollary 1. If Fi ∈ S(M), i = 1, . . . , k, then the multivalued map

F (x) = co

( k⋃

i=1

Fi(x)

)

belongs to the class S(M).

Corollary 2. Let F0 and F1 be multivalued maps in the class S(M), and let λ : M → R be a
continuous scalar function such that 0 ≤ λ(x) ≤ 1 for all x ∈ M . Then the multivalued map F
defined by

F (x) = (1− λ(x))F0(x) + λ(x)F1(x), x ∈ M,

belongs to the class S(M).

Below we give several lemmas on superposition, which will be useful in what follows. In Lemmas 2
and 3, M and M1 are closed subsets of X.

Lemma 2. Let A : M → X be a completely continuous map. Suppose that

Φ(x) = x−A(x), x ∈ M, Φ(M) ⊂ M1,

F1 ∈ S(M1), F (x) = F1(Φ(x)) = (F1 ◦ Φ)(x), x ∈ M.

Then F ∈ S(M).

Proof. Obviously, F (x) ∈ Cv(X∗) and the multivalued map F : M → Cv(X∗) is bounded. Let
us verify condition (α). Take any sequences xn ∈ M and yn ∈ F (xn) and elements x and y with
properties (1). We set vn = A(xn), n = 1, 2, . . . . We can assume without loss of generality that vn → v.
We have

xn − vn ⇀ x− v, yn ∈ F1(xn − vn), yn ⇀ y, lim
n→∞

〈xn − vn, yn〉 ≤ 〈x− v, y〉.

The assumption F1 ∈ S(M1) implies xn − vn → x− v and y ∈ F1(x− v). Since the map A is continu-
ous and xn → x, it follows that v = A(x) and y ∈ F1(x− v) = F (x). This proves the lemma.

The following lemma is a parametric version of Lemma 2.
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Lemma 3. Let T be a compact metric space, and let A : (M × T ) → X be a completely continuous
map. Suppose that Φ(x, t) = x−A(x, t), x ∈ M , t ∈ T ,

Φ(M,T ) ⊂ M1, F1 ∈ S(M1 × T ),

F (x, t) = F1(Φ(x, t), t) = (F1 ◦ Φ)(x, t) x ∈ M, t ∈ T.

Then F ∈ S(M × T ).

The proof of this lemma is similar to that of Lemma 2 and is therefore omitted.
Below we give corollaries of Lemmas 2 and 3 for the case in which the external superposition operator

coincides with the dual map. First, we recall some facts and definitions. On a separable reflexive
space X, a norm equivalent to the initial one can be defined with respect to which X and X∗ are locally
uniformly convex spaces [13]. Therefore, we can assume without loss of generality that the initial norm
on X has this property. This ensures the differentiability of the functional f0(x) = (1/2)‖x‖2 on the
entire space X [14]. The operator J : X → X∗ defined by J(x) = f ′

0(x) is called the dual map. It is
characterized by the relations

‖J(x)‖∗ = ‖x‖, 〈x, J(x)〉 = ‖x‖2.
Properties of the dual map have been studied by many authors. As is known (see, e.g., [15]), J ∈ S(X);
more general results were obtained in [16]. If X is a Hilbert space, then the dual map J coincides with
the identity transformation I .

Corollary (of Lemma 2). If A : M → X is a completely continuous operator, then the map
F = J(I −A) belongs to the class S(M).

Corollary (of Lemma 3). Let T be a compact metric space, and let A : (M × T ) → X be a
completely continuous operator. Then the map F defined by

F (x, t) = J(x−A(x, t)), x ∈ M, t ∈ T,

belongs to the class S(M × T ).

