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Abstract—For the classes of functions

W r(ωM,Φ) := {f ∈ Lr
2(R) : ωM(f (r), t) ≤ Φ(t) ∀ t ∈ (0,∞)},

where Φ is a majorant and r ∈ Z+, lower and upper bounds for the Bernstein, Kolmogorov, and
linear mean ν-widths in the space L2(R) are obtained. A condition on the majorant Φ under which
the exact values of these widths can be calculated is indicated. Several examples illustrating the
results are given.
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1. INTRODUCTION

The study of smoothness characteristics of functions attracts special attention in approximation
theory. Different approaches aimed at the generalization and improvement of these characteristics
are considered. In this connection, in the case of 2π-periodic functions, one should note, first of
all, the papers [1] and [2] of Boman and Shapiro, which were followed by further improved results
in this direction due to Vasil’ev, Babenko, Kozko and Rozhdestvenskii, Ivanov and Ha Thi Min Hue,
Gorbachev, Runovski and Schmeisser, and other authors (see, e.g., [3]–[12]).

In the case of extremal problems of approximation theory on the whole real axis, generalizations
of the classical modulus of continuity of functions were considered in the papers [13] of Vasiliev (the
multidimensional case) and [14] of Artamonov.

Let L2(R) denote the space of all measurable functions f on the real axis R which are Lebesgue
square-integrable on any finite interval and whose norm is

‖f‖ :=

{ˆ ∞

−∞
|f(x)|2 dx

}1/2

< ∞.

The present paper is devoted to the extension of a result due to A. V. Efimov’s student Grigoryan (see [15,
Theorem 2 and its Corollary 1]) to the case of the space L2(R) with the use of the generalized smoothness
characteristic from [13] for N = 1 instead of the usual modulus of continuity of the first order.

Using the notation from [13], we present the definition of the generalized modulus of continuity in the
space L2(R). Let M := {μj}j∈Z be a collection of complex numbers satisfying the conditions

0 <
∑
j∈Z

|μj| < ∞,
∑
j∈Z

μj = 0. (1.1)
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By ΔM
h , h ∈ R, we mean the generalized difference operator acting from L2(R) to L2(R). For an

arbitrary function f ∈ L2(R), almost everywhere on R, we have

ΔM
h (f, x) :=

∑
j∈Z

μjf(x+ jh). (1.2)

Note, for example, that, for the number set

M1,m :=

{
μj = (−1)m−j

(m
j

)
if j = 0, . . . ,m,

μj = 0 if j < 0 is or j > m

}

j∈Z

, m ∈ N,

the operator ΔM1,m

h becomes, in view of (1.2), the usual finite-difference operator Δm
h : L2(R) → L2(R),

which, for almost all x ∈ R, is of the form

Δm
h (f, x) =

m∑
j=0

(−1)m−j

(
m

j

)
f(x+ jh).

By the generalized modulus of continuity of an arbitrary element f ∈ L2(R) generated by the
number set M we mean the function

ωM(f, t) := sup{‖ΔM
h (f)‖ : |h| ≤ t}, t ≥ 0. (1.3)

Setting, for example, M = M1,m, m ∈ N, from (1.2), (1.3) we obtain the mth-order modulus of
continuity

ωm(f, t) = sup{‖Δm
h (f)‖ : |h| ≤ t}.

It is well known (see, e.g., [16, Chap. III, Sec. 3.11.21]) that any function f ∈ L2(R) almost
everywhere on R can be represented as

f(x) =
1√
2π

d

dx

ˆ ∞

−∞
F(f, t)

eixt − 1

it
dt, (1.4)

where F(f) ∈ L2(R) is its Fourier transform, which, for almost all x ∈ R, can be written as

F(f, x) =
1√
2π

d

dx

ˆ ∞

−∞
f(t)

e−ixt − 1

−it
dt.

