On a Property of the Franklin System in $C[0, 1]$ and $L^1[0, 1]$

V. G. Mikayelyan1*

1Yerevan State University, Yerevan, 375025 Armenia Received April 18, 2018; in final form, April 18, 2018; accepted July 9, 2019

Abstract—A problem posed by J. R. Holub is solved. In particular, it is proved that if $\{f_n\}$ is the normalized Franklin system in $L^1[0,1]$, $\{a_n\}$ is a monotone sequence converging to zero, and $\sup_{n\in\mathbb{N}}\|\sum_{k=0}^n a_k \widetilde{f}_k\|_1 < +\infty$, then the series $\sum_{n=0}^{\infty} a_n \widetilde{f}_n$ converges in $L^1[0,1]$. A similar result is also obtained for $C[0, 1]$.

DOI: 10.1134/S0001434620010289

Keywords: *Franklin system, bounded completeness, monotonically bounded completeness.*

A basis ${e_n}_{n=0}^{\infty}$ in a Banach space X is said to be *boundedly complete* if, for any number sequence $\{a_n\}_{n=0}^\infty$ satisfying the condition

$$
\sup_{n\in\mathbb{N}}\left\|\sum_{k=0}^{n}a_{k}e_{k}\right\|<+\infty,
$$
\n(1)

the series $\sum_{n=0}^{\infty}a_ne_n$ converges. If a space contains a boundedly complete basis, then it is isomorphic to its dual space (see [1, p. 70]). In particular, the spaces $C[0,1]$ and $L^1[0,1]$ have no boundedly complete bases. Holub [2] introduced the notion of a monotonically bounded basis, which is weaker than the notion of a bounded basis. Let us recall that a basis $\{e_n\}_{n=0}^\infty$ in a Banach space X is said to be $seminormalized$ if there exists a constant $C>0$ such that $C^{-1}\leq \|e_n\|\leq C, n\in \mathbb{N}.$

Definition 1. A seminormalized basis $\{e_n\}_{n=0}^{\infty}$ in a Banach space X is said to be is *monotonically boundedly complete* if, for any monotone number sequence $\{a_n\}_{n=0}^\infty$ converging to zero and satisfying condition (1), the series $\sum_{n=0}^{\infty} a_n e_n$ converges.

Holub [2] proved that the Schauder basis in $C[0, 1]$ is monotonically boundedly complete. He posed the following question: Are the Haar and Franklin systems monotonically boundedly complete bases in $L^1[0,1]$? In [3], Kadets proved that the Haar system is a monotonically boundedly complete basis in $L^1[0,1]$. In the present paper, we prove that the Franklin system is monotonically boundedly complete in $L^1[0, 1]$ and $C[0, 1]$; moreover, in the case of $L^1[0, 1]$, we prove an even stronger property than the fact that the Franklin system is monotonically boundedly complete.

Let us recall the definition of the Franklin system.

Let $n = 2^{\mu} + \nu$, where $\mu = 0, 1, 2, \dots$ and $1 \leq \nu \leq 2^{\mu}$. We denote

$$
s_{n,i}=\begin{cases}\frac{i}{2^{\mu+1}},&0\leq i\leq 2\nu,\\ \frac{i-\nu}{2^{\mu}},&2\nu
$$

We also set $s_{n,-1} = s_{n,0} = 0$ and $s_{n,n+1} = s_{n,n} = 1$.

By S_n we denote the space of continuous piecewise linear functions on [0, 1] with nodes $\{s_{n,i}\}_{i=0}^n$; in other words, $f \in S_n$ if $f \in C[0,1]$ and f is linear on each of the intervals $[s_{n,i-1}, s_{n,i}], i = 1, 2, \ldots, n$.

^{*} E-mail: mik.vazgen@gmail.com

Obviously, $\dim S_n = n + 1$ and the set $\{s_{n,i}\}_{i=0}^n$ is obtained by adding $s_{n,2\nu-1}$ to the set $\{s_{n-1,i}\}_{i=0}^{n-1}$. Therefore, there exists a unique (up to sign) function $f_n \in S_n$ orthogonal to S_{n-1} with $||f_n||_2 = 1$. Setting $f_0(x) = 1$ and $f_1(x) = \sqrt{3}(2x - 1)$, $x \in [0, 1]$, we obtain the orthonormal system $\{f_n(x)\}_{n=0}^{\infty}$, which was defined in an equivalent way by Franklin in [4].

