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Abstract—At present, a plane algebraic curve can be parametrized in the following two cases:
if its genus is equal to 0 or 1 and if it has a large group of birational automorphisms. Here we
propose a new polyhedron method (involving a polyhedron called a Hadamard polyhedron by the
author), which allows us to divide the space R

2 or C2 into pieces in each of which the polynomial
specifying the curve is sufficiently well approximated by its truncated polynomial, which often defines
the parametrized curve. This approximate parametrization in a piece can be refined by means of the
Newton method. Thus, an arbitrarily exact piecewise parametrization of the original curve can be
obtained.
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1. INTRODUCTION

Despite the extensive development and complication of mathematics, some of its main problems
remain unsolved. One of such problems is the solution of an algebraic equation with two unknowns. We
shall consider a polynomial f(X), where X = (x1, x2), with real or complex coefficients. It is required to
find the solution of the equation

f(X) = 0 (1.1)

for X ∈ R
2 or C2 in the form of functions X = Φ(ξ) of a parameter ξ. At the same time, the solution

set of Eq. (1.1) constitutes an algebraic curve F and may consist of several components (branches) of
different dimensions in the real case. Here we describe algorithms for solving this problem and their
computer realization.

2. POLYHEDRON AND NORMAL CONES

Let several points {Q1, . . . , Qk} = S in R
n be given. Their convex hull

Γ(S) =

{
Q =

k∑
i=1

μiQi, μi ≥ 0,
∑

μi = 1

}

is a polyhedron. Its boundary ∂Γ consists of vertices Γ
(0)
j , edges Γ

(1)
j , and faces Γ

(d)
j of different

dimensions d, 1 < d ≤ n− 1. If a real n-vector P = (p1, . . . , pn) is given, then the maximum and the
minimum of the inner product

〈P,Q〉 = p1q1 + · · ·+ pnqn
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on S are attained at points Qi lying on the boundary ∂Γ. For each face Γ
(d)
j (including the vertices Γ

(0)
j

and the edges Γ(1)
j ), we distinguish a set of vectors P for which the maximum of 〈P,Q〉 is attained at the

points Qi ∈ Γ
(d)
j . This will be the normal cone of the face Γ

(d)
j :

U
(d)
j =

{
P : 〈P,Q′〉 = 〈P,Q′′〉 > 〈P,Q′′′〉 for Q′, Q′′ ∈ Γ

(d)
j , Q′′′ ∈ Γ \ Γ(d)

j

}
.

It is noted that the vector P lies in the space R
n
∗ dual to space R

n. In general, here we deal with affine
geometry.

All the vectors of the normal cone U
(d)
j are orthogonal to the faces Γ

(d)
j . In view of the homogeneity

of the normal cones, it suffices to consider their intersections with two hyperplanes (e.g., pn = ±1) on
which we mark the intersections

Ũ
(d)
j±

def
= U

(d)
j ∩ {pn = ±1},

called reduced normal cones. There are standard programs for both the calculation of the convex hulls
and the calculation of the normal cones of their faces [1], [2]. In particular, they are included in the Maple
system.

3. GLOBAL ANALYSIS OF THE CURVE

We assume that the polynomial f(X) = f(x1, x2) is irreducible. Then its root set F is a plane
algebraic curve. For complex values of x1 and x2, the curve F is a two-dimensional surface in the
four-dimensional space with coordinates Re x1, Imx1, Re x2, Imx2. If to this space we add the points at
infinity, then the curve F becomes topologically equivalent to the sphere with g handles, g ≥ 0 (Riemann,
1840); further,

• if g = 0, then this is the usual sphere;

• if g = 1, then this is the surface of a torus (thick doughnut);

• if g = 2, then this is the surface of a pretzel, etc.

Thus, the algebraic curve F has an integer topological invariant, namely, the genus g ≥ 0, g ∈ Z. We
shall consider situations for various values of g.

3.1. The Case g = 0

In this case, the curve F is birationally equivalent to a straight line, i.e., there exists a parametrization

x1 = ϕ1(t), x2 = ϕ2(t), t = η(x1, x2), (3.1)

where ϕ1, ϕ2, and η are rational functions.

