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Abstract—For positive integers n > r > s, G(n, r, s) is the graph whose vertices are the r-element
subsets of an n-element set, two subsets being adjacent if their intersection contains exactly s
elements. We study the chromatic numbers of this family of graphs. In particular, the exact value of
the chromatic number of G(n, 3, 2) is found for infinitely many n. We also improve the best known
upper bounds for chromatic numbers for many values of the parameters r and s and for all sufficiently
large n.
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1. INTRODUCTION AND STATEMENT OF RESULTS
We set Rn = {0, 1, . . . , n − 1} and consider the graph

G(n, r, s) = (V,E), V = {v ⊂ Rn : |v| = r}, E = {(v, u) : |v ∩ u| = s}.
This graph plays an important role in problems of coding theory (see [1]), Ramsey theory (see [2] and
[3]), and combinatorial geometry (see [4]–[14]). It is in connection with the last problems that this
graph is interpreted as a distance graph. The chromatic number of this graph, that is, the least number
χ(G(n, r, s)) of colors needed to color all vertices of the graph in such a way that the endvertices of each
edge have distinct colors, is of particular importance. Detailed surveys of all currently known estimates
can be found in [15] and [16]. In particular, it has earlier been proved that

n ≥ χ(G(n, r, r − 1)) ≥ n− r + 1. (1)

We have been able to prove the estimate (1) in the general case in a substantially simpler way than
in [15]. We have also been able to improve this estimate in quite a few cases. Further, for r = 3 and s = 2,
we have found an infinite sequence of values of n for which the chromatic number can be calculated
exactly. This is the first nontrivial case of this kind, except the case of the graphs G(n, 3, 1), in which the
exact value of the chromatic number was found for all n = 2k (see [17]). Below we give the corresponding
statements.

Theorem 1. Let p > 3 be a prime. If the congruence −1 ≡ 2r (mod p) fails for any r, then
χ(G(n, 3, 2)) ≤ n− 2 for n = p+ 2 and χ(G(n, 3, 2)) ≤ n− 1 for n = p+ 1.

We prove Theorem 1 in Sec. 2, and in Sec. 3, we explain why the assumptions of the theorem are
satisfied for infinitely many primes p.

Theorem 2. The following assertions hold.
(A) For any n and r,

n ≥ χ(G(n, r, r − 1)) ≥ n− r + 1

if n− r is even and

n ≥ χ(G(n, r, r − 1)) ≥ n− r + 2

if n− r is odd.
(B) The estimate χ(G(n, r, r − 1)) ≥ n− r + 2 holds for n = rk − 1, r being prime.
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For r = 3, it follows from Theorem 2 that

χ(G(n, 3, 2)) ≥ n− 1, n ≡ 0, 2, 4, 5 (mod 6).

Thus, the value of χ(G(n, 3, 2)) has been found for infinitely many n. We prove Theorem 2 in Sec. 4.

For r < 2s+ 1, the best known estimate of χ(G(n, r, s)) was given by the inequality (see [15])

χ(G(n, r, s)) ≤ (1 + o(1))nr−s r!

s! ((r − s)!)2
. (2)

We have been able to improve the estimate (2) in some domain of parameters; namely, we prove the
following result in Sec. 5.

Theorem 3. Let n be a prime. Then

χ(G(n, r, s)) ≤ nr−s.

We will prove this theorem in two ways, using additive combinatorics and without it.

Note that Theorem 3 holds for any r and s. At the same time, Theorem 3 readily implies an asymptotic
statement that does not use n being prime but slightly restricts the parameters r and s; namely,

χ(G(n, r, s)) ≤ (1 + o(1))nr−s

for r and s such that the asymptotics
(
1 +

1

n0.475

)r−s

∼ 1

holds as n → ∞, which is equivalent to r − s = o(n0.475). The point is that Baker, Harman, and
Pintz [18] proved the existence of a constant c such that there always exists a prime between x and
x+ cx0.525. Using this result, we obtain

χ(G(n, r, s)) ≤ χ(G(n′, r, s)) ≤ (n+ cn0.525)r−s

= nr−s

(
1 +

c

n0.475

)r−s

= (1 + o(1))nr−s,

where n′ is a prime between n and n+ cn0.475. Using the Riemann hypothesis, one can replace the
index 0.475 with 0.5 + o(1) (see [19]), and there is a belief that actually there always exist primes even on
intervals of the form [x, x+ c ln2 x]. Of course, all of this potentially weakens the restrictions imposed
on r and s.

