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Abstract—In this paper, by introducing the notion of γ-convex set, we distinguish a wider class
of discrete control systems in which the global maximum principle holds. A new type of variation
of control for such classes of discrete control systems is proposed and stronger global maximum
principle and second-order optimality condition expressed in terms of a singular control of new type
are obtained. Generalizing the notion of the relative interior of sets, we obtain an optimality condition
for discrete systems in the form of an equality, which we call Pontryagin’s equation.
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1. INTRODUCTION

Historically, the study of the optimization problem for discrete systems began soon after the study of
the Pontryagin maximum principle [1]. The first discrete analog of the maximum principle for a linear
discrete optimal control problem was obtained by Rozonoér [2]. Doubts about the possibility of carrying
over the maximum principle to nonlinear discrete systems expressed in [2] were justified later by various
examples (see [3]–[5]).

After Butkovskii’s paper [3], the problem of deriving necessary optimality conditions for discrete
systems has been studied further mostly in the following directions.

1. In the papers of the first direction, on the basis of developed and generalized ideas of Rozonoèr,
classes of discrete problems in which the global discrete maximum principle holds are determined (see,
e.g., [5]–[8]). The first results in this direction were obtained in [9] and [10] under the assumption of the
convexity of the set of admissible velocities.

2. In the papers of the second direction, various variants for weakening convexity requirements are
proposed. Only local discrete maximum principles have been obtained (see, e.g., [4], [11]–[17]). In all
of these papers, some parts (neighborhoods) of the admissible control domain in which a local discrete
maximum principle or its consequences hold are distinguished in explicit or implicit form. Note that such
a form of necessary optimality condition, is, in general, not constructive for applications to the solution
of concrete problems.

3. The third direction is related to the derivation of necessary optimality conditions of higher order
in terms of singular and quasisingular controls. The main results in this direction were obtained
in [14], [18]–[22], etc.

An analysis of the now available results shows that the theory of necessary conditions in discrete
systems is far from its completion. Therefore, the derivation of constructive and strong optimality
conditions of the first and higher order is still important from the theoretical and the practical point
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of view. The present paper is devoted to the study of optimality conditions for admissible processes in
this setting.

In this paper, by introducing the notion of γ-convex set, we propose a new variant for weakening
convexity requirements for the set of admissible velocities. Using this notion and improving the
techniques from [23], we obtain a stronger global discrete maximum principle and a necessary optimality
condition of the second order in terms of singular (in the sense of Definition 3 in Sec. 5) controls. In
addition, generalizing the notion of the relative interior of a set introduced in [24], we prove the validity
of an optimality condition in the form of an equality, which we call Pontryagin’s equation.

2. STATEMENT OF THE PROBLEM, DEFINITIONS, AND STATEMENTS

Suppose that it is required to minimize the functional

S(u( · )) = Φ(x(t1)) → min
u( · )

(2.1)

subject to the constraints

x(t+ 1) = f(x(t), u(t), t), x(t0) = x0, t ∈ I := {t0, t0 + 1, . . . , t1 − 1}, (2.2)

u(t) ∈ U(t) ⊆ R
r, t ∈ I. (2.3)

Here R
r is r-dimensional Euclidean space, x( · ) ∈ R

n is the state vector, u( · ) ∈ R
r is the control

vector, t is (discrete) time, t0, t1, x0 are given points, Φ( · ) and f( · , · , · ) are given functions, and U(t),
t ∈ I, are given sets.

Controls satisfying the constraint (2.3) will be called admissible. An admissible control u(t),
t ∈ I, minimizing the functional (2.1) subject to the constraint (2.2) will be called optimal, and the
corresponding solution x(t), t ∈ I1 := I ∪ {t1}, of system (2.2) will be called an optimal trajectory.
The pair (u( · ), x( · )) will be called an optimal process.

Let us introduce some notions and present a statement that will be useful in the study of prob-
lem (2.1)–(2.3).

Definition 1. Let Z ⊂ R
m, let z0 ∈ Z, and let ẑ ∈ Z \ {z0} �= ∅. A point z0 will be called a relative

interior point of the set Z along the line

l(z0, ẑ) := {z̃ : z̃ = z0 + τ(ẑ − z0), τ ∈ R}
if there exists a number γ = γ(ẑ) ∈ (0, 1] such that, for all ε ∈ (−γ, γ), the inclusion z0 + ε(ẑ − z0) ∈ Z
holds. A point z0 will be called a relative interior point of the set Z in the wide sense if the point z0
is a relative interior point of the set Z along any line from the set {�(z0, z) : z ∈ Z \ {z0} }. The set of
such points will be called the relative interior of the set Z in the wide sense and will be denoted by the
symbol Z |0|. A set Z will be called relatively open in the wide sense if Z |0| = Z.

Obviously, we have the inclusion riZ ⊆ Z |0|, where riZ is the relative interior of the set Z. However,
the converse is not always valid. As an example, consider the set

Z1 = {(0, 0)} ∪ {(z1, z2) ∈ R
2 : z1z2 > 0, zi ∈ R, i = 1, 2}.