3. VARIATIONAL INEQUALITIES AND APPROXIMATE ROTATION

Let Q ∈ Cv(X), and let X0 = Lin(Q−Q) be the linear span of the set Q−Q. In what follows, it is
assumed that X0 = X. We use Γ(Q) to denote the part of Γ(X) consisting of those finite-dimensional
spaces E for which the interior riE(Q ∩ E) of Q ∩ E relative to the space E is nonempty. Some of the
properties of the class Γ(Q) are as follows:

(1) if E ∈ Γ(Q), z ∈ Q, and H = Lin{E, z} is the linear span of E and z, then H ∈ Γ(Q);

(2) if E0 ∈ Γ(X) and Q ∩ E0 �= ∅, then there exists a space E in Γ(Q), E ⊂ E0, for which
Q ∩ E = Q ∩ E0;

(3) there exists a sequence En, n = 1, 2, . . . , with the properties

En ⊂ En+1, En ∈ Γ(Q),
∞⋃

n=1

(Q ∩En) = Q;

in what follows, we refer to a sequence En with these properties as a sequence exhausting the
set Q.

The existence of exhausting sequences is easy to derive from the separability of the space X.
Let M be a closed subset of Q, and let S0(M) and S(M) be the corresponding classes of multivalued

maps on M . An element x ∈ M is called a Q-singular point of a multivalued map F in the class S0(M)
if

0 ∈ F (x) +NQ(x). (7)
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The relation (7) is equivalent to the existence of an element y in F (x) such that

〈v − x, y〉 ≥ 0 for any v ∈ Q. (8)

Relation (8) means that the Q-singular points of a multivalued map F are the solutions of the
corresponding variational inequality [15]; the converse is also true. Given a bounded set Q and a
multivalued map F in the class S0(Q), the set of solutions of (7) is nonempty. We sometimes denote
the solution set of the variational inequality (8) by Sol(F,Q).

Let us study variational inequalities for multivalued maps satisfying condition (α) in more detail.
Let T be a compact metric space, and let M be a closed subset of Q. We say that a map F in the
class S(M × T ) is nondegenerate on a set M ⊂ M if, for any t in T , the set M contains no Q-singular
points of the multivalued map Ft = F ( · , t) : M → Cv(X∗).

Proposition 1. Let a multivalued map F in the class S(M × T ) be nondegenerate on a closed
bounded set M ⊂ M . Then there exists an E in Γ(Q), a bounded continuous map w : M × T → X,
and a constant η > 0 such that w(x, t) ∈ riE(Q ∩ E) for all (x, t) ∈ M × T and

s(w(x, t) − x,F (x, t)) < −η for all (x, t) ∈ M× T . (9)

Proposition 1 follows from results of [6] and [18]. This proposition indicates that the single-valued
map Φ(x, t) = x− w(x, t) makes an acute angle with the multivalued map F (x, t) on M× T ; in this
respect, Proposition 1 is close to known results about acute-angled approximations (see, e.g., [5]). The
main novelty is the finite dimensionality of the map w; we refer to the map Φ(x, t) = x− w(x, t) as the
finite-dimensional acute-angled approximation of the multivalued map F . For E we can take the
space Em, where {En} is a sequence of finite-dimensional subspaces exhausting the set Q and m > n0,
n0 being a sufficiently large number.

We endow Q with the standard metric ρ(x, y) = ‖x− y‖ and the relative topology. In what follows,
ω(Q) is the set of bounded open (in the relative topology) subsets of Q and ∂QK is the relative boundary
of a set K ⊂ Q. By ω(X) we denote the set of bounded open subsets of X.

Let Ω ∈ ω(Q), and let ∂QΩ be the relative boundary of Ω, ∂QΩ �= ∅; we set Ω = Ω ∪ ∂QΩ. If a
mapping F belongs to the class S(Ω) and Q is nondegenerate on ∂QΩ, then, according to Proposition 1,
there exists a space E in the class Γ(Q) and a continuous vector field w : Ω → X such that

w(x) ∈ riE(Q ∩ E) for any x ∈ Ω, 〈x− w(x), x∗〉 > 0 for any x ∈ ∂QΩ, x∗ ∈ F (x). (10)

In particular, the vector field Φ(x) = x−w(x) is nondegenerate on ∂QΩ; therefore, the relative topolog-
ical degree degQ(Φ, ∂QΩ) is defined [1]–[5]. This degree does not depend on the choice of the space E

and the continuous vector field w satisfying requirements (10). The number degQ(Φ, ∂QΩ) is called
the approximate rotation of the field F on ∂QΩ and denoted by γQ(F,Ω). If the set Q is bounded,
then the case Ω = Q must be considered separately. In the situation under consideration, the relative
boundary ∂QΩ is the empty set; we put γQ(F,Q) = 1.