Theorem 3 improves the previous result (2), for example, in the case where d = r− s <
√
s and s ≥ 2.

Indeed,

r!

s! (d!)2
≥ sd

d2d
> 1.

Finally, it is possible to strengthen Theorem 3 in a number of cases. The following theorem holds,
which we prove in Sec. 6.

Theorem 4. Let n = 2p, let p be prime, and let r − s be odd. Then

χ(G(n, r, s)) ≤ nr−s

2r−s−1
.
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2. PROOF OF THEOREM 1

2.1. Construction of the Coloring

Note at once that it suffices to consider the case of n = p+ 2. Indeed, to construct the desired
(n− 1)-coloring of G(n, 3, 2), it suffices to take an (n− 1)-coloring of G(n+ 1, 3, 2) and remove all
vertices (triples of elements) passing through some chosen element.

Thus, let us construct some coloring of vertices of our graph. We single out the elements n− 1 and
n− 2 and divide the set of vertices of G(n, 3, 2) into four subsets:

• V0 is the set of vertices that do not meet n− 1 and n− 2;

• V2 is the set of vertices meeting n− 1 and n− 2;

• W1 is the set of vertices that meet n− 2 and do not meet n− 1;

• W2 is the set of vertices that meet n− 1 and do not meet n− 2.

To each vertex x = (x1, x2, x3) ∈ V0 we assign the color

χ(x) = x1 + x2 + x3 (mod p),

and to each vertex x = (x1, n − 1, n− 2) ∈ V2 we assign the color

χ(x) = 3x1 (mod p).

To color the sets W1 and W2, we use the following lemma, which we prove in Sec. 2.3.

Lemma 1. Let
(Rp

2

)
be the set of all pairs of elements of Rp = Rn−2. Then there exist functions

f1, f2 :
(Rp

2

)
→ Rp such that

(1) fi(x, y) ∈ {x, y};

(2) f1(x, y) �= f2(x, y);

(3) there exists no pair x, y such that

fi(x, y) = x, fi

(
x+ y

2
, x

)
=

x+ y

2

for some i ∈ {1, 2}. (Here the division is in Zp; that is, one takes the corresponding residue
in the set {0, . . . , p − 1}.)

Now to each vertex

x = (x1, x2,m) ∈ Wi, m ∈ {n − 1, n − 2},

we assign the color

χ(x) = x1 + x2 + fi(x1, x2) (mod p).

Obviously, we have constructed a p-coloring, p = n− 2, of all vertices of our graph. In the next
section, we prove that this coloring is proper; i.e., two arbitrary vertices (triples of elements) having
exactly two common elements (forming an edge) have distinct colors.
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2.2. Proof that the Coloring Is Proper
Take two arbitrary adjacent vertices

x = (x1, x2, x3), y = (x1, x2, x4)

and consider the following cases.
Case 1. Let x, y ∈ V0. Then, obviously,

χ(x) ≡ x1 + x2 + x3 �≡ x1 + x2 + x4 ≡ χ(y) (mod p).

Case 2. Let x, y ∈ V2. Then

χ(x) ≡ 3x3 �≡ 3x4 ≡ χ(y) (mod p),

because, by assumption, p is a prime greater than three; i.e., p � ... 3.
Case 3. Let x ∈ V0 and y ∈ V2. This case is obviously impossible.
Case 4. Let x ∈ Wi and y ∈ V2. In what follows, without loss of generality, we assume that i = 2.

Then we can assume that x1 = n− 1 and x4 = n− 2, whence

χ(x)− χ(y) ≡ x2 + x3 + f2(x2, x3)− 3x2 ≡ x3 + f2(x2, x3)− 2x2 (mod p).

If f2(x2, x3) = x2, then

χ(x)− χ(y) ≡ x3 − x2 �≡ 0 (mod p),

and if f2(x2, x3) = x3, then

χ(x)− χ(y) ≡ 2x3 − 2x2 �≡ 0 (mod p),

because p = n− 2 is odd.
Case 5. Let x ∈ W2 and y ∈ V0. We can assume that x3 = n− 1. We have

χ(x)− χ(y) ≡ x1 + x2 + fi(x1, x2)− x1 − x2 − x4 ≡ fi(x1, x2)− x4 �≡ 0 (mod p)

by property 1 in Lemma 1.
Case 6. Let x ∈ W1 and y ∈ W2. Then x3 = n− 2, x4 = n− 1, and, therefore,

χ(x)− χ(y) ≡ f1(x1, x2)− f2(x1, x2) �≡ 0 (mod p)

by property 2 in Lemma 1.
Case 7. Let x, y ∈ Wi. We can assume that i = 1, i.e., that x1 = n− 2. We can write

χ(x)− χ(y) ≡ x2 + x3 + fi(x2, x3)− x2 − x4 − fi(x2, x4)

≡ x3 + fi(x2, x3)− x4 − fi(x2, x4) (mod p).

