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Abstract—Using an integral construction based on symmetrized polynomials, we obtain a new
estimate for the irrationality measure of the number In 7. This estimate improves a result due to Wu,
which was proved in 2002.
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1. INTRODUCTION
In 2002, Wu [1] obtained the following estimate:

p+q@n2+4 gIn3+g3lnb + qqln7| > H 256865 (1.1)
Wherepv q1,92,93,94 € Z7
H = : H > H,.
gggggllqzl, > Hy

Let us recall that by the irrationality measure u(+y) of a real number v we mean the lower bound of
a set of numbers A for which, beginning with some positive ¢ > go()), the following inequality holds:

A

—p‘>q_, peZ, qeN.

g
For q1, q2, g3 = 0, inequality (1.1) yields the estimate
u(In'7) < 257.865... . (1.2)
The purpose of the present paper is to prove the following statement.

Theorem 1. Forp,qi,q2,q3 € Z, H = max;<i<3 |¢;

,and H > Hy, the following inequality holds:
lp+qIn2+4 goln3 + g3In7| > H 350099

Corollary 1. The following estimate holds:
u(ln'7) < 36.00999. .. . (1.3)

Estimate (1.3) follows from Theorem 1 for g1 = g2 = 0.
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2. PROOF OF THEOREM 1
We begin the proof of Theorem 1 with the following lemma proved by Wu in [1].

Lemma 1. Let m € N, and let v1,...,vm be real numbers. Let, for all n € N, there exist integers
rn,pg), . ,p%m) such that sg) =Ty — pq(f) #£0,i=1,...,m,and
1 1 . ,
lim  In|r,| <o, lim ~ In|e®| = —7®, (2.1)
n—oo n n—oo n
where o, 7V ... 7™ are positive numbers.
Let T =minj<;<;, (7)), where 70 £ 7U) for all i # j. Then the numbers 1,4y, ..,y are
linearly independent over Q and, for any € > 0, there exists an Hy(e) € N such that
P+ @+ + G| > HOTE (2.2)
forallintegers p,qi,...,qm and H = maxi<i<m |q:| > Ho(e).

Lemma | generalizes Lemma 2.1 from [2], in which the case m = 2 was studied.
Throughout the paper,

d\ 2
d=17-15-13 = 3315, u:<x—2>,

AeN,BeZ" (A B)=1inthecase B#0,

B Ad* - B
P=Au— 4 :A2$2+A1$+A0, Ay =A, A :—Ad, Ay = 4 .

For an irreducible fraction a/b, where a € Z, a # 0, and b € N, we define the exponent of a prime p by
setting v, = v,(a/b) € Z so that

(2.3)

Z :p”PZi, where a; €Z, b €N, (a1,p)=(b1,p) =1
Finally, for a function f(x) analytic at the point z = 0, we set
FN(0)
Do(f(2)) = f(0),  Dn(flx))=" ., ", NeN

For a polynomial P from (2.3), we define
vp(P) = min(2, v,(Ao)), where p € {17;13;5},

. . . 2.4
v7(P) = min(1, v7(Ap)), v3(P) = min(4, v3(Ap)), v9(P) = min(3, v5(Ap)). (24)
Lemma2. Let m € N, and let N € Z*, N < 2m. Then the [ollowing estimates hold:
vp(DN(P™) = muy(P) — N, pe {17135 7}, (25)
vp(Dn(P™)) > muy,(P) — 3N,  pe{3;2}. (2.6)

Proof. Inwhat follows, m = (mq, m1,ms) € (Z1)3, |m| = mg + my + ma, and

y(m) = eN.

From (2.3) we obtain
P = )" q(m)Ap2 AT AG O™,

[m|=m

DN(Pm) = Z fy(m)Aglodm1A37 As = (_1)m1Am1+m2 c7.

[m|=m, mi1+4+2ma=N
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406 BONDAREVA et al.

Forp € {17;13;5}, we then have
vp(Dn (P™)) > movp(Ag) +ma = (mo + my 4+ ma)vp(P) — (my + 2mg) = myy(P) — N,

because, by (2.4), we have v,(Ag) > vp(P) and v,(P) < 2.

Similarly,

vi(Dn(P™)) > movy(Ap) > muz(P) — N,
because it follows from (2.4) that
v7(Ag) > v7(P), v7(P) <1,
v3(DN(P™)) > mors(Ag) +ma
> (mo + mq + ma)v3(P) — 3(m1 + 2ma) = mu3(P) — 3N,

because

I/3(Ao) > I/3(P), I/3(P) < 4.

