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Abstract—We give a proof of the boundedness of the Bergman projection in generalized
variable-exponent vanishing Morrey spaces over the unit disc and the upper half-plane. To this end,
we prove the boundedness of the Calderón–Zygmund operators on generalized variable-exponent
vanishing Morrey spaces. We give the proof of the latter in the general context of real functions on
R

n, since it is new in such a setting and is of independent interest. We also study the approximation
by mollified dilations and estimate the growth of functions near the boundary.
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1. INTRODUCTION

Let dA(z) denote the normalized area measure on D, so that the area of D is 1. As usual, Ap(D)
stands for the Bergman space of functions holomorphic in D that belong to Lp(D) = Lp(D; dA(z)). The
Bergman projection BD,

BDf(z) =

ˆ
D

K(z, w)f(w)dA(w) =

ˆ
D

f(w)

(1− zw)2
dA(w), z ∈ D, (1.1)

is well defined on L1(D) and bounded as an operator from Lp(D) to Ap(D) for 1 < p < ∞. Let
R
2
+ stand for the upper half-plane, and let dA(z) = dx dy be the Lebesgue area measure. The

symbol Ap(R2
+) stands for the Bergman space of functions f holomorphic in R

2
+ and belonging

to Lp(R2
+) = Lp(R2

+; dA(z)). The corresponding Bergman projection B
R
2
+

, which is defined on

f ∈ L1(R2
+) as

B
R
2
+
f(z) =

ˆ
R
2
+

K(z, w)f(w)dA(w) = − 1

π

ˆ
R
2
+

f(w)

(z − w)2
dA(w), z ∈ R

2
+,

is bounded as an operator from Lp(R2
+) to Ap(R2

+) for 1 < p < ∞.
A boundedness result for more general weighted projections on weighted Bergman spaces is also well

known. For references, see [1]–[4]. The existence of a bounded projection is very useful in the theory of
Bergman-type spaces. There exist many extensions of the boundedness result to mixed-norm spaces,
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general weights satisfying Bekolle–Bonami conditions, etc. Without any claim of completeness, we
refer to the papers [5]–[7]; see also references therein. In general, most of the results on boundedness
were proved by essentially using the holomorphic nature of the Bergman kernel function.

In the paper [14], a different approach was used, based on reducing the Bergman projection operator
to a particular case of the Calderón–Zygmund operator, namely, the Riesz transforms, and then applying
facts known for such operators.

This approach was further developed in the papers [10], [11] for the cases of variable-exponent
Lebesgue space, Orlicz space, and generalized variable-exponent Morrey space on the unit disc and
the half-plane (and also for the corresponding harmonic Bergman-type spaces). Note that, in the case
of Lp(·)(D), a boundedness result was obtained in [17]. Our proof via singular operators is simpler in a
sense.

The main idea of our paper is to show that the approach of [14] can be used to prove the boundedness
of the Bergman projection in the case of vanishing Morrey space. As is known, variable-exponent spaces
have become very popular in analysis during the last two decades. Following that approach, one can
prove similar results for many other function spaces.

We also study the rate of growth of functions near the boundary in generalized Morrey-Bergman
and generalized vanishing Morrey-Bergman spaces with variable exponent and their approximation
by the so-called mollified dilations. In general, functions from the variable-exponent generalized
Morrey-Bergman space cannot be approximated by continuous functions because of the nature of the
function space equipped with the supremum norm. In the case of the unit disc, such an approximation
is possible in the vanishing Morrey-Bergman space. In the case of domains of infinite measure, for
example, a half-plane, a narrower subspace should be used (see Sec. 5).

2. BOUNDEDNESS OF THE CALDERÓN–ZYGMUND SINGULAR OPERATORS
ON A GENERALIZED VARIABLE-EXPONENT VANISHING MORREY SPACE

In this section, both the Calderón–Zygmund operators and the generalized variable-exponent
vanishing Morrey spaces are considered in a setting more general than in the rest of the paper.

Let D ⊆ R
n be an open set, and let d = diam D and x, y, z stand for points in R

n. Let p = p(x) be a
measurable function on D with values in [1,∞]. For details on the variable-exponent spaces Lp(·)(D),
we refer the reader to [27], [28], [20], [21]. Recall that ‖f‖Lp(·)(D) is defined by

‖f‖Lp(·)(D) = inf{λ > 0 :

ˆ
D\D∞

∣
∣
∣
∣

f(x)

λ

∣
∣
∣
∣

p(x)

dx ≤ 1}+ sup
x∈D∞

|f(x)|, 1 ≤ p(x) ≤ +∞.

where D∞ = {x : p(x) = ∞}.