Example 1. For the folium of Descartes

f(x1, x2)
def
= x31 + x32 − 3x1x2 = 0, (3.2)

we have

x1 =
3t

1 + t3
, x2 =

3t2

1 + t3
, t =

x2
x1

. (3.3)
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3.2. The Case g = 1 [3]

In this case, the curve f(X) = 0 is called elliptic. After the birational change x1, x2 ↔ y1, y2, it
becomes the Weierstrass normal form

y22 = 4y31 − g2y1 − g3, (3.4)

where g2 and g3 are constants (the moduli).

The uniformization of the normal form of the curve is provided by the Weierstrass function ℘(t), which
is the solution of the differential equation

[℘′(t)]2 = 4℘3(t)− g2℘(t)− g3, (3.5)

where ℘′ = d℘(t)/dt, g2, g3 = const, and, near t = 0,

℘(t) =
1

t2
+

∞∑
k=1

bkt
2k, bk = const. (3.6)

Thus, we obtain the uniformization

y1 = ℘(t), y2 = ℘′(t). (3.7)

3.3. The Hyperelliptic Case with g > 1 [3, Chap. 13]

In this case, the birational transformation x1, x2 ↔ y1, y2 reduces the equation of the curve to the
normal form

y22 = R(y1), (3.8)

where R(y1) is a polynomial of degree 2g+ 1 or 2g+ 2 without multiple roots. The solutions of this
equation can be written as y1 = ϕ(t), y2 = ψ(t), where the automorphic functions ϕ(t) and ψ(t) can be
expressed in a certain way in terms of the theta function. If g = 2, then the curve is always hyperelliptic
(see examples in [4]–[11]), but, for g > 2, there exist nonhyperelliptic curves [12, Chap. 7].

3.4. The Superelliptic Case with g > 2

In this case, a birational change of coordinates reduces the equation to the normal form

ym2 = R(y1), (3.9)

where m ≥ 3 is an integer and R(y1) is a polynomial. Uniformization in terms of the theta function exists
in this case, too. But it is not clear how to find it; see [13], [14].

Apparently, there exist curves that are not superelliptic. But there is no normal form for them so far.

Example 2. Consider the Fermat curve

xn + yn = 1. (3.10)

Its genus is g = n(n− 3)/2 + 1. The values of g for some n are given in the table.

Table. The genus of the Fermat curve (3.10)

n 2 3 4 5 6 7 8 9 10

g 0 1 3 6 10 15 21 28 36

This curve is rational only for n = 2. In addition to the case n = 3, its uniformization is also known
for n = 4 and 8 [6].
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3.5. The General Case

For an arbitrary curve f(x1, x2) = 0, only the theorem on the existence of its global uniformization
x1 = ϕ(t), x2 = ψ(t) is known, but there is no analytic algorithm for its calculation. At present, for
g > 1, explicit uniformizations are known only for curves having a sufficiently large symmetry group, i.e.,
that of birational automorphisms [4]–[6]. Moreover, even for hyperelliptic curves, such a uniformization
can be found mainly in cases of additional symmetries [4]–[9].

3.6. Implementation

All the calculations presented in Secs. 3.1–3.3 exist in the computer algebra system Maple. Using
the package algcurves, one can calculate the genus of the curve g. If g = 0 or 1, then one can obtain the
corresponding birational change of coordinates. If g > 2, then one can find whether or not the curve is
hyperelliptic. For a hyperelliptic curve, one can find the birational transform to the normal form, but there
is no search algorithm for uniformization. Questions related to superelliptic curves are not considered in
Maple.

Example 3. The paper [10] presents the uniformization of the curve

w3 − 3A(z)w − 2B(z) = 0,

where

A(z) =
1

z2 − 1
, B(z) =

z

(z2 − a2)(z2 − 1)
, 0 < a < 1.

The calculations in the Maple system showed that the genus of this curve is 2 and its normal form is

y2 = x6 − 3a2x4 + 3a4x2 − 2a4 + a2.

3.7. The Hadamard Polyhedron Method

Since a parametrization for the curve F : f(x1, x2) = 0 has not been found, we can obtain several

simpler approximate curves

̂
F l :

̂
f l(x1, x2) = 0, l = 1, . . . ,m, that approximate the original curve in

different sets Wl of the space R
2 or C2.