Somewhat different but yielding the same results definitions of γQ(F,Ω) are contained in [16]. For
technical reasons, the terminology of the present paper slightly differs from that of [16].

Approximate rotation has many properties of relative topological degree. We specify and discuss
some of them. In the formulations given below, Ω, Ω1, and Ω2 are domains in the class ω(Q), ∂QΩ is
the relative boundary of the domain Ω, Ω = Ω ∪ ∂QΩ, and F , F0, and F1 are multivalued maps in the
class S(Ω). If a map F belongs to the class S(Ω× [0, 1]), is nondegenerate on the set

M1 ⊂ clQΩ, Sol(F ( · , t), Q) ∩M1 = ∅,

and satisfies the conditions

F (x, 0) = F0(x), F (x, 1) = F1(x) for any x ∈ M1,

then we say that the maps F0 and F1 are homotopic on the set M1. If F belongs to the
class S(M × [0, 1]), then it is called a deformation of the map F0 into F1.
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The homotopy relation between maps is an equivalence, i.e., it is reflexive, symmetric and transitive.
We write F ∼= G if maps F and G are homotopic. The set S(M) can be represented as the union of
pairwise disjoint classes of maps homotopic on M1.

(I) The zero rotation principle. If a map F is nondegenerate on Ω (i.e., Sol(F,Q) ∩ Ω = ∅),
then γQ(F,Ω) = 0.

(II) The homotopy invariance of rotation. If maps F0 and F1 are homotopic on ∂QΩ, then
γQ(F0,Ω) = γQ(F1,Ω).

(III) The additivity of rotation. If Ω1 ∩Ω2 = ∅, Ω1 ∪Ω2 ⊂ Ω, and a map F is nondegenerate on
Ω \ (Ω1 ∪ Ω2), then γQ(F,Ω) = γQ(F,Ω1) + γQ(F,Ω2).

(IV) The normalization property. If 〈x− x0, y〉 > 0 for all x ∈ ∂QΩ and y ∈ F (x), then

γQ(F,Ω) =

{
1 if x0 ∈ Ω,

0 if x0 ∈ Q \ Ω.

(V) The oddness of rotation. If sets Q and Ω are symmetric with respect to zero, a map F is
nondegenerate on ∂QΩ, and, for any x in ∂QΩ,

Ψ(x) ∩Ψ(−x) = ∅, where Ψ(x) = {v : v = y/‖y‖∗, y ∈ F (x)},

then γQ(F,Ω) is an odd number.

Property (I) implies the nonzero rotation principle: if γQ(F,Ω) �= 0, then the map F has a
Q-singular point. In particular, if the set Q is bounded, then γQ(F,Ω) = 1. Therefore, the variational
inequality (8) has a solution. It seems to be important that the solvability of inequality (8) is a
consequence of the equality γQ(F,Ω) = 1.

A set N ⊂ Ω is said to be singular for a map F in the class S(Ω) if any element of N is a Q-singular
point of F . A singular set is isolated if it has a neighborhood containing no other Q-singular points.
The set of all singular points in the domain Ω is compact [16]. For all neighborhoods U of an isolated
singular set N such that the map F is nondegenerate on U \N, the rotation γQ(F,U ) is the same; it is
called the index of the singular set N and denoted by indQ(N, F ).

Proposition 2 (on the algebraic number of singular sets). Let Ω be a domain in the class ω(Q).
Suppose that a map F ∈ S(Ω) is nondegenerate on ∂QΩ and N1, . . . ,Nm are isolated singular
sets of F . Then

γQ(F,Ω) = indQ(N1, F ) + · · ·+ indQ(Nm, F ).