It is seen that riZ1 ⊂ Z
|0|
1 and z0 = (0, 0) ∈ Z

|0|
1 , but z0 = (0, 0) /∈ riZ1. Note also that the set Z1 is

relatively open in the wide sense; however, it is not a relatively open set, i.e., riZ1 �= Z1. Therefore, we
can say that Definition 1 is a generalization of the notion of the relative interior of a set given in [24].

Definition 2. A set Z ⊂ Em will be called γ-convex with respect to a point z0 ∈ Z if, for each
point z ∈ Z, there exists a number γ = γ(z) ∈ (0, 1] such that, for all ε ∈ (0, γ], the inclusion
z0 + ε(z − z0) ∈ Z holds. If a set Z is γ-convex with respect to each of its points, then we shall call
it γ-convex.

It follows from Definition 2 that each convex, open, or even relatively open set in the wide
sense is γ-convex. However, the converse, in general, is not true (it suffices to consider the set
Z2 = [0, 1) ∪ (2, 3]).
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Proposition 1. Let Z ⊆ R
r, let z0 ∈ Z, and let F (z) = Az + b, where A is an n× r matrix and

b ∈ R
n. Then

(α) the set F (Z) is γ-convex with respect to the point F (z0) if the set Z is γ-convex with respect
to the point z0;

(β) F (z0) ∈ [F (Z)]|0| if z0 ∈ Z |0|.

Proof. First, let us prove assertion (α). Let y ∈ F (Z) be an arbitrary point. Then there exists a point
z ∈ Z such that y = F (z). By Proposition 1 and Definition 2, there exists a number γ = γ(z) ∈ (0, 1]
such that, for all ε ∈ (0, γ], the inclusion z0 + ε(z − z0) ∈ Z holds. Therefore,

F (z0 + ε(z − z0)) ∈ F (Z),

F (z0 + ε(z − z0)) = Az0 + b+ ε[(Az + b)− (Az0 + b)] = F (z0) + ε[F (z) − F (z0)].

Hence, since F (z) is arbitrary, we obtain assertion (α).
Quite similarly, taking into account Definition 1, we prove assertion (β). The proposition is proved.

Let (u0( · ), x0( · )) be an admissible process. Just as in [25], we introduce the set

U [x0( · )](t) = {ũ ∈ U(t) : f(x0(t), ũ, t)− f(x0(t), u0(t), t) = 0}, t ∈ I. (2.4)

Remark 1. Obviously,

U [x0( · )](t) �= ∅,

because u0(t) ∈ U [x0( · )](t), t ∈ I; also, if ũ(t) ∈ U(t), t ∈ I, where ũ(t) ∈ U [x0( · )](t), t ∈ ˜I ⊆ I, and
ũ(t) = u0(t), t ∈ I \ ˜I, where ˜I is an arbitrary subset of the set I, then ũ( · ) is an admissible control and
the pair (ũ( · ), x0( · )) is an admissible process.

It should be noted that, in contrast to continuous control problems, in control problems for dis-
crete systems, the role of the set U [x0( · )](t), t ∈ I, is substantial enough, because if at least one
set U [x0( · )](θ) consists of no less than two elements, then it provides additional information about
the optimality of the control u0(t), t ∈ I. Therefore, the set in question allows us to significantly narrow
down the set of controls potentially related to optimality [21]. Let us also stress that, in most cases, it is
relatively easy to find elements of the set U [x0( · )](θ). For example, in problem (2.1)–(2.3), if

f(x(t), u(t), t) = g(x(t)) + q(x(t), t)u(t), t ∈ I,

then finding elements of the set U [x0( · )](θ), where θ ∈ I, can be reduced to solving a linear algebraic
system of equations.

In the study of an admissible process (u0( · ), x0( · )), we shall use the following assumptions:

(A1) the functional Φ: Rn → R is continuously differentiable in X(x0(t1 − 1)), where

X(x0(t1 − 1)) ⊆ R
n

is an open set and contains the set

{x : x = f(x0(t1 − 1), û, t1 − 1), û ∈ U(t1 − 1)}
and, in addition, for each t ∈ I, the function f( · , · , t) : Rn × R

r → R
n and its partial deriva-

tive fx( · , · , t) are continuous with respect to (x, u) in Q(t), where Q(t) ⊆ R
n × R

r is an open
set containing the set {x0(t)} × U(t);

(A2) the functional Φ: Rn → R is twice continuously differentiable in X(x0(t1 − 1)) and, in addi-
tion, for each t ∈ I, the function f( · , · , t) : Rn × R

r → R and its partial derivatives fx( · , · , t),
fxx( · , · , t) are continuous with respect to (x, u) in Q(t);

(A3) for each t ∈ I−1, the set f(x0(t), U(t), t) is γ-convex with respect to the point x0(t+ 1), where
I−1 := I \ {t1 − 1} (note that the set f(x0(t1 − 1), U(t1 − 1), t1 − 1) can be arbitrary).
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3. FORMULAS FOR THE INCREMENT OF THE QUALITY FUNCTIONAL

Let (u0( · ), x0( · )) be an admissible process, and let assumptions (A2) and (A3) hold.
We consider an arbitrary fixed vector parameter ξ := (θ, υ, ũ( · )), where θ ∈ I \ {t1 − 1} =: I−1,