It may happen that the curve

̂
F l can be parametrized: x1 =

̂
ϕl(t), x2 =

̂
ψl(t). For the initial curve F ,

this parametrization can be refined.
Let

g(t, ε)
def
= f(

̂
ϕl(t) + β1ε(t),

̂
ψl(t) + β2ε(t)),

where βi = const and |β1|+ |β2| 	= 0. We shall find ε(t) by using the Newton method in the form of an
expansion

ε(t) =
∞∑
k=1

εk(t).

Here ε1(t) is determined from the equation

f(

̂
ϕl(t),

̂
ψl(t)) + ε1(t)

∂g

∂ε
(

̂
ϕl(t),

̂
ψl(t)) = 0.

Further, we obtain ε2(t) from the equation

f [

̂
ψl(t) + β1ε1(t),

̂
ψl(t) + β2ε1(t)] + ε2(t)

∂g1
∂ε2

[

̂
ψl(t) + β1ε1(t),

̂
ψl(t) + β2ε1(t)] = 0,

where

g1(t, ε2) = f [

̂
ψl(t) + β1ε1(t) + β1ε2(t),

̂
ψl(t) + β2ε1(t) + β2ε2(t)],
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etc. Here all the successive additions ε1(t), ε2(t), . . . are rational functions of
̂
ϕl(t) and

̂
ψl(t).

We can find these curves

̂
F l as follows. Let

f(X) =
∑

aQX
Q, (3.11)

where X = (x1, x2), Q = (q1, q2), and XQ = xq11 xq22 . To each summand aQX
Q we assign the point̂

Q = (Q, ln |aQ|) in R
3. The collection of these points constitutes a supersupport

̂
S ⊂ R

3. Its convex

hull will be denoted by H. The union of the faces

̂
Γ
(2)

l of the upper part of its boundary ∂H, i.e., with

p3 > 0 in the normal cone U
(2)
j , will be called an Hadamard polyhedron. To each such face

̂
Γ
(2)

l there
corresponds the truncated polynomial̂

f
(2)

l (X) =
∑

aQX
Q by

̂
Q ∈

̂
Γ
(2)

l ∩
̂
S. (3.12)

Here the sum is taken over all Q such that̂
Q = (Q, ln |aQ|) ∈

̂
Γ
(2)

l ∩
̂
S.

The faces whose normal cone contains p3 ≤ 0 are eliminated from our study, because the corre-
sponding truncated polynomials approximate the original polynomial only for x1 or x2, or both x1 and x2
tending to 0 or ∞,. The normal cones of the remaining faces intersect with the plane p3 = 1, i.e., they
possess reduced normal cones. It is these faces which are considered in what follows and constitute an
Hadamard polyhedron.

For the normal form of the superelliptic curve xm2 = R(x1), only the values of x1 are bounded in the

sets Wl, while the values of x2 are arbitrary there. The accuracy of the approximation

̂
F l to F can be

estimated by the accuracy of approximation of that of the roots of the equation R(x1) = 0 by roots of the

equation

̂
Rl(x1) = 0 [15] (see examples below).

Example 4. Consider the curve F :

f
def
= −y2 + 9x− 10x3 + x5 = 0. (3.13)

Its genus is 2. By [6, Proposition 18], the curve (3.13) has the following uniformization in theta functions:

x = 3
θ23(3t)

θ23(t)
, y = 48

√
3 i

θ33(3t)

θ33(t)

θ22(t)θ
2
4(t)

9θ43(3t)− θ43(t)
.

Its polyhedron H is spanned by the four vertices (0, 2, 0), (1, 0, ln 9), (3, 0, ln 10), (5, 0, 0). The
projection of the Hadamard polyhedron on the plane q1, q2 is shown in Fig. 1, and the projection on
the plane q1, q3 = ln |aQ| is shown in Fig. 2.

Fig. 1. The projection of the Hadamard polyhedron of the polynomial (3.13) on the plane q1, q2.
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Fig. 2. The projection of the Hadamard polyhedron of the polynomial (3.13) on the plane q1, q3 = ln |aQ|.