Proposition 2 can be used to obtain upper and lower bounds for the number of singular points of a
map F . The main difficulty arising here is involved in calculating the rotation γQ(F,Ω) and the indices
of singular sets. If, e.g., a set Q is bounded and indQ(N, F ) �= 1 for some singular set N, then there
exists a singular point of F not belonging to N. A number of results concerning the calculation of
the rotation and indices of single-valued maps of monotone type were obtained in [1] and [9]–[11].
Similar questions for multivalued maps have been much less studied; we mention statements concerning
potential operators [6], [16].

The properties applied most frequently are (I)–(IV). On these properties some axiomatic definitions
of the rotation of a vector field are based; the relevant references can be found in [1]. The homotopy
invariance of rotation makes it possible to pass from the initial map F to simpler maps.

Instead of finite-dimensional acute-angled approximations, their completely continuous analogs can
be used. The theory of relative topological degree is well developed for completely continuous vector
fields too [1]–[5].
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Lemma 4. Suppose that Ω ∈ ω(Q), ∅ �= Ω �= Q, ∂QΩ is the relative boundary of Ω, and
Ω = Ω ∪ ∂QΩ. Let F ∈ S(Ω), and let A : clQΩ → X be a completely continuous operator
satisfying the following conditions similar to (10):

A(x) ∈ Q for any x ∈ Ω, 〈x−A(x), x∗〉 > 0 for any x ∈ ∂QΩ, x∗ ∈ F (x). (11)

Then the map F is Q-nondegenerate on ∂QΩ, the completely continuous vector field given by
Φ(x) = x−A(x) is nondegenerate on ∂QΩ, and

γQ(F,Ω) = degQ(Φ,Ω). (12)

Proof. By virtue of the corollary of Lemma 2, the map F0 = J(I −A) belongs to the class S(Ω). On
the set ∂QΩ, the maps F and F0 make an acute angle with the field Φ, which implies their homotopy
equivalence: F ∼= F0. Choose a finite-dimensional continuous operator A1 : Ω → X with the properties

A1(x) ∈ Q for any x ∈ Ω, ‖A(x)−A1(x)‖ <
1

2
inf{‖x−A(x)‖, x ∈ ∂QΩ};

such an operator A1 can be for constructed by using Schauder’s well-known construction. It follows
from properties of the operators A and A1 that the vector fields Φ = I −A and Φ1 = I −A1 are linearly
homotopic on ∂QΩ:

Φ ∼= Φ1.

Homotopy equivalence implies the equality degQ(Φ1,Ω) = degQ(Φ,Ω) of the corresponding relative
degrees and the Q-homotopy of the maps F0 = JΦ and F1 = JΦ1 on ∂QΩ:

F0
∼= F1.

Equality (12) follows from the relations

γQ(F,Ω) = γQ(F0,Ω) = γQ(F1,Ω) = degQ(Φ1,Ω) = degQ(Φ,Ω).

This completes the proof of the lemma.

4. ANALOGS OF THE HOPF THEOREMS

In this section, we prove analogs of the Hopf theorems for multivalued maps of monotone type. First,
we consider the problem of extension without Q-singular points.

Theorem 1. Suppose that Q ∈ Cv(X) and Ω ⊂ Q is a bounded connected set open in the relative
topology of Q. Let F be a map in the class S(Ω) nondegenerate on the boundary ∂QΩ of Ω, and
let γQ(F,Ω) = 0. Then there exists a map G in the class S(Ω) coinciding with F on ∂QΩ and
nondegenerate on Ω.

Proof. Let K = Sol(F,Q) ∩ Ω be the set of solutions of 0 ∈ F (x) +NQ(x) belonging to Ω. As
mentioned above, K is compact. Since K does not intersect ∂QΩ, it follows that the number

d = dist(K , ∂QΩ) = inf{‖v1 − v2‖, v1 ∈ K , v2 ∈ ∂QΩ} > 0

is positive. The compactness of K implies the existence of a finite ε-net for any ε > 0. In particular, we
can find elements x1, . . . , xN of K such that K is contained in the union of the relatively open convex
sets

Ui =

{
v ∈ Q, ‖v − xi‖ <

d

2

}
, i = 1, . . . , N.