Finally,
vo(Dn(P™)) > mora(Ag) > (mo + m1 + ma)ve(P) — 3(my + 2mg) = min(P) — 3N,
because from (2.4) we see that v5(Ag) > v2(P), v2(P) < 3, and the lemma is proved.

We will also need some quadratic polynomials similar to (2.3).
Let A, B,C € N,and let (4, B,C) = 1; we set

B C d\* B AN o & .
P = Au? — =Alz— - - =Y Az 2.7
T <$ 2> 4<$ 2>+16 ; v (2.7)
where
2 _
Ay=A, Ay = —2Ad, A2:6Ad L
—92Ad3 + Bd Ad* — Bd?
A= A TEE g AT EEAE

For the polynomial (2.7), we define the exponents

vp(P) = min(4, v, (Aop), vp(A1) + 1,vp(A2) + 2), p € {17;13;5},

v7(P) = min(2, v7(Ap), v7 (A1) + 1), (2.8)
v3(P) = min(8, v3(Ao), v3(A1) + 3, v3(A2) + 6), '
VQ(P) = min(6, I/Q(AQ), I/Q(Al) + 3 VQ(AQ) + 6)

Lemma 3. For the polynomial (2.7), estimates (2.5) and (2.6) in which N < 4m and the exponents
vp(P), p € {17;13;5;7;3;2}, are defined by (2.8), hold.

Proof. In what follows,

m:(m07m17"'7m4)€(z+)57 |m|:m0—|—m1—|—---+m4,
_ [m|!
v(m) = molmy!...ma!’
We have
4 4
Pr= 3 am [J(awy™, Dy(Pm = ¥ ) [Ta
fmi=m =0 jml=m, Sy imi=N =0

We shall consider several cases.
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Case 1: p € {17;13;5}. We have

4
vp(Dn(P™)) > Zmﬂ/p ) > mu,(P szl mvy(P) — N,
i=0

because
vp(Ai) +1i > 1,(P), i=0,1,...,4.
For i € {0;1;2}, this follows from the definition of v, (P) in (2.8), fori = 3,
vp(Az) +3 > 143> 1,(P),
and, fori = 4,
vp(Ag) +4 > 42> 1,(P).

Case 2: p = 7. Here, as above,
vi(A;) +1i > vr(P), i=0,1,...,4.
Fori € {0;1} this inequality follows from (2.8) and for ¢ € {2;3;4},
vi(A;) +1i> 22> v7(P).

Case 3: p € {3;2}. In this case,
4
vp(DN(P™)) 2 " mivp(Ai) > muy(P) — 3szz mu,(P) — 3N,
i=0
because
vp(A;) + 3i > vp(P), i=0,1,...,4.
The lemma is proved.

In the proof of Theorem 1, we shall apply the following nine polynomials, seven of which are of the
form (2.3) and two are of the form (2.7).

We denote
Py = 4u = 42” — 4dz + d°,
P =u-— 1524132 =(x—9-15-13)(z —8-15-13),
Py—u— 1724132 — (r—8-17-13)(z — T+ 17-13),
Py =u— 1724152 =(x—7-17-15)(x —6-17-15),
Py = 5u® — 78214 u+ 4?22

= 5zt — 10dz® + 32 - 915550122 — 7-3% - 2% . 18157dw + 7% - 37 - 2° - 42,

Ps;=8u—17-15% .13 = 82% — 8dx + 17-13-5% .72 . 3%,

2- . 2.
P6:101u—17 154 13 3:101352—101dac—|—172-132-5-7-34-2,
17-13%2.32.11
P, =19u — 7 343 = 1922 — 19dx + 17-13%.7-3%. 27,
16 - 22887 9 - 16d2
Py = 16u® —
8 6w 4 u + 16
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= 162* — 32d2® + 4 -3 - 2197082122 — 7-3% - 22 . 116167dz + 7% - 3% - 307 - 4°.