We suppose that 1 ≤ p− ≤ p(x) ≤ p+ < ∞, where the standard definitions p+ = esssupx∈Dp(x) and
p− = essinfx∈Dp(x) are used. We say that the exponent p satisfies the log-condition on D if

|p(x)− p(y)| ≤ C

− ln |x− y| , |x− y| ≤ 1

2
, x, y ∈ D, (2.1)

where C > 0 depends on p but not on x and y. The function p is said to satisfy the decay condition if
there exists a number p∞, denoted by the same symbol p(∞), such that

|p(x)− p∞| ≤ C

ln(e+ |x|) , |x| → ∞, x ∈ D. (2.2)

To introduce the generalized variable-exponent Morrey space Lp(·),ω(·)(D) and its subspace, the
generalized variable-exponent vanishing Morrey space VLp(·),ω(·)(D), we define the modular

Mp(·),ω(·)(f ;x, r) :=
1

ω(x, r)
‖f‖Lp(·)(D(x,r)∩D),
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ON SINGULAR OPERATORS IN VANISHING GENERALIZED MORREY SPACES 729

where ω(x, r) is a nonnegative measurable function on D × [0, d]. The generalized Morrey space
Lp(·),ω(·)(D) over the open set D is defined as the set of functions f measurable on D and such that

‖f‖Lp(·),ω(·)(D) = sup
x∈D,r∈(0,d)

Mp(·),ω(·)(f ;x, r) < ∞.

For more details, we refer the reader to [21]. It is known that the space Lp(·),ω(·)(D) is nontrivial if

inf
r>δ

inf
x∈D

ω(x, r) > 0 for any δ > 0.

The vanishing Morrey space VLp(·),ω(·)(D) is introduced as

VLp(·),ω(·)(D):={f ∈ Lp(·),ω(·)(D) : lim
r→0

sup
x∈D

Mp(·),ω(·)(f ;x, r) = 0}.

We set

p∗(x, r) =

{
2/p(x), r ≤ 1,

2/p(∞), r > 1
and p(x, r) =

{
p(x), r ≤ 1,

p(∞), r > 1.

By K we denote the Calderón–Zygmund singular operator

Kf(x) =

ˆ
D
K(x, y)f(y)dA(y)

with so-called “standard” kernel K(x, y) (see, e.g., [39, p. 99]) i.e., a continuous function defined on
(x, y) ∈ R

n × R
n, x �= y, and satisfying the estimates

(a) |K(z, w)| ≤ C|z − w|−n for all z �= w;

(b) |K(x, y)−K(x, z)| ≤ C
|y − z|σ

|x− y|n+σ
, σ > 0, if |x− y| > 2|y − z|;

(c) |K(x, y)−K(z, y)| ≤ C
|x− z|σ

|x− y|n+σ
, σ > 0, if |x− y| > 2|x− z|.

Everywhere in what follows we shall assume that the operator K is bounded on L2(Rn); then it is
bounded on Lp(Rn), 1 < p < ∞ ([39]).

The classical Calderón–Zygmund kernels Ω((x− y)/|x− y|)/|x− y|n, where Ω(x′) satisfies Hölder
condition of order σ > 0 on the unit sphere Sn−1, satisfy the above conditions (a)–(c).

In the theorem below, we use the notation

ψ(x, r) =
w(x, r)

rn/p(x,r)
.

Theorem 1. Suppose that p− > 1, p+ < ∞, and p satisfies the log-condition (2.1) and the decay
condition (2.2) (when D is unbounded). Suppose also thatˆ ∞

r

essinft<s<∞ω(x, s)

t1+n/p(x,t)
dt ≤ C

ω(x, r)

rn/p(x,r)
, (2.3)

where C is independent of x and r,
ˆ δ0

r

ψ(x, t)

t
dt ≤ Cψ(x, r) (2.4)

for some δ0 > 0, where C is independent of x, r,ˆ ∞

δ

ψ(x, t)

t
dt ≤ Cδ (2.5)
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for every δ > 0, where Cδ is independent of x, and

lim
r→0

sup
x∈D

1

ψ(x, r)
= 0. (2.6)

Then the Calderón–Zygmund singular operator K is bounded on VLp(·),ω(·)(D).

Proof. Note that (2.3) already guarantees boundedness in the Lp(·),ω(·)-space:

‖Kf‖Lp(·),ω(·) ≤ c‖f‖Lp(·),ω(·) . (2.7)

Clearly, (2.7) holds on the subspace V Lp(·),ω(·) ⊂ Lp(·),ω(·), but this does not yet mean the boundedness
of K on V Lp(·),(ω), i.e., the preservation of the property

lim
r→0

sup
x∈D

Mp(·),ω(·)(f ;x, r) = 0

by the operator K. This is a known problem for spaces of vanishing type; see [9] for singular operators on
vanishing Morrey spaces and [29] for fractional maximal operators on vanishing Orlicz–Morrey spaces.