Consider the following subcases.

Subcase 7.1. If fi(x2, x3) = fi(x2, x4) = x2, then

x3 + fi(x2, x3)− x4 − fi(x2, x4) ≡ x3 − x4 �≡ 0 (mod p).

Subcase 7.2. If fi(x2, x3) = x3 and fi(x2, x4) = x4, then

x3 + fi(x2, x3)− x4 − fi(x2, x4) ≡ 2x3 − 2x4 �≡ 0 (mod p).

Subcase 7.3. If fi(x2, x3) = x2 and fi(x2, x4) = x4, then

x3 + fi(x2, x3)− x4 − fi(x2, x4) ≡ x3 + x2 − 2x4 (mod p).

Assume that x3 + x2 ≡ 2x4 (mod p). We have x4 = (x2 + x3)/2. But then we obtain

fi(x2, x3) = x2, fi

(
x2,

x2 + x3
2

)
=

x2 + x3
2

,

which contradicts property 3 in Lemma 1. Therefore, χ(x)− χ(y) �≡ 0 (mod p).

The last case of fi(x2, x3) = x3 and fi(x2, x4) = x2 can be analyzed in a similar way.
Thus, we have analyzed all cases, and the coloring is proper.
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2.3. Proof of Lemma 1
For each pair of distinct i and j, we construct the following cyclic sequences (which will be referred

to as circles) in Zp:

C(i, j) =

(
jm

∣∣∣ j0 = j, jm ≡ jm−1 + i

2
(mod p)

)
.

For example, for p = 7, we have the circle

C(1, 5) = C(1, 3) = C(1, 2) = (2, 5, 3) = (3, 2, 5) = (5, 3, 2).

Lemma 2. The length |C(i, j)| of the circle C(i, j) is equal to the order k of the number 2 in Zp.

Proof. Note that jm ≡ (j + (2m − 1)i)/2m (mod p). This can readily be verified by induction:
j0 = j ≡ (j + (20 − 1)i)/20 and

jm ≡ jm−1 + i

2
≡ (j + (2m−1 − 1)i)/2m−1 + i

2
≡ j + (2m − 1)i

2m
(mod p). (3)

But then

jk ≡ j + (2k − 1)i

2k
≡ i+

j − i

2k
≡ i+ j − i ≡ j0 (mod p).

If we assume that jm ≡ j0 (mod p) for m < k, then

2m(j0 − i) ≡ j0 − i (mod p),

(2m − 1)(j0 − i) ≡ 0 (mod p),

which is not true for prime p. The proof of the lemma is complete.

We construct a graph G = (V,E) of circles as follows: its vertices are all circles C(i, j), and its edges
are the pairs of circles C(i, j) and C(j, i). It is the cyclic sequences which we connect: for example, for
p = 7, the circles C(1, 2), C(1, 3), and C(1, 5) represent the same vertex of the graph, which is hence
connected to each of the vertices

C(2, 1) = C(2, 5) = · · · , C(3, 1) = · · · , C(5, 1) = · · · ,
etc.

Lemma 3. χ(G) = 2.

Proof. Suppose that G contains a cycle of odd length l,

C(i1, i2), C(i2, i3), . . . , C(il−1, il), C(il, i1).

It is clear that the existence of an edge is equivalent to the inclusion im−1 ∈ C(im, im+1). By (3),

im−1 ≡ im+1 + (2sm − 1)im
2sm

(mod p),

−2sm(im − im−1) ≡ im+1 − im (mod p)

for some sm. Let dm ≡ im − im−1 (mod p). Then the last equation can be rewritten as

dm+1 ≡ −2smdm (mod p).

Applying this formula l times, we obtain

dl ≡ −2sl−1dl−1 ≡ (−1)22sl−1+sl−2dl−2 ≡ · · ·
≡ (−1)l−12sl−1+sl−2+···+s1d1 ≡ (−1)l2s1+···+sldl.