Since the set Ω is connected, there exists a continuous path z = z(t), t ∈ [0, 1], passing through all
points xi, i = 1, . . . , N , and contained in Ω. We have z(t) ∈ Ω for all t ∈ [0, 1]; therefore, the number

d1 = inf{‖z(t) − v‖, t ∈ [0, 1], v ∈ ∂QΩ}
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is positive. For any t in [0, 1], the set V (t) = {v ∈ Q, ‖z(t)− v‖ < d1/2} is relatively open. The union

UN+1 =
⋃

t∈[0,1]
V (t)

of these sets is relatively open as well.
Consider the set

Ω1 =

N+1⋃

i=1

Ui.

It is bounded, connected, and open in the relative topology of Q; moreover, Ω1 contains K , and its
distance

r = dist(Ω1, ∂QΩ) = inf{‖u− v‖, u ∈ Ω1, v ∈ ∂QΩ}
from the boundary ∂QΩ is positive.

Since K ⊂ Ω1, the map F is nondegenerate on the closed bounded set M = Ω \Ω1. Properties (I)
and (III) of rotation imply γQ(F,Ω1) = 0. Since the map F is nondegenerate on M, it follows by
Proposition 1 that there exists a set E in Γ(Q) and a bounded continuous map w : Ω → X such that

w(x) ∈ Q ∩ E for any x ∈ Ω, 〈w(x)− x, y〉 > 0 for any x ∈ M, y ∈ F (x). (13)

By virtue of (13), the vector field Φ(x) = x− w(x), x ∈ Ω, makes an acute angle with the map F (x)
on the set M. We have

degQ(Φ, ∂QΩ1) = γQ(F,Ω1) = 0.

Theorem 3 of [2] implies the existence of a completely continuous operator w1 : Ω1 → Q coinciding
with w on ∂QΩ1 and having no fixed points in Ω1, i.e., such that w1(x) �= x for each x ∈ Ω1.

The operator defined by

A(x) =

{
w(x) if x ∈ M,

w1(x) if x ∈ Ω1

is single-valued and completely continuous, and it has no fixed points in Ω. On the set M, the vector
field Ψ(x) = x−A(x) coincides with Φ and therefore makes an acute angle with the map F . The map
F0 = JΨ belongs to the class S(Ω).

Consider the scalar function

λ(x) =
dist(x,Ω1)

dist(x, ∂QΩ) + dist(x,Ω1)
, x ∈ Ω.

The function λ : Ω → R is continuous, 0 ≤ λ(x) ≤ 1, and

∂QΩ = {x ∈ Ω, λ(x) = 1}, Ω1 = {x ∈ Ω, λ(x) = 0}.
The sought-for map G can be defined by

G(x) = λ(x)F (x) + (1− λ(x))F0(x), x ∈ Ω.

Let us check that it has the required properties. The relation G ∈ S(Ω) follows from Corollary 2 of
Lemma 1. Since λ(x) = 1 on ∂QΩ, we have G(x) = F (x) for all x ∈ ∂QΩ.

The field Ψ(x) = x−A(x) makes an acute angle with the map G(x) everywhere in Ω:

〈Ψ(x), y〉 > 0, x ∈ Ω, y ∈ G(x). (14)

Indeed, for x ∈ M, inequality (14) follows from (13), and for x ∈ Ω1, we have

G(x) = JΨ(x), 〈Ψ(x), G(x)〉 = ‖Ψ(x)‖2 > 0.

Since A(x) ∈ Q for all x, the map G is nondegenerate on Ω. This completes the proof of the theorem.

MATHEMATICAL NOTES Vol. 108 No. 1 2020



VARIATIONAL INEQUALITIES AND ANALOGS OF THE HOPF THEOREMS 73

By virtue of the zero rotation principle, the condition γQ(F,Ω) = 0 is also necessary for the existence
of a map G in S(Ω) that coincides with F on ∂QΩ and is nondegenerate on Ω. The condition that the
domain Ω is simply connected becomes redundant.

We have introduced the notion of homotopy equivalence between maps in the class S(M) with respect
to a set M1. We are interested in the case where M = Ω, M1 = ∂QΩ, and Ω ∈ ω(Q).