υ ∈ U(θ), and ũ( · )) is an admissible control such that

ũ(t1 − 1) = û ∈ U(t1 − 1) and ũ(t) ∈ U [x0( · )](t),
t ∈ I−1. We define the variation of the control u0(t), t ∈ I, as follows:

u(t; ξ, ε) =

⎧

⎪

⎨

⎪

⎩

û, t = t1 − 1,

υ(ε), t = θ,

ũ(t), t ∈ I \ {θ, t1 − 1}.
(3.1)

Here the function υ(ε) : (0, γ] → U(θ) is defined (in implicit form) as a solution of the system

f(x0(θ), υ(ε), θ) − f(θ) = εΔυf(θ), ε ∈ (0, γ], (3.2)

where (0, γ] ⊂ (0, 1], the number γ = γ(υ) is given by Definition 2, and

f(θ) := f(x0(θ), u0(θ), θ), Δυf(θ) := f(x0(θ), υ, θ)− f(x0(θ), u0(θ), θ). (3.3)

In view of Definition 2, such a solution exists, because assumption (A3) holds.
Obviously, for all ε ∈ (0, γ], the function u(t; ξ, ε) is an admissible control. Note that, apparently, a

variation of the form (3.1) is considered here for the first time. This constitutes one of the main aspects
of the scheme of study of problem (2.1)–(2.3).

Along with the process (u0( · ), x0( · )), we consider the admissible process (u( · ; ξ, ε), x( · ; ξ, ε)).
Obviously, the increment x(t; ξ, ε) − x0(t) =: Δx(t; ξ, ε), t ∈ I1, is a solution of the system

{

Δx(t+ 1; ξ, ε) = f(x0(t) + Δx(t; ξ, ε), u(t; ξ, ε), t) − f(x0(t), u0(t), t),

Δx(t0; ξ, ε) = 0, ε ∈ (0, γ].
(3.4)

Since ũ(t) ∈ U [x0( · )](t), t ∈ I−1, it follows that, taking into account (2.4), (3.1), and (3.2), we can
write system (3.4) as

Δx(t+ 1; ξ, ε) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, t0 − 1 ≤ t < θ,

εΔυf(θ), t = θ,

Δx(t;ξ,ε)f(x
0(t), ũ(t), t), θ < t < t1 − 1,

Δûf(t1 − 1) + Δx(t1−1;ξ,ε)f(x
0(t1 − 1), û, t1 − 1), t = t1 − 1,

(3.5)

where ε ∈ (0, γ], Δυf(θ) and Δûf(t1 − 1) are determined from (3.3), and

Δx(t;ξ,ε)f(x
0(t), ũ(t), t) = f(x(t; ξ, ε), ũ(t), t) − f(x0(t), ũ(t), t), (3.6)

Δx(t1−1;ξ,ε)f(x
0(t1 − 1), û, t1 − 1) = f(x(t1 − 1; ξ, ε), û, t1 − 1)− f(x0(t1 − 1), û, t1 − 1). (3.7)

Using Taylor’s formula from (3.5), taking into account (3.6), and applying the method of steps, we
can show the validity of the inequality

‖Δx(t; ξ, ε)‖ ≤ Kε, t ∈ I, ε ∈ (0, γ], K = const > 0, (3.8)

where ‖ · ‖ is the Euclidean norm.
It follows from (3.5) that the solution Δx(t; ξ, ε) at the point t = t1 is finite with respect to

ε : ‖Δx(t1; ξ, ε)‖ ∼ ε0. Moreover, taking into account (3.5) and (3.8), we see that it is the second term
in the representation Δx(t1; ξ, ε), i.e., the increment (3.7), which is of the order of ε:

‖Δx(t1−1;ξ,ε)f(x
0(t1 − 1)û, t1 − 1)‖ ≤ ̂Kε, ε ∈ (0, γ], ̂K = const > 0. (3.9)

Now, on the basis of (3.5) and estimates (3.8) and (3.9), we shall pass to the calculation of the
increment of the second order of the quality functional (2.1).
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Employing Taylor’s expansion at the point f(x0(t1 − 1), û, t1 − 1) and using (3.5), (3.7)–(3.9), we
can write the increment

Φ(x0(t1) + Δx(t1; ξ, ε)) − Φ(x0(t1)) =: Δξ,εS(u
0( · ))

of the functional (2.1) caused by (3.1), in the following form:

Δξ,εS(u
0( · )) = Φ(f(x0(t), û, t))|t=t1−1 − Φ(f(x0(t), u0(t), t))|t=t1−1

+Δ
(1)
ξ,εS(u

0( · )) + 1

2
Δ

(2)
ξ,εS(u

0( · )) + o(ε2), (3.10)

where ε ∈ (0, γ], ε−2o(ε2) → 0 as ε → 0, and

Δ
(1)
ξ,εS(u

0( · )) := ΦT
x (f(x

0(t), û, t))Δx(t;ξ,ε)f(x
0(t), û, t)|t=t1−1 (3.11)

Δ
(2)
ξ,εS(u

0( · )) := Δx(t;ξ,ε)f(x
0(t), û, t)Φxx(f(x

0(t), û, t))Δx(t;ξ,ε)f(x
0(t), û, t)|t=t1−1. (3.12)