We set

6
vp. (P
(P15 -3p6) = (17;13;5;,7: 3; 2), Hk:Hpjp]( Vo k=018,
j=1

For the polynomials Py, ..., Pg defined above, using the definitions of the exponents (2.4) and (2.8),
we obtain

My = 172132 .52 . 32, I =13%.5%.3%. 23
Iy = 17213271 . 23, I3 =172 .5%.71.3%. 2L,
I, =17%-132.5%.72.37.25  1II; =17t .13t .52. 71 .34, (2.9)

g =172 -132.51 .71 . 3% . 21 I, =171 -132 .71 . 34. 23
g = 172132 .52 .72 . 37,

Let
ap = 0.180555, a1 = 0.306, ag = 0.27464,
ag = 0.31048, ay = 0.17339, a5 = 0.00001, (2.10)
ag = 0.05377, a7 = 0.00896, ag = 0.00268.

The parameters «y, .. ., ag satisfy the following relations:

ag + 2a9 + 2a3 + 204 + a5 + 206 + a7 + 208 = 2,
2000 + 201 + 23 + 204 + 205 + ag 4 208 = 2,
2000 + 201 + 203 + 204 + 1as + ag + 208 = 2,

2.11
a2 + ag + 204 + a5 + ag + ay + 205 = 1, ( )
2000 + 4o + 3asg + Tay + das + dag + day + Tag = 4,
3aq + 3asg + ag + dbay + ag + 3ar = 3.
We now consider the rational function
[Tieo B*"
where n € N and n is a multiple of 10, so that ayn € Nforallk =0,1,...,8.

We define the following integrals:
1 (91513 817-13 71715
wy = / R, (z) dx, wo = / R, (z)dx, w3 = / R, (z)dx. (2.13)
2 Js1513 9-15-13 817-13

The function R,,(z) is symmetric about the point x = d/2. Therefore, its partial-fraction expansion
is of the form

n+1

Ru() = Q) +;<x ) (2.14)

where @, (z) € Z[x] and all a; € Q.
The following lemma is similar to Lemma | from [3], in which symmetric polynomials were first used.

Lemma4. Foralli=1,...,n+1, the following representation holds:

a; = 1777213072517 271- 133749323 1 where M € Z. (2.15)
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ON THE IRRATIONALITY MEASURE OF In7 409
Proof. Let

m:(mo,ml,...,mg)E(Z+)10, |m| = mg +mq + -+ + mg.
Then, using (2.12) and (2.14), we obtain

8
a; = Dpyr—i(Ru(2)2" ) = 3" ] Do (Pe(@))™)) Dy ((d — )" 7H).
|m|=n+1—i k=0

We have
Dmg((d — 517)_”_1) = m -+ my d-n—me—l,
myg
Just as in Lemma 1 from [3], we need to find lower bounds for the exponents v, (a;), j = 1,...,6.

We shall apply Lemmas 2 and 3, equalities (2.9) and (2.10), and relations (2.11). For the exponent v47,
we have

vi7(a;) > 2noag — mo + 2nas — ma + 2nag — ma + 2noy — my + nay — ms
+ 2nag — meg + nay — my 4+ 2nag —mg —n —mg — 1
> n(2ap + 209 + 23 + 204 + a5 + 206 + a7 +2a5) —n—1—(n+1—1)
=i—2.
The other equalities are verified in a similar way.
The lemma is proved.

We denote 6, = LCM(1,2,...,n), C, = 2dd,, and sq(f) = Cpw;, 1=1,2,3, where the inte-
grals w1, wa, and ws are defined by the equalities in (2.13).

Lemma 5. The following expressions are valid:

ES) =rpln _ — p1(11)7 e =, <ln o In 9> - pq(f),
7 8
3 ( 8> (3)
En’ =Tn In —1H7 —DPn’

wherer, = Cphay € Z, all pgl),pg),pg) € 7.

Proof. Itis necessary to integrate identity (2.14) and use Lemma 4. We have

( ) 9.-15-13 n+1 1 1
1 7
—ds, (a1 _9 - .
&n n (‘“ n N i—1 ((9 15-13)i-1  (8-15- 13)@-1>

d—ux P
91513
+ / Qn(x) da:)
81813
= Chailn - P, P € Q.

8

Fori =1, using (2.14), we obtain day € Z, i.e.,r, = Cra1 € Z.

Let us now show that pg)

and (2.13) we obtain

deg Qn(z) = n(2ap + 201 + 209 + 2a3 + day + 205 + 2066 + 207 + 4ag) — 2n — 2
=0.97311n — 2.