It is well known that the Franklin system is a basis in $C[0, 1]$, $L^1[0, 1]$ (see [4]) and an unconditional basis in $L^p[0,1], 1 < p < \infty$ (see [5]).

By C_1, C_2, \ldots, C_p we denote positive constants depending only on their subscripts.

In studying the properties of the Franklin system, the following Ciesielski exponential estimates play an important role:

Lemma 1 (see [6]). *Let* $n = 2^{\mu} + i$, $\mu \in \mathbb{N} \cup \{0\}$, $i = 1, 2, ..., 2^{\mu}$. *Then there exists a* $q \in (0, 1)$ *such that, for all* $k \in \{0, 1, \ldots, n\}$ *,*

$$
C_1 2^{\mu/2} q^{|k - (2i - 1)|} \le (-1)^{k+1} f_n(s_{n,k}) \le C_2 2^{\mu/2} q^{|k - (2i - 1)|}.
$$

Corollary 1. *For all* $n \geq 1$ *, the following estimates hold:*

$$
\frac{C_3}{\sqrt{n}} \le ||f_n||_1 \le \frac{C_4}{\sqrt{n}}.
$$

The following theorem holds.

Theorem 1. Let $\{a_n\}_{n=0}^{\infty}$ be a sequence of real numbers such that

$$
\frac{|a_n|}{n^{\alpha}} \le C_5 \frac{|a_k|}{k^{\alpha}}, \qquad n \ge k,
$$

for some $\alpha\geq 0$. If $\sup_{n\in\mathbb{N}}\|\sum_{k=0}^n a_kf_k\|_1<+\infty$, then the series $\sum_{n=0}^\infty a_nf_n$ converges in $L^p[0,1]$ for *all* $1 \leq p < \infty$ *.*

It is easy to see that Theorem 1 implies the following theorem.

Theorem 2. *The Franklin system in* $L^1[0,1]$ *is a monotonically boundedly complete basis.*

Indeed, let $\{\hat{f}_n\}_{n=0}^{\infty}$ be the normalized Franklin system in $L^1[0,1]$, and let a_n decrease, tending to zero. Then, by Corollary 1, the assumptions of Theorem 1 hold for $\alpha = 1/2$. Therefore, the series ∇^{∞} a f converges in $I^{1}[0, 1]$ $\sum_{n=0}^{\infty} a_n f_n$ converges in $L^1[0, 1]$.

Proof of Theorem 1. In [7], it was proved that if the estimate $\sup_{n\in\mathbb{N}}\|\sum_{k=0}^n a_k f_k\|_1 < +\infty$ holds, then the series $\sum_{n=0}^{\infty} a_n f_n$ converges almost everywhere on [0, 1]. And it was shown in [8] that a series $\sum_{n=0}^{\infty}$ series $\sum_{n=0}^{\infty} a_n f_n$ in the Franklin system converges almost everywhere on $E \subset [0,1]$ if and only if $\sum_{n=0}^{\infty} a_n^2 f_n^2(x) < +\infty$ for almost all $x \in E$. Therefore, $\sum_{n=0}^{\infty} a_n^2 f_n^2(x) < \infty$ for almost all $x \in [0,$ $\sum_{n=0}^{\infty}\overline{a_n^2}f_n^2(x)<+\infty$ for almost all $x\in E.$ Therefore, $\sum_{n=0}^{\infty}a_n^2f_n^2(x)<\infty$ for almost all $x\in [0,1].$ We choose a point $x_0 \in [0, 1]$ so that

$$
\sum_{n=0}^{\infty} a_n^2 f_n^2(x_0) < \infty. \tag{2}
$$

We note that if $2^{2\mu} \le n \le 2^{2\mu+2}$, then

$$
|a_n| \ge \frac{1}{C_5} \left(\frac{n}{2^{2\mu+2}}\right)^{\alpha} |a_{2^{2\mu+2}}| \ge C_6 |a_{2^{2\mu+2}}|,
$$

where $C_6 = 1/(C_5 4^{\alpha})$. Hence, (2) and the estimate

$$
\sum_{n=2^{\mu+1}}^{2^{\mu+2}} f_n^2(x) > 2^{\mu-3}, \qquad \mu \in \mathbb{N} \cup \{0\}, \quad x \in [0,1],
$$