Consider auxiliary vectors ψ(t1 − 1; û) and ψ(t; ũ(t+ 1)), t ∈ I−1, and matrices Ψ(t1 − 1; û) and
Ψ(t; ũ(t+ 1)), t ∈ I−1, being a solution of linear discrete systems of the form [21]

⎧

⎪

⎨

⎪

⎩

ψ(t− 1; ũ(t)) = fT
x (x

0(t), ũ(t), t)ψ(t; ũ(t+ 1)), t ∈ I−1,

ψ(t1 − 2; ũ(t1 − 1)) = fT
x (x

0(t1 − 1), û, t1 − 1)ψ(t1 − 1; û),

ψ(t1 − 1; û) := −Φx(f(x
0(t1 − 1), û, t1 − 1)),

(3.13)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Ψ(t− 1; ũ(t)) = fT
x (x

0(t), ũ(t), )Ψ(t; ũ(t+ 1))fx(x
0(t), ũ(t), t)

+Hxx(ψ(t; ũ(t+ 1))), x0(t), ũ(t), t), t ∈ I−1,

Ψ(t1 − 2; ũ(t1 − 1)) = fT
x (x

0(t), û, t)Ψ(t; û)fx(x
0(t), û, t)|t=t1−1

+Hxx(ψ(t1 − 1; û), x0(t1 − 1), û, t1 − 1),

Ψ(t1 − 1; û) := −Φxx(f(x
0(t1 − 1), û, t1 − 1)),

(3.14)

where ũ(t), t ∈ I, is an admissible control such that

ũ(t1 − 1) = û ∈ U(t1 − 1), ũ(t) ∈ U [x0( · )](t), t ∈ I−1,

and H(ψ, x, u, t) = ψT f(x, u, t) is the Hamilton–Pontryagin function.

By (3.7), (3.8), (3.11), (3.13) and by Taylor’s formula, for Δ(1)
ξ,εS(u

0( · )), we have the representation

Δ
(1)
ξ,εS(u

0( · )) = −HT
x (ψ(t; û), x

0(t), û, t)Δx(t; ξ, ε)|t=t1−1

− 1

2
ΔxT (t; ξ, ε)Hxx(ψ(t; û), x

0(t), û, t)Δx(t; ξ, ε)|t=t1−1 + o(ε2). (3.15)

Similarly, in view of (3.7), (3.8), and (3.14), using (3.12), we obtain

Δ
(2)
ξ,εS(u

0( · )) = −ΔxT (t; ξ, ε)fT
x (x0(t), û, t)Ψ(t; û)fx(x

0(t), û, t)Δx(t; ξ, ε)|t=t1−1 + o(ε2). (3.16)

Substituting (3.15) and (3.16) into (3.10) and using (3.13) and (3.14), we can write

Δξ,εS(u
0( · )) = ΔûΦ(f(t1 − 1))− ψT (t1 − 2; ũ(t1 − 1))Δx(t1 − 1; ξ, ε)

− 1

2
ΔxT (t1 − 1; ξ, ε)Ψ(t1 − 2; ũ(t1 − 1))Δx(t1 − 1; ξ, ε) + oΣ(ε

2). (3.17)

Here and in what follows, the symbol oΣ(ε2) denotes the total remainder.

In view of (3.5) and (3.13), we can prove the validity of the following equality for the second term of
formula (3.17):

p1(ε) := ψT (t1 − 2; ũ(t1 − 1))Δx(t1 − 1; ξ, ε)
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= εψT (θ; ũ(θ + 1)Δvf(θ) +

t1−2
∑

t=θ1

ψT (t; ũ(t+ 1))Δx(t;ξ,ε)f(x
0(t), ũ(t), t)

−
t1−2
∑

t=θ1

ψT (t− 1; ũ(t))Δx(t; ξ, ε).

Hence, taking into account (3.6), (3.8), and (3.13), by Taylor’s formula for p1(ε), we obtain a
representation of the following form:

p1(ε) = εψT (θ; ũ(θ + 1))Δυf(θ)

+
1

2

t1−2
∑

t=θ1

ΔxT (t; ξ, ε)Hxx(ψ(t; ũ(t+ 1)), x0(t), ũ(t), t)Δx(t; ξ, ε) + oΣ(ε
2), ε ∈ (0, γ].

(3.18)

Let us now calculate the third term in (3.17). Using (3.5) and (3.14), it is easy to verify the validity of
the identity

p2(ε) := ΔxT (t1 − 1; ξ, ε)Ψ(t1 − 2; ũ(t1 − 1))Δx(t1 − 1; ξ, ε)

= ε2Δυf
T (θ)Ψ(θ; ũ(θ + 1))Δυf(θ)−

t1−2
∑

t=θ

ΔxT (t; ξ, ε)Ψ(t − 1; ũ(t))Δx(t, ξ, ε)

+

t1−2
∑

t=θ1

Δx(t;ξ,ε)f
T (x0(t), ũ(t), t)Ψ(t; ũ(t+ 1))Δx(t;ξ,ε)f(x

0(t), ũ(t), t).