Theorem 2. Let Q ∈ Cv(X), and let Ω ⊂ Q be a bounded connected set open relative to Q and
such that the set Q \ Ω is connected. Suppose that maps F0 and F1 belong to the class S(Ω) and
are nondegenerate on ∂QΩ. Then F0 and F1 are homotopic if and only if γQ(F0,Ω) = γQ(F1,Ω).

Proof. Thanks to the homotopy invariance of rotation (property (II)), it suffices to show that the equality
γQ(F0,Ω) = γQ(F1,Ω) of rotations implies the homotopy equivalence of the maps F0 and F1 on ∂Q. If
Ω = Q, then all maps are homotopic on ∂QQ = ∅; therefore, we shall assume that ∂QΩ �= ∅. Since
the maps Fi, i = 0, 1, are nondegenerate on ∂QΩ, there exist spaces Ei in Γ(Q), continuous maps
wi : Ω → Ei, and a constant δ > 0 such that

wi(x) ∈ Q ∩ Ei for all x ∈ Ω, s(wi(x)− x, Fi(x)) < −δ for all x ∈ ∂QΩ.

Consider the maps

Gi(x) = J(x− wi(x)), x ∈ Ω, i = 0, 1.

The maps Gi and Fi make an acute angle with Φi(x) = x−wi(x); therefore, they are homotopic to each
other:

Fi
∼= Gi.

By the very definition of approximate rotation, we have γQ(Fi,Ω) = degQ(Φi, ∂QΩ), i = 0, 1. Since
γQ(F0,Ω) = γQ(F1,Ω), it follows that

degQ(Φ0, ∂QΩ) = degQ(Φ1, ∂QΩ). (15)

Theorem 4 of [2] and equality (15) imply the relative homotopy equivalence of the continuous vector
fields Φ0 = I − w0 and Φ1 = I − w1. Hence there exists a completely continuous deformation of the
form Φt = I − wt, 0 ≤ t ≤ 1, where wt(x) ∈ Q, x ∈ Ω, t ∈ [0, 1]. The equality Gt = JΦt defines a
deformation joining G0 and G1. Thus,

F0
∼= G0

∼= G1
∼= F1.

This completes the proof of the theorem.

Theorem 2 is an analog of the Hopf classification theorem for multivalued maps of monotone type.
If dim(X) > 1, then, given any integer k, there exists a map Fk in S(Ω) for which γQ(Fk,Ω) = k. For
example, in the cases k = 0, 1, we can set

Fk(x) = J(x− xk), where x1 ∈ Ω, x0 ∈ Q \ Ω.
A more general example is

Fk(x) = J(x− w(x)),

where w : Ω → Q ∩ E is a continuous map and E is a two-dimensional space in the class Γ(Q).
Appropriately choosing a space E and a map w, we can achieve that γQ(Fk,Ω) = k for an integer k
given in advance.

Let us introduce the notion of trace of a map. Given a closed subspace E of X, let iE : E → X be the
inclusion operator, and let i∗E : X∗ → E∗ be its adjoint. If Q ∩ E �= ∅, then each operator F : Q → X∗

can be assigned its trace on Q ∩ E, which is denoted by FE and defined by FE = i∗EFiE . It is easy to
see that the trace of an operator F in S(Q) on a space E belongs to the class S(Q ∩ E).

The notion of trace of an operator naturally arises in studying potential operators. Let us recall some
notions of nonsmooth analysis [19].
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Let f : Q → R be a functional satisfying the local Lipschitz condition, and let us take x ∈ Q and
v ∈ X0 = Lin(Q−Q). The set of sequences {y, t} such that y → x as t → +0 and [y, y + tv] ⊂ Q is
nonempty [20]. We set

f◦(x, v) = lim
y→x, t→+0, [y,y+tv]⊂Q

f(y + tv)− f(y)

t
.

The number f◦(x, v) is called the Clarke derivative of the functional f at the point x in the direction v.
The functional f◦(x, · ) : X0 → R is convex and positively homogeneous, and it satisfies the Lipschitz
condition and admits a one-to-one extension to X = X0 with the same properties. For the extended
functional we use the same notation. The functional f◦(x, · ) : X → R is the support function of a
set in Cv(X∗), which is denoted by ∂f(x) and called the Clarke gradient of the functional f at the
point x [19], [20].

