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Abstract—A problem posed by J. R. Holub is solved. In particular, it is proved that if { ˜fn} is
the normalized Franklin system in L1[0, 1], {an} is a monotone sequence converging to zero, and
supn∈N ‖

∑n
k=0 ak

˜fk‖1 < +∞, then the series
∑∞

n=0 an
˜fn converges in L1[0, 1]. A similar result is

also obtained for C[0, 1].
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A basis {en}∞n=0 in a Banach space X is said to be boundedly complete if, for any number
sequence {an}∞n=0 satisfying the condition

sup
n∈N

∥

∥

∥

∥

n
∑

k=0

akek

∥

∥

∥

∥

< +∞, (1)

the series
∑∞

n=0 anen converges. If a space contains a boundedly complete basis, then it is isomorphic
to its dual space (see [1, p. 70]). In particular, the spaces C[0, 1] and L1[0, 1] have no boundedly
complete bases. Holub [2] introduced the notion of a monotonically bounded basis, which is weaker
than the notion of a bounded basis. Let us recall that a basis {en}∞n=0 in a Banach space X is said to be
seminormalized if there exists a constant C > 0 such that C−1 ≤ ‖en‖ ≤ C, n ∈ N.

Definition 1. A seminormalized basis {en}∞n=0 in a Banach space X is said to be is monotonically
boundedly complete if, for any monotone number sequence {an}∞n=0 converging to zero and satisfying
condition (1), the series

∑∞
n=0 anen converges.

Holub [2] proved that the Schauder basis in C[0, 1] is monotonically boundedly complete. He posed
the following question: Are the Haar and Franklin systems monotonically boundedly complete bases
in L1[0, 1]? In [3], Kadets proved that the Haar system is a monotonically boundedly complete basis
in L1[0, 1]. In the present paper, we prove that the Franklin system is monotonically boundedly complete
in L1[0, 1] and C[0, 1]; moreover, in the case of L1[0, 1], we prove an even stronger property than the fact
that the Franklin system is monotonically boundedly complete.

Let us recall the definition of the Franklin system.
Let n = 2μ + ν, where μ = 0, 1, 2, . . . and 1 ≤ ν ≤ 2μ. We denote

sn,i =

⎧

⎪

⎨

⎪

⎩

i

2μ+1
, 0 ≤ i ≤ 2ν,

i− ν

2μ
, 2ν < i ≤ n.

We also set sn,−1 = sn,0 = 0 and sn,n+1 = sn,n = 1.
By Sn we denote the space of continuous piecewise linear functions on [0, 1] with nodes {sn,i}ni=0;

in other words, f ∈ Sn if f ∈ C[0, 1] and f is linear on each of the intervals [sn,i−1, sn,i], i = 1, 2, . . . , n.
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Obviously, dimSn = n+ 1 and the set {sn,i}ni=0 is obtained by adding sn,2ν−1 to the set {sn−1,i}n−1
i=0 .

Therefore, there exists a unique (up to sign) function fn ∈ Sn orthogonal to Sn−1 with ‖fn‖2 = 1.
Setting f0(x) = 1 and f1(x) =

√
3(2x− 1), x ∈ [0, 1], we obtain the orthonormal system {fn(x)}∞n=0,

which was defined in an equivalent way by Franklin in [4].
It is well known that the Franklin system is a basis in C[0, 1], L1[0, 1] (see [4]) and an unconditional

basis in Lp[0, 1], 1 < p < ∞ (see [5]).
By C1, C2, . . . , Cp we denote positive constants depending only on their subscripts.
In studying the properties of the Franklin system, the following Ciesielski exponential estimates play

an important role:

Lemma 1 (see [6]). Let n = 2μ + i, μ ∈ N ∪ {0}, i = 1, 2, . . . , 2μ. Then there exists a q ∈ (0, 1) such
that, for all k ∈ {0, 1, . . . , n},

C12
μ/2q|k−(2i−1)| ≤ (−1)k+1fn(sn,k) ≤ C22

μ/2q|k−(2i−1)|.

Corollary 1. For all n ≥ 1, the following estimates hold:

C3√
n
≤ ‖fn‖1 ≤

C4√
n
.

The following theorem holds.

Theorem 1. Let {an}∞n=0 be a sequence of real numbers such that

|an|
nα

≤ C5
|ak|
kα

, n ≥ k,

for some α ≥ 0. If supn∈N ‖
∑n

k=0 akfk‖1 < +∞, then the series
∑∞

n=0 anfn converges in Lp[0, 1] for
all 1 ≤ p < ∞.

It is easy to see that Theorem 1 implies the following theorem.

Theorem 2. The Franklin system in L1[0, 1] is a monotonically boundedly complete basis.

Indeed, let { ˜fn}∞n=0 be the normalized Franklin system in L1[0, 1], and let an decrease, tending to
zero. Then, by Corollary 1, the assumptions of Theorem 1 hold for α = 1/2. Therefore, the series
∑∞

n=0 anfn converges in L1[0, 1].