In view of (3.6) and (3.14), again by Taylor’s formula for p2(ε), we have

p2(ε) = ε2Δυf
T (θ)Ψ(θ; ũ(θ + 1))Δυf(θ)

−
t1−2
∑

t=θ1

ΔxT (t; ξ, ε)Hxx(ψ(t; ũ(θ + 1), x0(t), u(t), t))Δx(t, ξ, ε) + oΣ(ε
2). (3.19)

Substituting (3.18) and (3.19) into (3.17), we obtain

Δξ,εS(u
0( · ))

= Φ(f(x0(t), û, t))|t=t1−1 − Φ(f(x0(t), u0(t), t))|t=t1−1 − εψT (θ; ũ(θ + 1))Δυf(θ)

− ε2

2
Δvf

T (θ)Ψ(θ; ũ(θ + 1))Δυf(θ) + oΣ(ε
2), ε ∈ (0, γ], (3.20)

where Δυf(θ), ψ(θ; ũ(θ + 1)), and Ψ(θ; ũ(θ + 1)) for θ ∈ I−1 are determined from (3.3), (3.13),
and (3.14), respectively.

Therefore, the following proposition holds.

Proposition 2. Let (u0( · ), x0( · )) be an admissible process, and let assumptions (A2) and (A3)
hold. Then, for each vector parameter ξ = (θ, υ, ũ( · )), where θ ∈ I−1, υ ∈ U(θ), ũ( · ) ∈ U( · ),
ũ(t1 − 1) = û ∈ U(t1 − 1), and ũ(t) ∈ U [x0( · )](t) for t ∈ I−1, equality (3.20) holds.

In exactly the same way as in the scheme of derivation of formula (3.20), we also prove the following
proposition.

Proposition 3. Let (u0( · ), x0( · )) be an admissible process and assumptions (A1) and (A3)
hold. Then, for each vector parameter ξ = (θ, υ, ũ( · )), where θ ∈ I−1, υ ∈ U(θ), ũ( · ) ∈ U( · ),
ũ(t1 − 1) = û ∈ U(t1 − 1), and ũ(t) ∈ U [x0( · )](t) for t ∈ I−1, the following expansion is valid:

Δξ,εS(u
0( · )) = Φ(f(x0(t), û, t))|t=t1−1 − Φ(f(x0(t), u0(t), t))|t=t1−1

− εψT (θ; ũ(θ + 1))Δυf(θ) + oΣ(ε), ε ∈ (0, γ], (3.21)

where Δυf(θ) and ψ(θ; ũ(θ + 1)) are defined by (3.3) and (3.13), respectively.
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In the following sections, using the obtained expansions (3.20) and (3.21), we obtain optimality
conditions of the first and second order.

4. NECESSARY OPTIMALITY CONDITION OF THE FIRST ORDER

Let (u0( · ), x0( · )) be an admissible process. We introduce the following sets:

U0(t1 − 1) =
{

û ∈ U(t1 − 1) : Φ(f(x0(t), û, t))|t=t1−1 − Φ(f(x0(t), u0(t), t))|t=t1−1 = 0
}

, (4.1)

Q[x0( · )](t1 − 2)

=
{

ψ(t1 − 2) : ψ(t1 − 2) = −fT
x (x

0(t), û, t)Φx(f(x
0(t), û, t))|t=t1−1, û ∈ U0(t1 − 1)

}

,

Q[x0( · )](t) =
{

ψ(t) : ψ(t) = ψ(t; û(t+ 1)),

ũ(t+ 1) ∈ U [x0( · )](t + 1), ũ(t1 − 1) = û ∈ U0(t1 − 1),

ψ( · ; ũ(t+ 1)) is a solution of system (3.13)
}

, t ∈ {t1 − 3, t1 − 4, . . . , t0},
Λ[x0( · )](t1 − 2)

=
{

λ(t1 − 2) : λ(t1 − 2) = −fT
x (x

0(t), û, t)Φx(f(x
0(t), û, t))|t=t1−1, û ∈ U0(t1 − 1)

}

,

Λ[x0( · )](t) =
{

λ(t) : λ(t) = fT
x (x

0(t+ 1), ũ, t+ 1)λ(t+ 1), ũ ∈ U [x0( · )](t + 1),

λ(t+ 1) ∈ Λ[x0( · )](t + 1)
}

, t ∈ {t1 − 3, t1 − 4, . . . , t0}, (4.2)

where the sets U [x0( · )](t), t ∈ I, are defined by (2.4).
Taking into account Remark 1 and the definitions of the sets Q[x0( · )](t), t ∈ I−1, and Λ[x0( · )](t),

t ∈ I−1, and using the method of steps (successively with respect to t: t = t1 − 2, t1 − 3, . . . , t0), we
prove the validity of the following lemma.

Lemma 1. For each t ∈ I−1, the following equality holds:

Q[x0( · )](t) = Λ[x0( · )](t).

Theorem 1. Let assumptions (A1) and (A3) hold, and let, for each t ∈ I−1, Λ[x0( · )](t) be the
set defined by (4.2). Then, for the process (u0( · ), x0( · )) to be optimal, it is necessary that the
following inequalities hold:

Φ(f(x0(t), û, t))|t=t1−1 − Φ(f(x0(t), u0(t), t))|t=t1−1 ≥ 0 for all û ∈ U(t1 − 1), (4.3)

ΔυH(λ(t), x0(t), u0(t), t) ≤ 0 for all (t, υ, λ(t)) ∈ I−1 × U(t)× Λ[x0( · )](t). (4.4)

where ΔυH(λ(t), x0(t), u0(t), t) = λT (t)Δυf(t) and Δυf(t) are defined by (3.3).