Further, ˆ ∞

−∞
|F(f, x)|2 dx =

ˆ ∞

−∞
|f(x)|2 dx. (1.5)

Setting

wM(x) :=
∑
j∈Z

μje
ijx (1.6)

and using formulas (1.1), (1.2), and (1.4), almost everywhere on R, we have

ΔM
h (f, x) =

1√
2π

d

dx

ˆ ∞

−∞
F(f, t)

{∑
j∈Z

ei(x+jh)t − 1

it
μj

}
dt

=
1√
2π

d

dx

ˆ ∞

−∞
F(f, t)wM(ht)

eixt − 1

it
dt. (1.7)

It follows from (1.4) and (1.7) that, for almost all x ∈ R,

F(ΔM
h (f), x) = wM(hx)F(f, x). (1.8)
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Then, in view of (1.8) from (1.5), we obtain the relation

‖ΔM
h (f)‖2 =

ˆ ∞

−∞
|F(ΔM

h (f), x)|2 dx =

ˆ ∞

−∞
|F(f, x)|2|wM(hx)|2 dx. (1.9)

In what follows, we shall always assume that all elements of the number set M are real. Then it
follows from (1.6) and (1.1) that the function |wM(x)|2 is 2π-periodic, continuous, and even and, at the
point x = 0, it takes the zero value.

Using relation (1.9), we rewrite formula (1.3) as

ωM(f, t) = sup

{(ˆ ∞

−∞
|F(f, x)|2|wM(hx)|2 dx

)1/2

: 0 ≤ h ≤ t

}
, t ≥ 0. (1.10)

If, for example, M = M1,m, m ∈ N, then, using (1.10) and (1.6), we obtain the well-known relation

ωm(f, t) = sup

{(
2m

ˆ ∞

−∞
|F(f, x)|2(1− cos(hx))m dx

)1/2

: 0 ≤ h ≤ t

}
, t ≥ 0,

because |wM1,m(x)|2 = 2m(1− cos x)m.

2. MEAN ν-WIDTHS OF CLASSES OF FUNCTIONS IN THE SPACE L2(R)

By the symbol Bσ,2, σ ∈ (0,∞), we shall denote the subspace of functions that are restrictions to R

of entire functions of exponential type σ if these restrictions belong to the space L2(R).
Of particular note is that only after the introduction by Magaril-Il’yaev of an appropriate defi-

nition [17], [18], it became possible to calculate asymptotic characteristics of classes of functions
in L2(R) similar, for example, to the n-widths in the 2π-periodic case, but with the usual dimension
of a finite-dimensional subspace replaced by mean dimension. Magaril-Il’yaev’s definition of mean
dimension was a modification of the notion introduced earlier by Tikhomirov. As a result, it became
possible to compare the approximation properties of the subspace Bσ,2 with similar characteristics of
other subspaces of L2(R) of the same mean dimension and solve extremal problems of approximation
theory dealing with optimization.

Before introducing the necessary extremal characteristics, we present some notions and definitions
from [17], [18]. Let BL2(R) be the unit ball in L2(R), let Lin(L2(R)) be the collection of all linear
subspaces in L2(R), and let

Linn(L2(R)) := {L ∈ Lin(L2(R)) : dimL ≤ n}, n ∈ Z+;

d(Q,A,L2(R)) := sup{inf{‖x− y‖ : y ∈ A} : x ∈ Q}
be the best approximation of the set Q ⊂ L2(R) by a set A ⊂ L2(R). By AT , where T > 0, we mean
the restriction of the set A ⊂ L2(R) to the closed interval [−T, T ] and by LinC L2(R) we denote the
collection of subspaces L ∈ Lin(L2(R)) for which the set (L ∩BL2(R))T is precompact in L2([−T, T ])
for any T > 0.

If L ∈ LinC(L2(R)) and T, ε > 0, then there exists an n ∈ Z+ and a K ∈ Linn(L2(R)) such that

d((L ∩BL2(R))T ,K, L2([−T, T ])) < ε.

Let

Dε(T,L, L2(R)) := min
{
n ∈ Z+ : ∃K ∈ Linn(L2([−T, T ])) d((L ∩BL2(R))T ,K, L2([−T, T ])) < ε

}
.

This function is nondecreasing in T and nonincreasing in ε. The quantity

dim(L, L2(R)) := lim

{
lim inf

{
Dε(T,L, L2(R))

2T
: T → ∞

}
: ε → 0

}
,

where L ∈ LinC(L2(R)), is called the mean dimension of the subspace L in L2(R). In [18], it was
shown that

dim(Bσ,2;L2(R)) =
σ

π
. (2.1)
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Let Q be a centrally symmetric subset of L2(R), and let ν > 0 be an arbitrary number. Then by the
mean ν-width in the sense of Kolmogorov of the set Q in L2(R) we mean the quantity

dν(Q,L2(R)) := inf
{
sup{inf{‖f − ϕ‖ : ϕ ∈ L} : f ∈ Q} : L ∈ LinC(L2(R)), dim(L, L2(R)) ≤ ν

}
.