By Λ1(Q) we denote the set of functionals f : Q → R satisfying the local Lipschitz condition for
which the gradient map F (x) = ∂f(x), x ∈ Q, belongs to the class S(Q). Such a functional f is called
the potential of F , and the map F itself is said to be a potential map.

If E is a closed subspace of X and Q ⊂ E �= ∅, then the restriction to Q ∩ E of a functional f in the
class Λ1(Q) is a functional in the class Λ1(Q ∩E), which we denote by fE . We have ∂fE ⊂ (∂f)E ; if the
functional f is regular [19, p. 44 (Russian transl.)] at a point x, then ∂fE(x) = (∂f)E(x). In the case of
a finite-dimensional space E, the functional fE is called a finite-dimensional approximation of f .

Let SP (Q) denote the part of S(Q) that consists of potential maps. The class SP (Q) is substantially
narrower than S(Q). When deformations are constructed by using only maps in the class SP (Q), the
corresponding homotopy classification becomes finer; in addition to approximate rotation, there arise
other homotopy invariants.

5. VARIATIONAL INEQUALITIES WITH A PARAMETER

The homotopy invariance of rotation suggests a version of the index switch principle [1].

Proposition 3. Let F be a multivalued map in the class S(Ω× [a, b]), and let Ft = F ( · , t) for
t ∈ [a, b]. If

γQ(Fa,Ω) �= γQ(Fb,Ω), (16)

then, for some t in (a, b), the inclusion

0 ∈ Ft(x) +NQ(x) (17)

has a solution belonging to ∂QΩ.

Condition (16) holds, e.g., if γQ(Fb,Ω) �= k, where k is 0 or 1, and the map Fa satisfies the acute
angle condition in the form

〈x− u, y〉 > 0 for any x ∈ ∂QΩ, y ∈ Fa(x),

where u is a fixed element such that u ∈ Ω if k = 1 and u ∈ Q \Ω if k = 0.
In what follows, we need some geometric notions and facts. Let H be a finite-dimensional Euclidean

space with norm | · |, and let B = {x ∈ H, |x| < 1} be the open ball of radius 1 centered at zero.
According to [19, p. 59 (Russian transl.)], an element v in H \ {0} is said to be hypertangent to the
set D ⊂ H at a point x ∈ D if there exists an ε > 0 such that

y + tw ∈ D for any y ∈ (x+ εB) ∩D, w ∈ v + εB, 0 < t < ε.

If there exists at least one hypertangent to the set D at a point x, then the set KD(x) of all such
hypertangents is a nonempty open convex cone in H [19, p. 59 (Russian transl.)]. Obviously, KD(x) = H

for x in D̊; therefore, of interest is the case where x is a boundary point of the set D. If D ∈ Cv(H)

and D̊ �= ∅, then KD(x) = ˚TD(x). In [19, Chap. 2], methods for constructing the cone KD(x) were
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discussed for the case where D coincides with the lower Lebesgue set of a function g : H → R, that is,
where D = {x ∈ H, g(x) ≤ c}.

A compact set D ⊂ H is said to be strongly Lipschitz if

KD(x) �= ∅ for all x ∈ D.

The structure of a strongly Lipschitz set is comparatively simple. It satisfies the condition D = (D̊), all
Betti numbers bl(D) are finite, and bl(D) = 0 for l > dim(H). Therefore, the Euler characteristic χ(D)
of D is defined [21].

Suppose given C ∈ Cv(H) with C̊ �= ∅ and a compact set D ⊂ C. A map G : ∂CD → Cv(H)

satisfies condition (N) if the relations x ∈ ∂CD, u ∈ T̊C(x), and s(u,G(x)) < 0 imply u ∈ KD(x).
Let us introduce an infinite-dimensional version of condition (N). Let Ω ∈ ω(Q) be such that

∅ �= Ω �= Q. A map F in the class S(Q) is said to be conormal to the domain Ω if F is nondegenerate
on ∂QΩ and, for any space E in Γ(Q) (endowed with the Euclidean structure), the trace FE = i∗EFiE
satisfies condition (N) for the sets C = Q ∩ E and D = clQΩ ∩ E. Since

∂Q∩E(clQΩ ∩ E) ⊂ (∂QΩ) ∩ E ⊂ ∂QΩ,

it follows that the conormality condition refers only to the points of ∂QΩ.