Proof. Let (u0( · ), x0( · )) be an optimal process. Then, taking into account (A1) and (A3) and
using Proposition 3, for each vector parameter ξ = (θ, υ, ũ( · )), where θ ∈ I−1, υ ∈ U(θ), ũ( · ) ∈ U( · ),
ũ(t1 − 1) = û ∈ U(t1 − 1), and ũ(t) ∈ U [x0( · )](t) for t ∈ I−1, for sufficiently small ε > 0, the following
inequality holds:

Δξ,εS(u
0( · )) = Φ(f(x0(t), û, t))|t=t1−1 − Φ(f(x0(t), u0(t), t))|t=t1−1

− εψT (θ; ũ(θ + 1))Δυf(θ) + oΣ(ε) ≥ 0. (4.5)

Hence, setting υ = u0(θ) and taking into account the fact that û ∈ U(t1 − 1) is arbitrary, we
immediately see that inequality (4.3) holds. Further, let ũ(t1 − 1) = û ∈ U0(t1 − 1) be an arbitrary point.
Then, taking into account (4.1) and the fact that ε > 0 is sufficiently small and using (4.5), for each
vector parameter ξ = (θ; υ, ũ( · )), we obtain

ψT (θ; ũ(θ + 1))Δυf(θ) ≤ 0, (4.6)

where θ ∈ I−1, υ ∈ U(θ), and ũ(θ + 1) ∈ U [x0( · )](θ + 1) are arbitrary point such that

ψ(θ; ũ(θ + 1)) ∈ Q[x0( · )](θ).
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Therefore, by Lemma 1, using the Hamilton–Pontryagin function and (4.6), we obtain

ΔυH(λ(θ), x0(θ), u0(θ), θ) ≤ 0

for all (θ, υ, λ(θ)) ∈ I−1 × U(θ)× Λ[x0( · )](θ). Therefore, inequality (4.4) is proved, and so is the
theorem.

Let us give more effective (in the sense of verification and computation) corollaries of Theorem 1.

Corollary 1. Let assumption (A1) hold, and let, for each t ∈ I−1, the following inclusion hold:
f(x0(t), u0(t), t) ∈ [f(x0(t), U(t), t)]|0|. Then, for the process (u0( · ), x0( · )) to be optimal, it is
necessary that the following equality be valid:

ΔυH(λ(t), x0(t), u0(t), t) = 0 for all (t, υ, λ(t)) ∈ I−1 × U(t)× Λ[x0( · )](t). (4.7)

Proof. Let (u0( · ), x0( · )) be an optimal process. Since the inclusion

x0(t+ 1) = f(x0(t), u0(t), t) ∈ [f(x0(t), U(t), t)]|0|, t ∈ I−1

holds, in view of Definition 1, we see that assumption (A3) is valid. Combining this with the validity
of (A1), by Theorem 1, we have (4.4). In addition, in view of Definition 1, for any t ∈ I−1 and υ ∈ U(t),
there exists a number γ > 0 such that, for all ε ∈ (−γ, γ), the following inclusion holds:

f(t) + ε(f(x0(t), υ, t) − f(t)) ∈ f(x0(t), U(t), t),

where f(t) is defined by (3.3).
Therefore, for each ε ∈ (−γ, γ), there exists a vector u(ε) ∈ U(t) such that

f(x0(t), u(ε), t) = f(t) + ε(f(x0(t), υ, t) − f(t))

and inequality (4.4) holds for all u(ε) ∈ U(t), ε ∈ (−γ, γ). Then, taking into account the fact that
ε ∈ (−γ, γ) is arbitrary, we see that (4.7) holds. The corollary is proved.

Note that, in most cases, it is easy to verify the γ-convexity condition for the set f(x0(t), U(t), t),
t ∈ I−1, and the validity of the inclusion x0(t+ 1) ∈ [f(x0(t), U(t), t)]|0|, t ∈ I−1.

The following result shows that this verification can be reduced to that of the γ-convexity of the
sets U(t), t ∈ I−1, and the inclusion u0(t) ∈ [U(t)]|0|, t ∈ I−1.

Corollary 2. Let assumption (A1) hold, and let, in problem (2.1)–(2.3),

f(x, u, t) = g(x, t) +B(x, t)u, x ∈ R
n, u ∈ R

r, t ∈ I,

where g( · ) is an n-vector and B( · ) is an n× r matrix. Also let (u0( · ), x0( · )) be an optimal
process. Then

(α) inequality (4.4) holds if, for each t ∈ I−1, the set U(t) is γ-convex with respect to the points
u0(t);

(β) equality (4.7) holds if, for each t ∈ I−1, the inclusion u0(t) ∈ [U(t)]|0| is valid.

Proof. The proof of assertion (α) follows from Theorem 1 in view of Proposition 1, and the proof of
assertion (β) follows from Corollary 1 in view of Proposition 1.