A subspace on which the outer infimum is attained is said to be extremal.
By the mean linear ν-width of the set Q in L2(R) we mean the quantity

δν(Q,L2(R)) := inf{sup{‖f − V (f)‖ : f ∈ Q} : (X,V )},
where Q ⊂ X and the infimum is taken over all pairs (X,V ) such that X is a normed space directly
embedded in L2(R) and V : X → L2(R) is a continuous linear operator for which ImV ∈ LinC(L2(R))

and the inequality dim(Im V,L2(R)) ≤ ν holds. Here ImV is the image of the operator V . A pair on
which the infimum is attained is said to be extremal.

The quantity

bν(Q,L2(R)) := sup
{
sup{ρ > 0 : L ∩ ρBL2(R) ⊂ Q}

: L ∈ LinC(L2(R)),dim(L, L2(R)) > ν, dν(L ∩BL2(R), L2(R)) = 1
}

is called the mean ν-width in the sense of Bernstein of the set Q in L2(R). The last condition imposed
on L in the calculation of the outer supremum means that we consider only subspaces for which the
analog of Tikhomirov’s theorem on the width of the ball holds. This requirement is satisfied, for example,
by the subspace Bσ,2 with σ > νπ, i.e.,

dν(Bσ,2 ∩BL2(R), L2(R)) = 1.

The following inequalities between the given extremal characteristics of a set Q ⊂ L2(R) hold:

bν(Q,L2(R)) ≤ dν(Q,L2(R)) ≤ δν(Q,L2(R)). (2.2)

Note that, in the space L2(R), the exact value of these mean ν-widths of classes of functions defined
by their smoothness characteristics ωm, m ∈ N, were calculated, for example, in [19]–[21].

3. ESTIMATES OF THE MEAN ν-WIDTHS OF SOME CLASSES OF FUNCTIONS
DEFINED BY THEIR SMOOTHNESS CHARACTERISTICS ωM

Let the symbol Lr
2(R), r ∈ N, denote the class of functions f ∈ L2(R) whose (r − 1)th deriva-

tives f (r−1) (f (0) ≡ f ) are locally absolutely continuous and the rth derivatives f (r) belong to the
space L2(R). Note that Lr

2(R) is a Banach space with norm

‖f‖+ ‖f (r)‖.

Let Φ(t), t ∈ [0,∞), be a continuous increasing function such that Φ(0) = 0. In what follows, Φ
will be called a majorant. Let W r(ωM,Φ), where r ∈ Z+, denote the class of functions f ∈ Lr

2(R)
(L0

2(R) ≡ L2(R)) for which the following inequality holds for any t ∈ (0,∞):

ωM(f (r), t) ≤ Φ(t).

For the function wM defined by (1.6), let t∗ ∈ (0, 2π) (t∗ = t∗(ωM)) denote a value of its argument
for which the following equality holds:

|wM(t∗)| = max{|wM(x)| : 0 < x < 2π}.
If there are more than one such values, then, for t∗, we take the least of them. We say that wM satisfies
property A if, on the closed interval [0, t∗], the function |wM| is monotonically increasing. So, for
example, in the case M = M1,m, m ∈ N, using (1.6), we obtain

wM1,m(x) = (eix − 1)m.

Therefore, the function

|wM1,m(x)| = {2(1 − cos x)}m/2
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satisfies property A and, for it, t∗ = π. Note that this property has turned out to be very useful in
the 2π-periodic case for the derivation of sharp Jackson-type inequalities with generalized modulus of
continuity, as well as in the calculation of exact values of n-widths for classes of (ψ, β)-differentiable
functions [10], [11].

Further, we set

|wM(x)|∗ :=
{
|wM(x)| if 0 ≤ x ≤ t∗,

|wM(t∗)| if t∗ ≤ x ≤ 2π.
(3.1)

For an arbitrary function f ∈ L2(R), we let Aσ(f), σ ∈ (0,∞), denote its mean-square approxima-
tion by elements of the subspace Bσ,2, i.e.,

Aσ(f) := inf{‖f − g‖ : g ∈ Bσ,2}.