Therefore,

dl(2
S + 1) ≡ 0 (mod p)

for some S, which is impossible by the assumptions of the theorem. The proof of the lemma is complete.
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We are now in a position to complete the proof of Lemma 1, i.e., to construct functions with the three
properties in the statement of the lemma. Namely, we color all the circles in two colors, M1 and M2,
being the sets of circles of the first and the second color, respectively. We set

• f1(i, j) = i and f2(i, j) = j if C(i, j) ∈ M1;

• f1(i, j) = j and f2(i, j) = i if C(i, j) ∈ M2.

Since the coloring is proper, it follows that the functions are well defined; namely, fi(x, y) = fi(y, x).
Thus, properties 1 and 2 are satisfied automatically. Let us prove property 3. Let there exist x and y such
that

fi(x, y) = x, fi

(
x+ y

2
, x

)
=

x+ y

2
.

Then

C(x, y) ∈ Mi, C

(
x+ y

2
, x

)
∈ Mi,

and hence

C

(
x,

x+ y

2

)
∈ M3−i,

but it is clear that C(x, y) = C(x, (x+ y)/2). We arrive at a contradiction, and the proof of the lemma
is complete.

3. PROOF THAT THERE EXIST INFINITELY MANY PRIMES IN THEOREM 1

Let us prove that the condition −1 �≡ 2r (mod p) is satisfied by all primes of the form p = 8k − 1,
which are infinitely many by the classical Dirichlet theorem. Note that not only these primes satisfy the
condition. For example, the number 73 satisfies the condition as well.

Let d be the order of 2 modulo p = 8k − 1, and let
(
a
p

)
denote the Legendre symbol (see [20]). It is

well known that (see [20]) (
2

p

)
= (−1)(p

2−1)/8 = (−1)(64k
2−16k+1−1)/8 = 1.

Therefore, 2 is a quadratic residue in Zp. Consequently, 2(p−1)/2 ≡ 1 (mod p), and it follows that
d | (p − 1)/2 = 4k − 1; i.e., d is odd.

Assume that l is the smallest positive integer such that 2l ≡ −1 (mod p). Then d | 2l, but d is odd,
which implies that d | l and hence 2l ≡ 1 (mod p). This contradiction completes the proof.

4. PROOF OF THEOREM 2

First, we establish the inequality χ(G(n, r, r − 1)) ≤ n. To each vertex x = (x1, . . . , xr), we assign
the color

χ(x) = x1 + · · ·+ xr (modn).

Then the difference of the colors of two adjacent vertices x = (x1, . . . , xr) and y = (x2, . . . , xr+1) is
χ(x)− χ(y) ≡ x1 − xr+1 �≡ 0 (mod n).

Let us proceed to the lower bounds in (A). Let W be an independent set in G(n, r, r − 1). Then we fix
r− 2 elements a1, . . . , ar−2. It is clear that they are contained in at most [(n− r+ 2)/2] elements of W ,
and each set in W contains

(
r

r−2

)
sets of cardinality r − 2, whence it follows that

|W | ≤
[(n− r + 2)/2]

(
n

r−2

)
(
r
2

) ;
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i.e.,

χ(G(n, r, r − 1)) ≥ |V (n, r, r − 1)|
α(G(n, r, r − 1))

≥
(n
r

)(r
2

)
[(n − r + 2)/2]

( n
r−2

) =
(n− r + 2)(n − r + 1)

2[(n − r + 2)/2]
.

Considering the two cases of the parity of the difference, we obtain assertion (A) of the theorem.
Finally, let n = rk − 1, and let r be prime. Assume that the vertices G(n, r, r − 1) are painted with

n− r + 1 colors. Then all colors occur in every maximal clique. All in all, there are
(

n
r−1

)
maximal

cliques, and each vertex is contained in r cliques. It follows that there are
( n
r−1

)
/r vertices of each color,

but since r is prime and n = rk − 1, we see that this number is noninteger, which is a contradiction.
The proof of the theorem is complete.

5. PROOF OF THEOREM 3

5.1. First Proof

Let n be prime, and let h = r − s. Then by the Bose–Chowla theorem (see [21]) there exist numbers
a0, . . . , an−1 ∈ Znh−1 such that all sums of h numbers in this set are pairwise distinct.

Now we construct a coloring as follows: if x = (x1, . . . , xr) is a vertex, then

χ(x) = ax1 + · · ·+ axr (modnh − 1).