It is seen from Fig. 1 that, for q2 	= 0, the polyhedron H has exactly two upper two-dimensional

faces Γ(2)
1 and Γ

(2)
2 . They correspond to the following two truncated polynomials:̂

f
(2)

1 = −y2 + 9x− 10x3,

̂
f
(2)

2 = −y2 − 10x3 + x5.

Their reduced normal cones are the points Ũ(2)
1+ = (ω, γ) and Ũ

(2)
2+ = (β, δ), where

ω = ln
√
0.9 ≈ −0.05268, γ =

3 ln 9− ln 10

4
≈ 1.07227,

β = ln
√
10 ≈ 1.15129, δ =

5 ln 10

4
≈ 2.87231.

They are shown in Fig. 3 together with the reduced normal cones of the vertices and edges.

Fig. 3. The reduced normal cones of the vertices, edges, and faces of the Hadamard polyhedron of the polynomial (3.13).

The domains are assumed to be

W1 =

{
(x, y) : ln |x| < ω + β

2
≈ 0.5493

}
,

i.e., {|x| < 1.73204, y is arbitrary}, and

W2 =

{
(x, y) : ln |x| > ω + β

2
≈ 0.5493

}
,

i.e., {|x| > 1.73204, y is arbitrary}. The curves

̂
F1 and

̂
F2 have genus 1.

The transformation x1 = −10x, y1 = −20y reduces the equation

̂
f1 = 0 to its Weierstrass normal

form

y21 = 4x31 − 360x1,
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for which g2 = 360 and g3 = 0. Therefore, the uniformization for the curve

̂
F1 is as follows:

x = − 1

10
℘(t|360, 0) def

=

̂
ϕ1(t), y = − 1

20
℘′(t|360, 0) def

=

̂
ψ1(t). (3.14)

The transformation x = x2, y = x2y2/2 reduces the equation

̂
f2 = 0 to the Weierstrass normal form

y22 = 4x32 − 40x2,

for which g2 = 40 and g3 = 0. Therefore, the uniformization for the curve

̂
F2 is as follows:

x = ℘(t|40, 0) def
=

̂
ϕ2(t), y =

1

2
℘(t|40, 0)℘′(t|40, 0) def

= ψ2(t). (3.15)

The curves F ,

̂
F1, and

̂
F2 are shown in Fig. 4.

Fig. 4. The curves of Example 4: F (solid),

̂

F1 (dotted line),

̂

F2 (dot-and-dash line). The curves

̂

F1 and

̂

F2 are only
shown in their domains W1 and W2.

For y = 0, the roots of Eq. (3.13) are x = 0,±1,±3, the roots of the equation

̂
f
(2)

1 = 0 are

x = 0,±
√
0.9 ≈ ±0.948683, and the roots of the equation

̂
f
(2)

2 = 0 are x = 0,±
√
10 ≈ ±3.162278.

It is seen that the roots of the truncated equations are close to the roots of the complete equation.

Therefore, we could assume that the curves

̂
F1 and

̂
F2 are close to the curve F in their domains W1 and

W2, respectively. This can be seen from Fig. 4.
Let us refine the curve (3.14) as an approximation to the curve (3.13). To do this, we set x =

̂
ϕ1(t) + ε

and y =

̂
ψ1(t). Then, using the Newton method for ε, we obtain the equation

−
̂
ψ
2

1 + ε(9 − 30

̂
ϕ
2
1 + 5

̂
ϕ
4
1) + 9

̂
ϕ1 − 10

̂
ϕ
3
1 +

̂
ϕ
5
1 = 0.

Using the equation of the curve

̂
F1, we find that

ε(9− 30

̂
ϕ
2
1 + 5

̂
ϕ
4
1) +

̂
ϕ
5
1 = 0, i.e., ε = ε1 = −

̂
ϕ
5
1

9− 30

̂
ϕ
2
1 + 5

̂
ϕ
4
1

.