In the conclusion of Sec. 4, we note that the assertion of Theorem 1 is a new discrete analog of the
Pontryagin maximum principle. It is easy to verify that it generalizes and strengthens the corresponding
result from [9] and [10] (see Example 1 below). The optimality condition (4.3) was first obtained in [23];
condition (4.4), in contrast to the earlier known conditions (see, e.g., [8]–[10], [22]), is obtained in
terms of the set Λ[x0( · )](t), t ∈ I−1 (i.e., the set of linearly independent Lagrange multipliers). The
effectiveness of the set Λ[x0( · )](t), t ∈ I−1, is shown by the following example.
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Example 1. Consider S(u( · )) = x22(2) − x2(2) → minu( · ),
{

x1(t+ 1) = x1(t)− u2(t),

x2(t+ 1) = −3x1(t)|u(t) − 1|+ x22(t)u
2(t)− 1,

{

x1(0) = 0,

x2(0) = −1,

u(t) ∈ U(t), t ∈ I = {0; 1}, U(0) = U(1) = [−1, 1].

Let us study the optimality of the admissible control u0(t), t ∈ {0; 1}, defined by u0(0) = 0 and
u0(1) = 1. Let us apply Theorem 1. By (4.1) and (4.2), we have

x0(t) = (x01(t), x
0
2(t))

T , t ∈ {0, 1, 2}, where x01(0) = x01(1) = 0,

x01(2) = −1, x02(0) = x02(1) = −1, x02(2) = 0,

f(x0(1), u0(1), 1) = (−1, 0)T , f(x0(1), û, 1) =

(

−û2

û2 − 1

)

,

fT
x (x

0(t), û, 1) =

(

1 −3|û− 1|
0 −2û2

)

, Φx(f(x
0(1), û, 1)) = (0; 2(û2 − 1)− 1)T ,

Φ(f(x0(1), û, 1)) − Φ(f(x0(1), u0(1), 1)) = (û2 − 1)(û2 − 2), U0(1) = {1;−1},

Λ[x0( · )](0) =
{(

0

−2

)

,

(

−6

−2

)}

, Δυf(0) =

(

−υ2

υ2

)

,

f(x0(0), U(0), 0) = f(x0(1), U(1), 1) =

{(

−υ2

υ2 − 1

)

: υ ∈ [−1, 1]

}

.

Obviously, the sets f(x0(t·), U(t), t), t ∈ {0; 1} are convex. This fact and the above calculations
imply inequality (4.3):

(û2 − 1)(û2 − 2) ≥ 0 for all û ∈ [−1, 1].

However, forλ(0) = (−6,−2)T , inequality (4.4) takes the form 4u2 ≤ 0, υ ∈ [−1, 1], i.e., it does not hold.
Therefore, the control u0(t), t ∈ {0; 1}, with u0(0) = 0 and u0(1) = 1 cannot be optimal by Theorem 1.

Note that the results of [9]–[12], [14], [22] leave the control u0(t), t ∈ {0; 1}, among the canditates for
being optimal. Moreover, other known results (see [4], [21], [23]) do not apply to this example, because
the function f is not differentiable with respect to the variable u at the point u = 1.

5. NECESSARY OPTIMALITY CONDITION OF THE SECOND ORDER

Note that Theorem 1 may turn out to be insufficiently informative, i.e., there exist problems in which
an admissible process (u0( · ), x0( · )) is not optimal; however, as a necessary optimality condition, the
assertion of Theorem 1 holds and even degenerates (see Example 2).

Definition 3. Let an admissible process (u0( · ), x0( · )) satisfy conditions (4.2) and (4.3). A con-
trol u0(t), t ∈ I, will be called singular at a point θ ∈ I−1 with respect to an admissible control ũ(t)
t ∈ I, where ũ(t1 − 1) ∈ U0(t1 − 1) and ũ(t) ∈ U [x0( · )](t), t ∈ I−1, over a set U0(θ) ⊆ U(θ) if, for all
υ ∈ U0(θ), the following equality holds:

ψT (θ; ũ(θ + 1))Δυf(θ) = 0, (5.1)

where U0(θ) \ U [x0( · )](θ) �= ∅ and ψ(θ; ũ(θ + 1)) is the value of the solution of system (3.13).

Remark 2. If ũ(t) = u0(t), t ∈ I, then a singular (in the sense of Definition 3) control u0( · ) will be
called singular at the point θ over the set U0(θ).

Remark 3. Definition 3 defines a new class of singular controls. In other words, a singular control in the
sense of Definition 3 is not necessarily singular in the sense of [12], [14], [18]–[21] (see Example 2).
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Theorem 2. Let (u0( · ), x0( · )) be an optimal process, and let assumptions (A2) and (A3) hold.
Also, let a control u0(t), t ∈ I, be singular at a point θ ∈ I−1, with respect to an admissible
control ũ(t), t ∈ I, where ũ(t1 − 1) ∈ U0(t1 − 1) and ũ(t) ∈ U [x0( · )](t), t ∈ I−1, over a set U0(θ).
Then the following inequality holds:

Δυf
T (θ)Ψ(θ; ũ(θ + 1))Δυf(θ) ≤ 0 for all υ ∈ U0(θ), (5.2)

where Δυf(θ) is defined by (3.3) and Ψ(θ; ũ(θ + 1)) is the value of the solution of system (3.14) at
the point θ.