MATHEMATICAL NOTES Vol. 107 No. 2 2020

which was derived in [8], imply

$$
\sum_{\mu=1}^{\infty} a_{2^{2\mu}}^2 2^{2\mu} \le 32 \sum_{\mu=0}^{\infty} a_{2^{2\mu+2}}^2 \sum_{n=2^{2\mu}+1}^{2^{2\mu+2}} f_n^2(x_0) \le \frac{32}{C_6^2} \sum_{n=0}^{\infty} a_n^2 f_n^2(x_0) < \infty.
$$

Thus, $\sum_{\mu=1}^{\infty} a_{2^2\mu}^2 2^{\mu} < \infty$. We now note that, for all $\mu \in \mathbb{N} \cup \{0\}$,

$$
|a_{2^{2\mu+1}}| \leq C_5 \left(\frac{2^{2\mu+1}}{2^{2\mu}}\right)^{\alpha} |a_{2^{2\mu}}| = C_7 |a_{2^{2\mu}}|,
$$

where $C_7 = C_5 2^{\alpha}$. Therefore,

$$
\sum_{\mu=2}^{\infty} a_{2^{\mu}}^2 2^{\mu} = \sum_{\mu=1}^{\infty} a_{2^{2\mu}}^2 2^{2\mu} + \sum_{\mu=1}^{\infty} a_{2^{2\mu+1}}^2 2^{2\mu+1} \le (1 + 2C_7^2) \sum_{\mu=1}^{\infty} a_{2^{2\mu}}^2 2^{2\mu} < \infty.
$$
 (3)

In the same way, we prove that $|a_n| \leq C_7 |a_{2^{\mu}}|$ for all $n \in \{2^{\mu}, 2^{\mu}+1, \ldots, 2^{\mu+1}\}\$ and $\mu \in \mathbb{N} \cup \{0\}$. It follows that, for $x \in [0, 1]$ and any natural number $k \geq 2$,

$$
\sum_{n=k}^{\infty} a_n^2 f_n^2(x) \le C_7^2 \sum_{\mu=[\log_2(k-1)]}^{\infty} a_{2\mu}^2 \sum_{n=2^{\mu}+1}^{2^{\mu+1}} f_n^2(x). \tag{4}
$$

It follows from (4) and the inequality (see [8])

$$
\sum_{n=2^{\mu}+1}^{2^{\mu}+1} f_n^2(x) \le C_8 2^{\mu}, \qquad \mu \in \mathbb{N} \cup \{0\}, \quad x \in [0,1],
$$

that

$$
\sum_{n=k}^{\infty} a_n^2 f_n^2(x) \le C_9 \sum_{\mu=[\log_2(k-1)]}^{\infty} a_{2^{\mu}}^2 2^{\mu},\tag{5}
$$

where $C_9 = C_7^2 C_8$.

It was proved in [9] that, for all $p > 1$ and any number sequence $\{b_n\}_{n=0}^{\infty}$, the following inequality holds:

$$
\int_0^1 \left| \sum_{n=0}^\infty b_n f_n(x) \right|^p dx \le C_p \int_0^1 \left(\sum_{n=0}^\infty b_n^2 f_n^2(x) \right)^{p/2} dx.
$$

Therefore, from (3) and (5) we obtain

$$
\int_0^1 \left| \sum_{n=k}^\infty a_n f_n(x) \right|^p dx \le C_p \left(C_9 \sum_{\mu = [\log_2(k-1)]}^\infty a_{2\mu}^2 2^{\mu} \right)^{p/2} \to 0
$$

as $k \to \infty$. The theorem is proved.