We follow the scheme of argument in [9] (see Theorem 5.1). Assume that f ∈ VLp(·),ω(·)(D). We use
formula (3.13) from [8]:

Mp(·),ω(·)(Kf ;x, r) ≤ C
1

ψ(x, r)

ˆ ∞

r

ψ(x, t)

t
Mp(·),ω(·)(f ;x, t)dt. (2.8)

We split the integral on the right-hand side of (2.8) in two integrals over the intervals (r, δ) and (δ,∞)
with some δ > 0, which may be taken arbitrarily small, since we are interested in the behaviour of the
left-hand side of (2.8) as r → 0.

To estimate the first integral, we observe that, for f ∈ VLp(·),ω(·)(D), the expression Mp(·),ω(·)(f ;x, t)
can be made arbitrarily small uniformly in x ∈ D and t ∈ (r, δ) by an appropriate choice of δ; then we
use (2.4).

Now fix δ. To estimate the second integral, we replace the expression Mp(·),ω(·)(f ;x, t) with a
constant and then use (2.5) and (2.6) to see that the second term goes to zero as r → 0.

In what follows, we shall consider generalized variable-exponent Morrey and vanishing Morrey
spaces with ω given by

ω(x, r) =
rn/p(x)

ϕ(x, r)
, 0 < r < d, x ∈ D.

Here and everywhere in what follows, the function ϕ(x, r) is a nonnegative increasing function on (0, d)
such that

inf
r>ν

ϕ(x, r) > 0 for all ν ∈ (0, d)

and

lim
r→0

sup
x∈D

ϕ(x, r) = 0. (2.9)

We find it convenient to change the notation for such variable-exponent Morrey spaces in the
following way:

Lp(·)
ϕ (D) := Lp(·),w(·)(D)

∣
∣
∣
∣
w(x,r)= rn/p(x)

ϕ(x,r)

, (2.10)

with VL
p(·)
ϕ (D) defined similarly.

In the case where the function w is w(x, r) = rn/p(x)/ϕ(x, r), the condition (2.6) follows from the
condition (2.9) imposed on ϕ.
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Corollary 1. Let D be a bounded open set in R
n. Suppose that p− > 1, p+ < ∞, and p satisfies the

log-condition (2.1). Suppose that ˆ d

r

dt

tϕ(x, t)
≤ C

ϕ(x, r)
, (2.11)

where C is independent of r and x. Then the Calderón–Zygmund singular operator K is bounded
on VL

p(·)
ϕ (D).

Corollary 2. Let D = R
n
+. Suppose that p− > 1, p+ < ∞, and p satisfies the log-condition (2.1)

and the decay condition (2.2). Suppose also that

ˆ ∞

r

essinft<s<∞
sn/p(x)

ϕ(x,s)

t1+n/p(x,t)
dt ≤ C

rn/p(x)−n/p(x,r)

ϕ(x, r)
, (2.12)

where C is independent of x and r,ˆ δ0

r

tn/p(x)−n/p(x,t)

ϕ(x, t)

dt

t
≤ C

rn/p(x)−n/p(x,r)

ϕ(x, r)
(2.13)

for some δ0 > 0, where C is independent of x and r, andˆ ∞

δ

tn/p(x)−n/p(x,t)

ϕ(x, t)

dt

t
≤ Cδ (2.14)

for every δ > 0, where Cδ is independent of x. Then the Calderón–Zygmund singular operator K
is bounded on VL

p(·)
ϕ (Rn

+).

Observe that, in Corollary 1, we replaced essinfs>tψ(x, t) by

ψ(x, t) =
tn/p(x)−n/p(x,r)

ϕ(x, t)
=

1

ϕ(x, r)
, r < 1,

to obtain a simpler condition, while in Corollary 2, we prefer to keep essinfs>t because of integration over
an infinite interval; note that, under a similar replacement, condition (2.12) would turn into (2.11) with
d = ∞ only if p+ = p(∞).

The classical variable-exponent Morrey space Lp(·),λ(Rn) is usually defined by the norm

‖f‖Lp(·),λ(Rn) = sup
x∈Rn

sup
r>0

1

rλ/p(x)
‖χB(x,r)f‖Lp(·)(B(x,r)). (2.15)

It is also reasonable to consider the modification of such a space denoted by L̃p(·),λ(Rn) and defined by

‖f‖
˜Lp(·),λ(Rn) = sup

x∈Rn
sup
r>0

1

rλ/p(x,r)
‖χB(x,r)f‖Lp(·)(B(x,r)). (2.16)

The spaces Lp(·),λ(Rn) and L̃p(·),λ(Rn) correspond to the cases

ϕ(x, r) = r(n−λ)/p(x) and ϕ(x, r) = r(n−λ)/p(x,r),

respectively.