Proof. Since assumptions (A2) and (A3) hold, it follows from Proposition 2 that the formula for the
expansion (3.20) is valid. Then, by Definition 3, in view of ũ(t1 − 1) = û ∈ U0(t1 − 1) and (5.1), for all
υ ∈ U0(θ), from (3.20) we obtain

Δξ,εS(u
0( · )) = −ε2

2
Δυf

T (θ)Ψ(θ; ũ(0 + 1))Δυf(θ) + oΣ(ε
2), ε ∈ (0, γ],

where ξ = (θ, υ, ũ( · )).
This implies the validity of inequality (5.2), because, for a sufficiently small ε > 0, the inequality

Δξ,εS(u
0( · )) ≥ 0 holds along the optimal process (u0( · ), x0( · )). The theorem is proved.

Consider an example illustrating the meaningfulness of Theorem 2.

Example 2. Consider S(u( · )) = x22(2) − x2(2) → minu( · ),
{

x1(t+ 1) = x1(t)− u2(t),

x2(t+ 1) = −x1(t)|u(t) − 1|+ x22(t)u
2(t)− 1, t ∈ {0; 1},

x1(0) = 0, x2(0) = −1, u(t) ∈ U(t), t ∈ {0; 1},
U(0) = [−1, 1], U(1) = [±1;±2].

Let us study the optimality of the admissible control u0(t), t ∈ {0; 1}, defined by u0(0) = 0 and
u0(1) = 1. It follows from (2.4), (4.1), and (4.2) that

x0(t) = (x01(t), x
0
2(t))

T , t ∈ {0; 1; 2}, where x01(0) = x01(1) = 0, x01(2) = −1,

x02(0) = x02(1) = −1, x02(2) = 0, f(x0(1), u0(1), 1) = (−1, 0)T ,

f(x0(1), û, 1) = (−û2, û2 − 1)T , U [x0( · )](0) = {0}, U [x0( · )](1) = {−1; 1},
Φ(f(x0(1), û, 1)) − Φ(f(x0(1), u0(1), 1)) = (û2 − 1)(û2 − 2),

U0(1) = {−1; 1}, fT
x (x

0(1), û, 1)Φx(f(x
0(1), û, 1))|û=±1 = {(0, 2)T , (2, 2)T },

Λ[x0( · )](0) = {(0,−2)T ; (−2,−2)T }, Δυf(0) = (−υ2, υ2)T , υ ∈ [−1, 1],

f(x0(0), U(0), 0) = {(−υ2, υ2 − 1)T : υ ∈ [−1, 1]}
(obviously, this set is convex).

Taking into account the above calculations, we can readily see that the assertion of Theorem 1 holds:

(û2 − 1)(û2 − 2) ≥ 0 for all û ∈ [−1, 1],

−2υ2 ≤ 0, υ ∈ [−1, 1] for λ(0) = (0,−2)T , 0 ≤ 0 for λ(0) = (−2,−2)T .

Therefore, Theorem 1 leaves the control u0(t), t ∈ {0, 1}, among the candidates for being optimal.

In addition, the control u0(t), t ∈ {0, 1}, is singular at the point θ = 0 with respect to the admissible
control û(t), t ∈ {0, 1}, defined by ũ(0) = 0 and ũ(1) = −1, over the set U0(0) = [−1, 1], because the
process (u0( · ), x0( · )) satisfies conditions (4.2), (4.3) and

ψ(0, ũ(1)) = (−2, 2)T , Δυf(0) = (−υ2, υ2)T , υ ∈ [−1, 1].
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Note that the control u0( · ) is not singular in the sense of [12], [14], [18]–[21]. Let us apply Theorem 2.
From system (3.14), we obtain

Ψ(0; ũ(1)) = (ψij), where ψ11 = ψ12 = ψ21 = −8, ψ22 = −6;

therefore, inequality (5.2) is of the form 2υ4 ≤ 0 for all υ ∈ [−1, 1], which is not true. Therefore, the
process (u0( · ), x0( · )) is not optimal.

Note that the known results of [26]–[28] do not apply to this example, because the function f( · ) is
not differentiable with respect to the variable u at the point u = 1 and the set U(1) is neither convex nor
open. Note also that the optimality conditions given in [12], [14]–[22] leave the control u0( · ) among the
candidates for being optimal.

6. CONCLUSIONS

As can be seen, problem (2.1)–(2.3) is not the most general one among discrete optimization
problems. We chose it solely in order to demonstrate the main aspects of the approach proposed in
the paper. However, the assertions of Theorems 1 and 2 can also be generalized to the case of more
general discrete control problems.

In addition, on the basis of our scheme of study, we note the following.

1. The necessary optimality conditions in the form of the assertions of Theorem 1 and 2 are
characteristic for discrete control systems.

2. In obtaining a number of well-known necessary optimality conditions of the first and higher order
(see, e.g., [5], [7], [18], [21], [29], [30]), the assumption on the convexity of the set of admissible velocities
or the set of admissible controls can be replaced by the weaker condition of the γ-convexity of the set.

3. The notion of γ-convex set (as well as the notion of the interior of a set in the wide sense) can also
be very effective in the study of continuous-time optimal control problems.
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