Theorem 3. *The Franklin system in* C[0, 1] *is a monotonically boundedly complete basis.*

Proof. Let ${\{\overline{f}_n\}}_{n=0}^{\infty}$ be the normalized Franklin system in $C[0,1]$, let $\{a_n\}_{n=0}^{\infty}$ be a monotone sequence of numbers tending to zero, and let

$$
\sup_{n \in \mathbb{N}} \left\| \sum_{k=0}^{n} a_k \overline{f_k} \right\|_{C} < +\infty. \tag{6}
$$

MATHEMATICAL NOTES Vol. 107 No. 2 2020

It follows from Lemma 1 that $\sum_{n=2^k+1}^{2^{k+1}}|\overline{f_n}(x)|\leq C_{10}$ for all $k\in\mathbb{N}\cup\{0\}$ and $f_n(0)\leq 0$ for all $n\in\mathbb{N}.$ It was proved in [10] that $|f_{2^n+1}(0)|=1$. Combining this with (6), we see that

$$
\sum_{n=0}^{\infty} a_{2^n+1} \le \sum_{n=0}^{\infty} a_n |\overline{f}_n(0)| < \infty. \tag{7}
$$

Now let $n > m$, $2^p + 1 \le m \le 2^{p+1}$, and let $2^q + 1 \le n \le 2^{q+1}$. We note that

$$
\left|\sum_{k=m}^{n} a_k \overline{f}_k(x)\right| \le \sum_{k=2^p+1}^{2^{q+1}} a_k |\overline{f}_k(x)| = \sum_{l=p}^{q} \sum_{k=2^l+1}^{2^{l+1}} a_k |\overline{f}_k(x)| \le C_{10} \sum_{l=p}^{q} a_{2^l+1}.
$$
 (8)

It follows from (7) and (8) that

$$
\bigg\|\sum_{k=m}^n a_k \overline{f}_k(x)\bigg\|_C \to 0 \quad \text{as} \quad n, m \to \infty.
$$

The theorem is proved.

It should be noted that, by the same method, it can be proved that Theorem 1 holds for a Haar basis in $L^1[0, 1]$.

ACKNOWLEDGMENTS

The author wishes to express gratitude to Academician G. G. Gevorkyan for his advice during the work on the present paper.

FUNDING

This work was supported by the State Committee for Science of the Ministry of Education and Science of the Republic of Armenia (project GKN RA 10-3/1-41).

REFERENCES

- 1. M. M. Day, *Normed Linear Spaces* (Springer-Verlag, Berlin, 1962).
- 2. J. R. Holub, "Bounded completeness and Schauder's basis for C[0, 1]," Glasgow Math. J. **28** (1), 15–19 (1986).
- 3. V. Kadets, "The Haar system in L¹ is monotonically boundedly complete," Mat. Fiz. Anal. Geom. **12** (1), 103–106 (2005).
- 4. Ph. Franklin, "A set of continuous orthogonal functions," Math. Ann. **100** (1), 522–529 (1928).
- 5. S. V. Bockarev, ˇ "Some inequalities for the Franklin series," Anal. Math. **1** (4), 249–257 (1975).
- 6. Z. Ciesielski, "Properties of the orthonormal Franklin system. II," Studia Math. **27** (3), 289–323 (1966).
- 7. P. F. X. Müller and M. Passenbrunner, *Almost Everywhere Convergence of Spline Sequences*, arXiv: 1711.01859 (2019).
- 8. G. G. Gevorkyan, "On series in the Franklin system," Anal. Math. **16** (2), 87–114 (1990).
- 9. S. V. Bochkarev, "Existence of a basis in the space of functions analytic in the disk, and some properties of Franklin's system," Mat. Sb. **95 (137)** (1 (9)), 3–18 (1974) [Math. USSR-Sb. **24** (1), 1–16 (1974)].
- 10. G. G. Gevorkyan, "Unboundedness of the shift operator with respect to the Franklin system in the space L_1 ," Mat. Zametki **38** (4), 523–533 (1985) [Math. Notes **38** (4), 796–802 (1985)].