We can also calculate subsequent corrections.
Similarly, we refine the curve (3.15) as an approximation to the curve (3.13). To do this, we set

x =

̂
ϕ2(t) + ε and y =

̂
ψ2(t). Then, in the first approximation to ε, we obtain

−
̂
ψ
2

2 + ε(9 − 30

̂
ϕ
2
2 + 5

̂
ϕ
4
2) + 9

̂
ϕ2 − 10

̂
ϕ
3
2 +

̂
ϕ
5
2 = 0.

But now −
̂
ψ
2

2 = −10
̂
ϕ
3
2 +

̂
ϕ
5
2; therefore,

ε = ε1 = − 9

̂
ϕ2

9− 30

̂
ϕ
2
2 + 5

̂
ϕ
4
2

.
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Example 5. Consider the curve F :

f
def
= −y2 − x− 5

6
x3 + x5 = 0. (3.16)

Its genus is equal to 2 and the parametrization is unknown. Its supersupport S consists of the four points

(0, 2, 0), (1, 0, 0), (3, 0, ln(5/6)), and (5, 0, 0). The Hadamard polyhedron H has only one upper face Γ(2)
1

containing the points (0, 2, 0), (1, 0, 0), and (5, 0, 0), with reduced normal cone Ũ
(2)
1+ = (0, 0). To this

face there corresponds one truncated equation:̂
f
(2)

1
def
= −y2 − x+ x5 = 0. (3.17)

This is the Burnside curve, its explicit parametrization x =

̂
ϕ1(t), y =

̂
ψ1(t) in the functions ℘ and ℘′ is

given in the complicated formula (3) of the paper [5].

For y = 0, the roots of Eq. (3.16) are x = 0,±
√

3/2 ≈ ±1.2241, and those of Eqs. (3.17) are
x = 0,±1. They are close to each other, just as the corresponding curves in Fig. 5.

Let us find the correction ε to the curve

̂
F1. We set g(t, ε) = f(

̂
ϕ1(t) + ε,

̂
ψ1(t)). Then

∂g

∂ε
=

∂f

∂x

∣∣∣∣
(
̂

ϕ1,

̂

ψ1)

,

and, in the first approximation, we obtain the following equation for ε:

f(

̂
ϕ1,

̂
ψ1) + ε

∂f

∂x
(

̂
ϕ1,

̂
ψ1) = 0, i.e., ε =

(5/6)

̂
ϕ
3
1(t)

−1− (5/2)

̂
ϕ
2
1 + 5

̂
ϕ
4
1

.

Fig. 5. The curves of Example 5: F and

̂

F1.

This procedure can be extended to obtain subsequent additions ε2, ε3, . . . as rational functions

of
̂
ϕ1(t) and

̂
ψ1(t). Here the domain W1 coincides with the whole space.

Using this approach, we obtain the parametrization problem for curves of the form

ym = akx
k + alx

l, k < l, ak, al = const 	= 0.

They can have any genus (see Example 2), but they have many symmetries, i.e., birational automor-
phisms.

Remark 1. A similar technique also applies to the case n = 3 for the global parametrization of a
two-dimensional algebraic manifold given by one polynomial in three variables. If there is no such global
parametrization, then it can be written in the form of several approximate parametrizations that are
obtained by using the three-dimensional upper part of the boundary of a four-dimensional polyhedron.
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Remark 2. Certainly, to ensure parametrization by means of an Hadamard polyhedron, it is desirable
to reduce the polynomial f(X) to its simplest form. To this end, in Examples 4 and 5, we took
hyperelliptic polynomials, which are of normal form. Their proposed parametrization is reduced to the
parametrizations of curves of the form y2 = xk + 1, which can, apparently, be parametrized in terms of
theta functions. But even such a realization will be a remarkable achievement.

Remark 3. It is seen from Examples 4 and 5 that the curves obtained by the proposed method
approximate both connected components of the original curves in the real sense. Apparently, this will
always be so, because this method applies to the complex case as well.

Remark 4. For the polynomial (3.11), the set of points {Q} is a support, and their convex hull is a

Newton polygon. For that reason, the set of points

̂
Q = (Q, ln |aQ|) was called a supersupport. In

general, an Hadamard polyhedron differs from a Newton polygon in that it takes into account the values
of the coefficients of the polynomial.
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