As an example, consider the case where F is a potential operator in the class S(Q) with potential
f : Q → R and the domain Ω is Ω = {x ∈ Q, f(x) < c}; its relative boundary is

∂QΩ = {x ∈ Q, f(x) = c}.

If the map F is nondegenerate on ∂QΩ, then it is conormal to the domain Ω [6].

Proposition 4. Let Ω ∈ ω(Q), and let F be a multivalued map belonging to the class S(Q) and
conormal to Ω. Then the Euler characteristic χ(Ω) of the space Ω is defined, and γQ(F,Ω) = χ(Ω).

A more general result was obtained in [6]. Proposition 4 is an infinite-dimensional set-valued version
of the Poincaré–Hopf theorem ([22, p. 172 (Russian transl.)]).

Below we state two corollaries of Proposition 4 as theorems. We assume that Ω ∈ ω(Q) and ∂QΩ is
the relative boundary of the domain Ω.

Theorem 3. If multivalued maps F0 and F1 in the class S(Q) are homotopic on ∂QΩ and one of
them is conormal to the domain Ω, then

γQ(F0,Ω) = γQ(F1,Ω) = χ(Ω).

Proof. Theorem 3 follows from the homotopy invariance of approximate rotation and Proposition 4.

Theorem 4. Let F be a multivalued map in the class S(Q× [a, b]), and let Ft(x) = F (x, t).
If Fa is conormal to the domain Ω, Fb is nondegenerate on ∂QΩ, and γ(Fb,Ω) �= χ(Ω), then the
conclusion of Proposition 3 holds.

Proof. Theorem 4 follows from Propositions 3 and 4.

Consider the situation in which the inclusion (17) has only the zero solution for any t in [a, b]. A num-
ber τ in [a, b] is said to be regular for (17) if there exists an ε > 0 such that, for t in (τ − ε, τ + ε) ∩ [a, b],
the inclusion (17) has a unique (zero) solution in the ball ‖v‖ < ε. Since 0 is an isolated singular point
of the multivalued map Ft for t ∈ (τ − ε, τ + ε) ∩ [a, b], the topological index ind(0, Ft) = indQ({0}, Ft)
is defined. The homotopy invariance of approximate rotation implies the following assertion.

Lemma 5. If τ is a regular point for (17), then there exists an ε > 0 such that the function
t → ind(0, Ft) is constant on the interval (τ − ε, τ + ε) ∩ [a, b].
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To a number λ0 which is not regular for (17) we refer as a point of bifurcation. Thus, λ0 is a point of
bifurcation if there exist sequences λn → λ0 and xn → 0, xn �= 0, for which 0 ∈ Fλn(xn) +NQ(xn).

Let 0 be an isolated solution of the inclusion (17) for t = λn and t = μn, n = 1, 2, . . . , where λn → λ0

and μn → λ0. If ind(0, Fλn ) �= ind(0, Fμn), n = 1, 2, . . . , then we say that λ0 is a point of index switch.

Theorem 5. Let λ0 be a point of index switch for (17). Then λ0 is a point of bifurcation for (17).

Proof. It suffices to note that, under the assumptions of the theorem, the function t → ind(0, Ft) is
nonconstant in each neighborhood of λ0.

If x ∈ Q̊, then NQ(x) = {0} and the inclusion (17) acquires the substantially simpler form 0 ∈ Ft(x).
In [23], for this inclusion, an analog of Theorem 5 was proved. In the same paper, the question about
bifurcation points of solutions of the inclusion 0 ∈ Ft(x) for a potential operator Ft was considered. The
corresponding assertions were stated in terms of the typical numbers of critical points. Approaches to
generalizing these results to inclusions of the form (17) are rather obvious.
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