Corollary 3. Suppose that p satisfies the conditions p− > 1, p+ < ∞, and p satisfies the
log-condition (2.1) and the decay condition (2.2). Then the Calderón–Zygmund singular
operator K is bounded on the spaces

Lp(·),λ(Rn) and VLp(·),λ(Rn) if 0 < λ <
np−

p∞

and on

L̃p(·),λ(Rn) and VL̃p(·),λ(Rn) if 0 < λ < n.

MATHEMATICAL NOTES Vol. 106 No. 5 2019



732 KARAPETYANTS et al.

Proof. The corollary follows from the fact that

essinfs>t
sn/p(x)

ϕ(x, s)
= inf

s>t
sλ/p(x) = tλ/p(x);

thus, condition (2.12) turns into
ˆ ∞

r

tn/p(x)−λ/p(x,r)

t
dt ≤ Crn/p(x)−λ/p(x,r),

and it remains to consider the cases where r < 1 and r ≥ 1.

3. THE GENERALIZED VARIABLE-EXPONENT VANISHING MORREY SPACE VAp(·)
ϕ (D)

OF HOLOMORPHIC FUNCTIONS

By VAp(·)
ϕ (D) we denote the space of functions holomorphic in D that belong to VL

p(·)
ϕ (D).

Here and in what follows, we identify R
2 = C, so that z stands for (x1, x2) = z = x1 + ix2 and

w = (y1, y2) = y1 + iy2.

We denote D0 = {z ∈ C : |z| < 1/2}, D1 = {z ∈ C : 1/2 < |z| < 1}, D2 = {z ∈ C : 1 < |z| < 2}.
Let Q denote the inversion operator with respect to the unit circle, i.e., Qf(z) = f( 1 /z). Given a
function φ defined on (0, 1), we say that it satisfies the doubling condition on (0, 1) if its extension
by φ(1) to t ≥ 1 satisfies the doubling condition for t > 0, i.e., if there exists a C(2) > 0 such that
φ(2t) ≤ C(2)φ(t), t > 0.

The authors of [14] used a certain representation of the Bergman projection. We find it important to
formulate it as the following theorem, where K(z, w) stands for the Bergman kernel given in (1.1).

Theorem 2. The Bergman projection BD has the following representation in terms of the
Calderón–Zygmund singular operator: BDf(z) = K1f(z) +K2f(z), where K1 is the integral
operator with bounded kernel K1(z, w) = (χD0(z) + χD1(z)χD0(w))K(z, w) and

K2f(z) = χD1(z)

ˆ
D2

Ω
( ζ−z
|ζ−z|

)

|ζ − z|2 g(ζ)dA(ζ) =: Tg(z), (3.1)

where Ω(z) = z2, g(ζ) = Qf(ζ)ζ2/|ζ|4, and ζ ∈ D2.

Note that the boundedness of the kernel K1(z, w) is obvious; the operator K2 in the form (3.1) is
obtained by the change of variables w �→ 1 /ζ , which takes D1 to D2.

The above representation allows one to prove the boundedness of the Bergman projection in a variety
of Banach spaces with the lattice property for which the boundedness of the operators T and Q (in the
corresponding setting) is known.

In the following theorem, we consider the spaces VL
p(·)
ϕ (D) and VAp(·)

ϕ (D) with the function ϕ
depending only on r : ϕ = ϕ(r). This restriction is required to justify the implication (3.3) in the proof
of the theorem, which involves a change of variables in the integrals with respect to the corresponding
norms and the passage from the domain D1 to the domain D2.

Theorem 3. Suppose that p satisfies the log-condition (2.1) on D, p− > 1, and p+ < ∞. Let
ϕ = ϕ(r) satisfy the condition (2.11) with d = 1, the doubling condition on the interval (0, 1),
and the condition limr→0 ϕ(r) = 0. Then the Bergman projection BD is bounded as an operator

from VL
p(·)
ϕ (D) to VAp(·)

ϕ (D).
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Proof. The proof is based on the representation of the Bergman projection provided by Theorem 2 and
on the boundedness result provided by Corollary 1.

Evidently, the operator K1 is bounded on VL
p(·)
ϕ (D), that is, it is bounded on L

p(·)
ϕ (D) and preserves

the vanishing property, which follows directly from the definition of VLp(·)
ϕ (D).

To handle the operator K2, we must first make some arrangements. Since p is bounded and uniformly
continuous on D, it extends to a continuous function up to the boundary. We extend the exponent p to
the set D2 by the rule p(ζ) = p( 1 /ζ), ζ ∈ D2. We shall use the same symbol p for the function thus
extended. It can be directly verified that p satisfies the log-condition (2.1) on D ∪D2.

In our estimates, we deal with the norm on L
p(·)
ϕ (D), where D is one of the domains D1, D2, and D.