Proof of Theorem 1. In [7], it was proved that if the estimate supn∈N ‖
∑n

k=0 akfk‖1 < +∞ holds,
then the series

∑∞
n=0 anfn converges almost everywhere on [0, 1]. And it was shown in [8] that a

series
∑∞

n=0 anfn in the Franklin system converges almost everywhere on E ⊂ [0, 1] if and only if
∑∞

n=0 a
2
nf

2
n(x) < +∞ for almost all x ∈ E. Therefore,

∑∞
n=0 a

2
nf

2
n(x) < ∞ for almost all x ∈ [0, 1]. We

choose a point x0 ∈ [0, 1] so that
∞
∑

n=0

a2nf
2
n(x0) < ∞. (2)

We note that if 22μ ≤ n ≤ 22μ+2, then

|an| ≥
1

C5

(

n

22μ+2

)α

|a22μ+2 | ≥ C6|a22μ+2 |,

where C6 = 1/(C54
α). Hence, (2) and the estimate

2μ+2
∑

n=2μ+1

f2
n(x) > 2μ−3, μ ∈ N ∪ {0}, x ∈ [0, 1],
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which was derived in [8], imply

∞
∑

μ=1

a222μ2
2μ ≤ 32

∞
∑

μ=0

a222μ+2

22μ+2
∑

n=22μ+1

f2
n(x0) ≤

32

C2
6

∞
∑

n=0

a2nf
2
n(x0) < ∞.

Thus,
∑∞

μ=1 a
2
22μ2

2μ < ∞. We now note that, for all μ ∈ N ∪ {0},

|a22μ+1 | ≤ C5

(

22μ+1

22μ

)α

|a22μ | = C7|a22μ |,

where C7 = C52
α. Therefore,

∞
∑

μ=2

a22μ2
μ =

∞
∑

μ=1

a222μ2
2μ +

∞
∑

μ=1

a222μ+12
2μ+1 ≤ (1 + 2C2

7 )

∞
∑

μ=1

a222μ2
2μ < ∞. (3)

In the same way, we prove that |an| ≤ C7|a2μ | for all n ∈ {2μ, 2μ + 1, . . . , 2μ+1} and μ ∈ N ∪ {0}. It
follows that, for x ∈ [0, 1] and any natural number k ≥ 2,

∞
∑

n=k

a2nf
2
n(x) ≤ C2

7

∞
∑

μ=[log2(k−1)]

a22μ

2μ+1
∑

n=2μ+1

f2
n(x). (4)

It follows from (4) and the inequality (see [8])

2μ+1
∑

n=2μ+1

f2
n(x) ≤ C82

μ, μ ∈ N ∪ {0}, x ∈ [0, 1],

that
∞
∑

n=k

a2nf
2
n(x) ≤ C9

∞
∑

μ=[log2(k−1)]

a22μ2
μ, (5)

where C9 = C2
7C8.

It was proved in [9] that, for all p > 1 and any number sequence {bn}∞n=0, the following inequality
holds:

ˆ 1

0

∣

∣

∣

∣

∞
∑

n=0

bnfn(x)

∣

∣

∣

∣

p

dx ≤ Cp

ˆ 1

0

( ∞
∑

n=0

b2nf
2
n(x)

)p/2

dx.

Therefore, from (3) and (5) we obtain
ˆ 1

0

∣

∣

∣

∣

∞
∑

n=k

anfn(x)

∣

∣

∣

∣

p

dx ≤ Cp

(

C9

∞
∑

μ=[log2(k−1)]

a22μ2
μ

)p/2

→ 0

as k → ∞. The theorem is proved.

Theorem 3. The Franklin system in C[0, 1] is a monotonically boundedly complete basis.

Proof. Let {fn}∞n=0 be the normalized Franklin system in C[0, 1], let {an}∞n=0 be a monotone sequence
of numbers tending to zero, and let

sup
n∈N

∥

∥

∥

∥

n
∑

k=0

akfk

∥

∥

∥

∥

C

< +∞. (6)
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It follows from Lemma 1 that
∑2k+1

n=2k+1 |fn(x)| ≤ C10 for all k ∈ N ∪ {0} and fn(0) ≤ 0 for all n ∈ N. It
was proved in [10] that |f2n+1(0)| = 1. Combining this with (6), we see that

∞
∑

n=0

a2n+1 ≤
∞
∑

n=0

an|fn(0)| < ∞. (7)

Now let n > m, 2p + 1 ≤ m ≤ 2p+1, and let 2q + 1 ≤ n ≤ 2q+1. We note that
∣

∣

∣

∣

n
∑

k=m

akfk(x)

∣

∣

∣

∣

≤
2q+1
∑

k=2p+1

ak|fk(x)| =
q

∑

l=p

2l+1
∑

k=2l+1

ak|fk(x)| ≤ C10

q
∑

l=p

a2l+1. (8)

It follows from (7) and (8) that
∥

∥

∥

∥

n
∑

k=m

akfk(x)

∥

∥

∥

∥

C

→ 0 as n,m → ∞.

The theorem is proved.

It should be noted that, by the same method, it can be proved that Theorem 1 holds for a Haar basis
in L1[0, 1].
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