€ 7. Let us first calculate the degree of the polynomial @, (x). From (2.11)
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Therefore,

9-15-13
On Qn(x)dr € Z.
81513

Further, §,(1/(: — 1)) e N,;i =2,...,n+ 1; using (2.15), we can write

dai dai

ez ez
9-15-13)i-1 % (8.15-13)i-1 ©

Therefore, pg) € Z. Similarly,

o 81713 ntl 1 1
2 7

— 246, (a1 1 | ,
&n <“1 " <(8-17-13)’—1 (7-17-13)-1

d— {1543 i1

1 1
C(9-15-13)i-1 + (8-15- 13)i—1>

8713
+/ Qn(x) da:)
9-15-13
8 9
= _ _ 2 (2)
7°n<ln7 In 8> [N Dy’ € Z,

(7-17-15)i1  (6-17-15)i-1

71715 4l 1 1
e = 245, <a1 In ! <
-z

g1 ot 1

7.17-15
+ / Qn(x) d:z:>
8.17-13

:rn<lnz3 —In ?) —p,(f’), pT(f’) €z

1 1
© (8-17-13)i1 + (7-17- 13)i—1>

The lemma is proved.

Now, using Lemma 1, we can complete the proof of Theorem 1. Using the Laplace theorem, it is

easy to calculate the asymptotics of the linear forms 5%1), 57(12), and 67(13), and applying the saddle-point
method, we can find the asymptotics of |r, |, which has already been done previously (see, e.g., [1]-[4]).
Since this procedure is standard, we restrict ourselves to just a few comments.

In the integrals (2.13), we make the change v = (z — d/2)?. We have

w1 = /0 " o) (g(u)" du,

where
ot = g™ = i = a
Similarly,
= [ gy dn  w ="
“
w= [y w="","
u2
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Let us calculate the constants o and 7() defined by equalities (2.1) from Lemma 1 for the linear
forms e, i = 1,2, 3.

We have
%la)i lg(u)| = |g(4427.463)| = 0.276764. ..,
ul
mas |g(u)| = |9(10954.689)] = 0177446
u;u2
mas |g(u)| = |g(14784423)] = 0.266166 ..
u2;u3

Further, lim,,_,((1/n)Ind,) = 1. Therefore,

lim (1 In e > = lim ! Iné, +1n0.276764 - - - = —0.284589. ..,
1 . 1
lim Inle?]) = lim ~ Ind, +1n0.177446 - -- = —0.729.. .,
1
lim < In ¢ |> = lim Ind, +1n0.266166--- = —0.323... .

Thus, 7, 7@ and 74 are pairwise distinct, and

7 =min(+M, 7?73y = 0.284589 . .. .

Further,
.1 1
o= lim In|r,|= lim Ind, +1n|g(8376691.4...)]
n—oo n n—oo n
=1+ In(7812.546...) = 9.963486. . .,
and

7 —35.00999... .
-

The requirement n € N is not essential, because it suffices to make the change n = 10°n1, n; € N.
Finally, for arbitrary ¢}, ¢4, ¢4 € Z, we have

ln9—|— ln8—ln9 + ln7—ln8
q1 8 q2 7 ) q3 6 7
= (=3¢ +6q2 —4q3) In 2+ (291 — 292 — q3) In3 + (—q2 + 2¢3) In 7,
¢iIn2+¢hIn3+q5In7
9

9 8
= (5¢1 + 8¢5 + 1445) In gt (4q] + 645 — 1145) <ln . In 8>

7 8
+ (24} + 3¢5 + 645) <ln 6 In 7),

and the assertion of Theorem 1 follows from inequality (2.2) in Lemma 1 for the numbers

Y1 lnz, Yo lni—lnz, Y3 lng—lni.
3. REMARKS

Remark 1. Estimate (1.3) is considerably sharper than estimate (1.2); however, the assertion of
Theorem 1 is somewhat less general than inequality (1.1).
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Remark 2. We can further refine the values of the parameters (2.10), which will lead to a slight
improvement in the result of Theorem 1.

Remark 3. General symmetrized polynomials of first degree of the form P(t) = At — B, where
t = (z — d)?, were first used in [4]. The polynomials of the form (2.3) used in the present paper yield
a sharper result.

Remark 4. Quadratic polynomials of the form 2.7 are applied here for the first time. Of particular
importance is the use of the polynomial P4, which has complex roots.
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