In this case, for p satisfying the log-condition (2.1), the norm on the space L
p(·)
ϕ (D) defined by (2.10) is

equivalent to the norm

‖f‖∗
L
p(·)
ϕ (D)

= sup
Dr∈Dε0

ϕ(r)

r2/p−(Dr∩D)
‖f‖Lp(·)(Dr∩D), (3.2)

where Dε0 is the set of discs Dr of radius r ≤ ε0 and p−(Dr ∩D) = minz∈Dr∩D p(z). We also have

f ∈ VLp(·)
ϕ (D1) implies g ∈ VLp(·)

ϕ (D2) (3.3)

and

‖g‖∗
L
p(·)
ϕ (D2)

≤ C1‖f‖∗
L
p(·)
ϕ (D1)

≤ C2‖f‖Lp(·)
ϕ (D)

.

To obtain the first inequality, we used the fact that ϕ satisfies the doubling condition on (0, 1) and also
the fact that p(ζ) = p(z) for ζ = 1/z, z ∈ D1, ζ ∈ D2.

By Corollary 1, we obtain

K2f ∈ VLp(·)
ϕ (D) and ‖K2f‖Lp(·)

ϕ (D)
≤ C‖g‖

L
p(·)
ϕ (D2)

, (3.4)

which, in view of the equivalence of the norms ‖ · ‖
L
p(·)
ϕ (D)

and ‖ · ‖∗
L
p(·)
ϕ (D)

, completes the proof.

Corollary 4. Under the conditions of Theorem 3, the space VAp(·)
ϕ (D) is a closed subspace in

VL
p(·)
ϕ (D).

Theorem 4. Suppose that p satisfies (2.1) and 1 < p− ≤ p(z) ≤ p+ < ∞. If f ∈ Ap(·)
ϕ (D), then, for

z ∈ D,

|f(z)| ≤ η(z)

ϕ(z, 1 − |z|) , where η(z) = C‖f‖
L
p(·)
ϕ (D(z,1−|z|)), (3.5)

so that η(z) ≤ C‖f‖
L
p(·)
ϕ (D)

and η(z) → 0 as |z| → 1 if f ∈ VAp(·)
ϕ (D).

Proof. Let f ∈ Ap(·)
ϕ (D). For all 0 ≤ ρ < 1− |z|, we have

|f(z)| ≤ 1

2π

ˆ 2π

0
|f(z + ρeiα)| dα, z ∈ D.

Integration in the variable ρ over (0, δ) for some δ ≤ 1− |z| with respect to the measure 2ρdρ gives

|f(z)| ≤ 1

δ2

ˆ
D(z,δ)

|f(w)|dA(w) ≤ 2

δ2
‖f‖Lp(·)(D(z,δ))‖χD(z,δ)‖Lq(·)(D(z,δ)), z ∈ D. (3.6)

Here we applied the Hölder inequality for variable-exponent Lebesgue spaces to the functions f and
χD(z,δ). Since p satisfies the log-condition (2.1), it follows that (cf. [20, Lemma 1.4]) we obtain

‖χD(z,δ)‖Lq(·)(D(z,δ)) ≤ C1|D(z, δ))|2/q(z) ≤ C2δ
2/q(z), z ∈ D.
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From this inequality and (3.6) it follows that

|f(z)| ≤ C

δ2/p(z)
‖f‖Lp(·)(D(z,δ)) ≤

C1

ϕ(z, δ)
‖f‖Lp(·),ϕ(D(z,δ)), z ∈ D,

which proves (3.5). It remains to note that η(z) → 0 as |z| → 1 for f ∈ VL
p(·)
ϕ (D) by the definition of the

vanishing space.

Remark 1. In the case p(z) = p = const, the value p = 1 is allowed in Theorem 4. We assume that
p− > 1 for simplicity.

4. THE GENERALIZED VARIABLE-EXPONENT VANISHING MORREY SPACE VAp(·)
ϕ (R2

+)
OF HOLOMORPHIC FUNCTIONS

By VAp(·)
ϕ (R2

+) we denote the space of functions holomorphic in R
2
+ that belong to VL

p(·)
ϕ (R2

+).

Theorem 5. Suppose that p satisfies the log-condition (2.1) and the decay condition (2.2),
p− > 1, and p+ < ∞, and let conditions (2.12)–(2.14) be satisfied for x ∈ R

2
+. Then the Bergman

projection B
R
2
+

is bounded as an operator from VL
p(·)
ϕ (R2

+) to VAp(·)
ϕ (R2

+).

Proof. Our proof is based on the following representation for the Bergman projection B
R
2
+

obtained in

[10]. Let Q denote the operator of reflection with respect to the real line Qf(z) = f(z). Let R2
− denote

the lower half-plane, and let E
R
2
−

denote the operator of extension by zero from R
2
− to the whole space

R
2. The Bergman projection B

R2
+

has the following representation in terms of the Calderón–Zygmund
singular operator:

B
R
2
+
f(z) = − 1

π

ˆ
R2

Ω
(

z−w
|z−w|

)

|z − w|2 g(w)dA(w), z ∈ R
2
+, g = E

R
2
−
Qf, Ω(z) = z2. (4.1)

By representation (4.1) and Corollary 2, the proof is completed by an argument similar to that in
Theorem 3.