It is clear that the total number of colors does not exceed nh. Let us verify that this coloring is proper.
Indeed, if two vertices

x = (x1, . . . , xs, y1, . . . , yr−s), y = (x1, . . . , xs, z1, . . . , zr−s)

form an edge, then

χ(x)− χ(y) ≡ ay1 + · · · + ayh − (az1 + · · ·+ azh) �≡ 0 (modnh − 1)

by the definition of ai.
The proof of the theorem is complete.
Note that each color in this coloring consists of sets whose intersections have cardinalities not only

different from s but strictly less than s. This allows us to expect a further strengthening of the result.
We also note that one can take not only primes but also powers of primes in the Bose–Chowla

theorem. However, this has little effect on the generality of the result (cf. the remarks about the
distribution density of primes in the positive integers after the statement of the theorem).

5.2. Second Proof

Let again n be a prime, and let h = r − s. The colors will be vectors in Z
h
n. Namely, let

x = (x1, . . . , xr). Then we define the ith coordinate of its color as the sum of all products of i
coordinates of x modulo n. Assume that the coloring is not proper, i.e., there exist vertices
x = (x1, . . . , xh, z1, . . . , zs) and y = (y1, . . . , yh, z1, . . . , zs) of the same color. We set

X = {x1, . . . , xh}, Y = {y1, . . . , yh}, W = {z1, . . . , zs},
and

σi(M) =
∑

S⊂M, |S|=i

∏
t∈S

t, M ∈ {X,Y,W}.

Now we shall prove by induction that

σi(X) ≡ σi(Y) (modn)

for any i ∈ {1, . . . , h}.
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Base of induction. For i = 1, the condition that the vertices x and y have the same color means that
h∑

i=1

xi +
s∑

i=1

zi ≡
h∑

i=1

yi +
s∑

i=1

zi (modn);

i.e., σ1(X) ≡ σ1(Y) (modn), as desired.
Inductive step. Let the statement be true for all i0 < i. If we consider the sums of terms with i factors

in each of them, then the terms that are products of elements of the set W alone cancel out immediately.
In turn, the sums of terms each of which includes exactly j < i factors in W will be represented as
σij(M)σj(W), where M ∈ {X,Y}. Thus, by the induction assumption, these sums cancel out as well,
which means that all terms except those in which there are no elements of the set W cancel out. We see
that

σi(X) ≡ σi(Y) (modn).

The inductive step is complete.
Thus, we see that the sets X and Y, each of which has cardinality h, satisfy the congruences

σ1(X) ≡ σ1(Y) (mod n),

σ2(X) ≡ σ2(Y) (mod n),

. . . . . . . . . . . . . . . . . . . . . . .

σh(X) ≡ σh(Y) (modn).

Consider the polynomials with root sets X and Y. By the Vieta theorem, their coefficients coincide,
which means that the polynomials are equal as functions, that is, have the same roots, and so X = Y.
At this point, we have used the fact that the root set (modn) of the polynomial (x− x1) · · · (x− xh) is
{x1, . . . , xh}, which is only true for prime n.

We have arrived at a contradiction; the proof of the theorem is complete.

6. PROOF OF THEOREM 4
Let us define the graph G(n, r, s) on the set R = Rp × {0, 1}. Then, for each vertex

x = {x1, . . . , xr}, xi = (xi, αi),

we set
X = {x1, . . . , xr}, α = (α1, . . . , αr)

and define the color

χ(x) = (σp
1(X), . . . , σp

r−s(X), σ2
1(α)),

where σp
i is the function in Sec. 5.2 and the new superscript indicates that all congruences are modulo p.

It is clear that, in this way, we use at most 2pr−s = nr−s/2r−s−1 colors.
Assume that there exist adjacent vertices x and y of the same color. Then, as in the second proof of

Theorem 3, we set

x = {x1, . . . , xr−s, z1, . . . , zs}, y = {y1, . . . , yr−s, z1, . . . , zs},
where

xi = (xi, αi), yi = (yi, βi), zi = (zi, γi),

X = {x1, . . . , xr−s}, Y = {y1, . . . , yr−s}.
The second proof of Theorem 3 obviously implies that X = Y. We can assume that xi = yi for each i.

Since x ∩ y = {z1, . . . , zs}, it follows that xi �= yi for all i. This means that one always has αi + βi = 1.
Consequently,

α1 + · · ·+ αr−s + β1 + · · ·+ βr−s ≡ r − s ≡ 1 (mod 2);

i.e., these sums are not congruent modulo 2, but then

α1 + · · ·+ αr−s + γ1 + · · ·+ γs �≡ β1 + · · · + βr−s + γ1 + · · ·+ γs (mod 2),

which contradicts x and y being of the same color.
We have arrived at a contradiction, and the proof of the theorem is complete.
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