Corollary 5. Under the conditions of Theorem 5, the space VAp(·)
ϕ (R2

+) is a closed subspace in

VL
p(·)
ϕ (R2

+).

Theorem 6. Suppose that p satisfies the log-condition (2.1) and the decay condition (2.2) and

1 < p− ≤ p(z) ≤ p+ < ∞. If f ∈ Ap(·)
ϕ (R2

+), then

|f(z)| ≤ C

ϕ(z, y)
‖f‖

L
p(·)
ϕ (D(z,y))

, z = x+ iy ∈ R
2
+, z = x+ iy ∈ R

2
+, y ≥ 1.

If, moreover, f ∈ VAp(·)
ϕ (R2

+), then

f(z) = o

(
1

ϕ(z, y)

)

, where y → 0, z = x+ iy ∈ R
2
+.

Proof. The line of reasoning is the same as in the proof of Theorem 4. The only thing to explain is the
following. Direct estimation gives

|f(z)| ≤ C

ϕ(z, y)
‖f‖

L
p(·)
ϕ (D(z,y))

for y < 1 and

|f(z)| ≤ C
y2/p(z)−2/p(∞)

ϕ(z, y)
‖f‖

L
p(·)
ϕ (D(z,y))

for y ≥ 1. The factor y2/p(z)−2/p(∞) can be omitted, which is obvious when 2/p(z) − 2/p(∞) ≤ 0.
Otherwise, y2/p(z)−2/p(∞) ≤ |z|2/p(z)−2/p(∞), and it suffices to use the decay condition.
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Remark 2. In the case p(z) = p = const, the value p = 1 is allowed in Theorem 6. We assume that
p− > 1 for simplicity.

Remark 3. We use this opportunity to correct a misprint in the paper [10]. In Theorems 4.1 and 6.1,
the condition 1 ≤ p(z) ≤ p+ < ∞ should be replaced by 1 < p− ≤ p(z) ≤ p+ < ∞. In the case
p(z) = p = const, the value p = 1 is allowed in these theorems. Further, in Remarks 4.1 and 6.1, the
third formula is true for f in the corresponding vanishing Morrey space.

By Ap(·),λ(Rn) and Ãp(·),λ(Rn) we denote the corresponding subspaces in Lp(·),λ(Rn) and L̃p(·),λ(Rn)
of holomorphic functions.

Corollary 6. Under the assumptions of Theorem 6 on the exponent function p,

|f(z)| ≤ C

y(2−λ)/p(z)
‖f‖Lp(·),λ(D(z,y)) for f ∈ Ap(·),λ(R2

+)

and

|f(z)| ≤ C

y(2−λ)/p(z,y)
‖f‖

˜Lp(·),λ(D(z,y)) for f ∈ Ãp(·),λ(R2
+).

In the next theorem, we show how the estimate should be changed for p− = 1 for the case of
Ap(·),λ(R2

+).

Theorem 7. Suppose that 1 ≤ p(z) ≤ p+ < ∞ for z ∈ R
2
+ and p(z) satisfies the log-condition (2.1)

and the decay condition (2.2) with 0 ≤ λ < 2. Then

|f(z)| ≤ C‖f‖Ap(·),λ(D(z,y)) ·

⎧

⎪⎨

⎪⎩

y(λ−2)/p(∞) if y ≥ 1,

y(λ−2)/p(z) if |B(z, y) ∩ E1| = 0 and y < 1,

yλ/p(z)−2 if |B(z, y) ∩ E1| > 0 and y < 1,

where E1 = {z : p(z) = 1}.

Proof. The line of reasoning is the same as in the proof of Theorem 4. The main difference is that now
we have to use an estimate for ‖χB(x,r)‖Lq(·)(R2

+) when q(x) is not bounded. In this case,

‖χB(x,r)‖Lq(·)(R2
+) = inf{η > 0 :

ˆ
B(x,r)

dy

ηq(y)
≤ 1} + sup

y∈E1

χB(x,r),

where the first term is estimated, in the familiar way, by r2/p(x), while the second one is equal to 1 when
|B(x, r) ∩ E1| > 0. For the case y ≥ 1, we use the decay condition (2.2), from which it follows that
|1/p(z) − 1/p(∞)| ln y ≤ C and, consequently, y1/p(z) ∼ y1/p(∞).

5. ON MOLLIFIERS IN THE SPACES Ap,ψ(D) AND Ap,ψ(R2
+), 1 < p < ∞

In this section, we shall define the space Lp,ψ(Ω) as the space of measurable functions on Ω equipped
with the norm

‖f‖Lp,ψ(Ω) := sup
x∈Ω
r>0

Mp,ψ(f ;x, r)
1/p, where Mp,ψ(f ;x, r) =

1

ψ(r)

ˆ
B(x,r)

|f(y)|pdy.

The corresponding subspace of holomorphic functions will be denoted by Ap,ψ(Ω).
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5.1. Mollifiers in the Case of the Disk

The standard approximation of the functions f(z) by the dilated function f( z
1+ε), which is well known

for the Bergman spaces, works also for the Morrey spaces in the case where p is constant, as can be
seen from the proof of the next theorem. We wish to show that mollifiers which use both translation and
dilation can also be applied for this purpose. Let η(z) be any C∞

0 (R2) function supported on B(0, 1/2)
and such that

´
B(0,1/2) η(z)dA(z) = 1. Consider a mollifier of the form

Hεf(z) =
1

ε2

ˆ
D

f

(
w

1 + ε

)

η

(
z − w

ε

)

dA(w) =

ˆ
B(0,1/2)

η(w)f

(
z − εw

1 + ε

)

dA(w),

where f ∈ Ap,ψ(D).
Clearly, if f is holomorphic in {z : |z| < 1}, then Hεf is holomorphic in {z : |z| < 1 + ε} and Hεf

converges to f for all z ∈ D.
We say that a measurable function ϕ : (0,∞) → (0,∞) belongs to the class Φ if

(a) ϕ is almost increasing;

(b) ϕ(t)/t2 is almost decreasing;

(c) inft>δ ϕ(t) > 0 for every δ > 0.

The conditions defining the class Φ are standard in the theory of generalized Morrey spaces; see [26],
[23]. For ψ ∈ Φ, we see that the space Lp,ψ(Rn) is nontrivial.

Theorem 8. Let 1 < p < ∞, and let f ∈ VAp,ψ(D), where ψ ∈ Φ. Then

lim
ε→0

‖Hεf − f‖Lp,ψ(D) = 0. (5.1)

Proof. By Minkowski’s integral inequality for Morrey spaces, we have

‖Hεf − f‖Lp,ψ(D) ≤
ˆ
|w|≤1/2

|η(w)| ‖f
(
z − εw

1 + ε

)

− f(z)‖Lp,ψ(D) dA(w),

where the norm of the right-hand side is taken with respect to z. This norm is uniformly bounded in
w ∈ B(0, 1/2) and ε < 1; hence, by the Lebesgue dominated convergence theorem, it suffices to check
that this norm tends to zero as ε tends to zero for all w ∈ B(0, 1/2). We have

‖f
(
z − εw

1 + ε

)

− f(z)‖Lp,ψ(D) ≤ ‖f
(
z − εw

1 + ε

)

− f(z − εw)‖Lp,ψ(D) + ‖f(z − εw)− f(z)‖Lp,ψ(D).

It is known that the translation operator approximates functions in vanishing Morrey spaces in the
Morrey norm (see [38], [12] for the case ψ(r) = rλ and [13] for the general case), which gives the required
convergence of the second term. The same property of the vanishing space with respect to dilation is also
true and can be proved in the same way as for translation, namely, by using the splitting

‖f‖Lp,ψ(D) = max

{

sup
0<r<δ
x∈D

1

ψ(r)
‖f‖Lp(B(x,r)∩D), sup

r≥δ

x∈D

1

ψ(r)
‖f‖Lp(B(x,r)∩D)

}

,

which gives the convergence of the first term after an evident change of variables and completes the proof
of the theorem.

Let Tm(f) denote the Taylor polynomial of degree m of a function f .

Corollary 7. Let 1 < p < ∞, and let ψ ∈ Φ. Then the set of holomorphic polynomials is dense
in the space VAp,ψ(D). More precisely, the two-parameter family {Tm(Hεf)}, f ∈ VAp,ψ(D) of
polynomials is dense in VAp,ψ(D).
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Proof. Indeed, we have

‖Tm(Hεf)− f‖Lp,ψ(D) ≤ ‖Tm(Hεf)−Hεf‖Lp,ψ(D) + ‖Hεf − f‖Lp,ψ(D).

It suffices to choose ε sufficiently small, so that the second term is less than δ/2 by Theorem 8. Since
Hεf is holomorphic in the bigger disc D(0, 1 + ε), we have

sup
z∈D

|Tm(Hεf)(z)−Hεf(z)| <
δ

2
,

for sufficiently large m. This completes the proof of the theorem.

5.2. Mollifiers in the Case of the Upper Half-Plane

We consider the standard mollifier

Uεf(z) =

ˆ
e
η(w)f(z − εw)dA(w), (5.2)

where η is an infinitely differentiable function supported on e such that

e ∩ R2
+ = ∅ and

ˆ
e
η(w)dA(w) = 1.

We take e = {w : |w + 2i| < 1} for simplicity. The function Uεf is holomorphic in �(z) > −ε.

Let V
(∗)
0,∞Lp,ψ(R2

+) denote the subset of VLp,ψ(R2
+) of functions which satisfy the vanishing type

condition at infinity (5.3) and the vanishing type condition (5.4):

lim
r→∞

1

ψ(r)
sup
z∈R2

+

ˆ
B(z,r)∩R2

+

|f(w)|pdA(w) = 0, (5.3)

lim
N→∞

sup
x∈R2

+

ˆ
B(x,1)

|f(y)|pχ
R
2
+\B(0,N)(y)dy = 0, (5.4)

as introduced in [12], [13]. The corresponding subspaces of holomorphic functions will be denoted by

V
(∗)
0,∞Ap,ψ(R2

+).

Theorem 9. If 1 < p < ∞, ψ ∈ Φ, and f ∈ V
(∗)
0,∞Ap,ψ(R2

+), then

lim
ε→0

‖Uεf − f‖Lp,ψ(R2
+) = 0.

Proof. By Minkowski’s integral inequality, we have

‖Uεf − f‖Lp,ψ(R2
+) ≤

ˆ
e
|η(w)|‖f(z − εw) − f(z)‖Lp,ψ(R2

+)dA(w).

It is easy to check that ‖f(z − εw)‖Lp,ψ(R2
+) ≤ ‖f‖Lp,ψ({z:	(z)>ε}) ≤ ‖f‖Lp,ψ(R2

+), so that we can apply
the Lebesgue dominated convergence theorem. Then it remains to use the fact that the functions in

V
(∗)
0,∞Lp,ψ(R2

+) have the property

lim
h→0

‖f(z + h)− f(z)‖Lp,ψ(R2
+) = 0

(see [13, Theorem 5.10]). This completes the proof of the theorem.
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6. D. Bekolle and A. Bonami, “Inegalités à poids pour le noyau de Bergman,” CR Acad. Sci. Paris Ser. AB 286

(18), 775–778 (1978).
7. D. Milutin, “Boundedness of the Bergman projections on Lp spaces with radial weights,” Publications de

l’Institut Mathematique 86 (100), 5–20 (2009).
8. V. S. Guliyev and S. G. Samko, “Maximal, potential, and singular operators in the generalized variable-

exponent Morrey spaces on unbounded sets,” J. Math. Sci. 193 (2) 228–248 (2013).
9. N. Samko, “Maximal, potential, and singular operators in vanishing generalized Morrey spaces,” J. Global

Optim. 57 (4), 1385–1399 (2013).
10. A. Karapetyants and S. Samko, “On Boundedness of Bergman Projection Operators in Banach Spaces

of Holomorphic Functions in Half-Plane and Harmonic Functions in Half-Space,” J. Math. Sci. 226 (4),
344–354 (2017).

11. A. Karapetyants, H. Rafeiro, and S. Samko, Boundedness of the Bergman Projection and Some
Properties of Bergman-Type Spaces, in Complex Analysis and Operator Theory (1-15) (2018);
https://doi.org/10.1007/s11785-018-0780-y.

12. A. Almeida and S. Samko, “Approximation in Morrey spaces,” J. Funct. Anal. 272, 2392–2411 (2017).
13. A. Almeida and S. Samko, “Approximation in generalized Morrey spaces,” Georgian Math. J., 2018 (in

press).
14. V. P. Zaharyuta and V. I. Yudovich, “The general form of a linear functional in H ′

p,” Uspekhi Mat. Nauk 19
(2 (116)), 139–142 (1964).

15. V. S. Guliyev, J. J. Hasanov, and S. G. Samko, “Boundedness of the maximal, potential and singular
operators in the generalized variable-exponent Morrey spaces,” Math. Scand. 107, 285–304 (2010).

16. L. Diening and M. Ruzichka, “Calderón–Zygmund operators on generalized Lebesgues spaces Lp(·) and
problems related to fluid dynamics,” J. Reine Angew. Math. 563, 197–220 (2003).

17. G. R. Chacón and H. Rafeiro, “Variable exponent Bergman spaces,” Nonlinear Analysis: Theory, Methods,
and Applications 105, 41–49 (2014).

18. G. R. Chacón and H. Rafeiro, "Toeplitz operators on variable exponent Bergman spaces," Mediterr. J. Math.
13 (5), 3525–3536 (2014).

19. A. Almeida, J. Hasanov, and S. Samko, “Maximal and potential operators in variable-exponent Morrey
spaces,” Georgian Math. J. 15, 195–208 (2008).

20. V. Kokilashvili, A. Meskhi, H. Rafeiro, and S. Samko, Integral Operators in Non-Standard Function
Spaces, Vol. I: Variable Exponent Lebesgue and Amalgam Spaces, in Operator Theory: Advances and
Applications (Birkhäuser, Basel, 2016).
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