In [22], it was noted that, for a function f ∈ L2(R), the entire function

Lσ(f, x) =
1√
2π

ˆ σ

−σ
F(f, t)eixt dt, (3.2)

which belongs to the space Bσ,2, has the least deviation from f in the sense of the metric L2(R), i.e.,

Aσ(f) = ‖f − Lσ(f)‖ =

{ˆ
|t|≥σ

|F(f, t)|2 dt
}1/2

. (3.3)

The best approximation of a class M ⊂ L2(R) by the subspace Bσ,2 is defined as follows:

Aσ(M) = sup{Aσ(f) : f ∈ M}.

Theorem 1. Let the function wM satisfy property A, let r ∈ Z+, let Φ be an arbitrary majorant,
and let ν ∈ (0,∞). Then the following relation holds:

1

(νπ)r
inf

{
Φ(τ)

|wM(τνπ)| : 0 < τ ≤ t∗
νπ

}

≤ Πν(W
r(ωM,Φ);L2(R)) ≤ sup{‖f − Lνπ(f)‖ : f ∈ W r(ωM,Φ)}

= Aνπ(W
r(ωM,Φ)) ≤ 1

(νπ)r
lim

τ→0+

Φ(τ)

|wM(τνπ)| , (3.4)

where Πν( · ) is any of the mean ν-widths: the Bernstein ν-width bν( · ), the Kolmogorov ν-width
dν( · ), or the linear ν-width δν( · ).

Proof. By formula (2.1), for the mean dimension of the subspace Bσ,2, we have

dim(Bσ,2;L2(R)) =
σ

π
.

In view of this, setting σ = νπ, for an arbitrary function f ∈ Lr
2(R), from relation (3.3) we obtain

A2
νπ(f

(r)) =

ˆ
|t|≥νπ

|F(f (r), t)|2 dt.

Next, we consider arbitrarily small positive numbers ε for each of which there exists a value
Kε,f ∈ (νπ,∞) depending on f and ε such that the following relation holds:

A2
νπ(f

(r)) ≤
ˆ
νπ≤|t|≤Kε,f

|F(f (r), t)|2 dt+ ε. (3.5)
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Since the function |wM| satisfies property A, for an arbitrary number τ ∈ (0, t∗/Kε,f ], using
relations (1.10), we obtainˆ

νπ≤|t|≤Kε,f

|F(f (r), t)|2 dt ≤ 1

|wM(τνπ)|2
ˆ
νπ≤|t|≤Kε,f

|F(f (r), t)|2|wM(τt)|2 dt

≤ ω2
M(f (r), τ)

|wM(τνπ)|2 . (3.6)

Since, for any element f ∈ Lr
2(R), we have [22]

Aνπ(f) ≤
1

(νπ)r
Aνπ(f

(r)),

it follows from (3.5) (3.6) that, for 0 < τ ≤ t∗/Kε,f ,

A2
νπ(f) ≤

ω2
M(f (r), τ)

(νπ)2r|wM(τνπ)|2 +
ε

(νπ)2r
. (3.7)

It follows from inequality (3.5) that, as ε → 0+, we have Kε,f → +∞, and hence τ → 0+. In view of
the above, passing to the upper limit as ε → 0+ on the right-hand side of equality (3.7), for an arbitrary
function f ∈ W r(ωM,Φ), we can write

Aνπ(f) ≤
1

(νπ)r
lim

τ→0+

ωM(f (r), τ)

|wM(τνπ)| ≤ 1

(νπ)r
lim

τ→0+

Φ(τ)

|wM(τνπ)| .

Hence, using relation (2.2), we obtain the following upper bounds for the extremal characteristics of the
classes W r(ωM,Φ):

bν(W
r(ωM,Φ);L2(R)) ≤ dν(W

r(ωM,Φ);L2(R)) ≤ δν(W
r(ωM,Φ);L2(R))

≤ sup{‖f − Lνπ(f)‖ : f ∈ W r(wM,Φ)}

= Aνπ(W
r(ωM,Φ)) ≤ 1

(νπ)r
lim

τ→0+

Φ(τ)

|ωM(τνπ)| . (3.8)

Let us now derive lower bounds for the extremal characteristics of the classes W r(ωM,Φ). Let
σ̂ := νπ(1 + ε), where ε ∈ (0, ν̃ ) is an arbitrary number, and let ν̃ := min(ν, 1/ν). By (2.1), the mean
dimension of the subspace Bσ̂,2 is

dim(Bσ̂,2;L2(R)) = ν(1 + ε).

We consider the set of entire functions

Bσ̂(ρ) := Bσ̂,2 ∩ ρBL2(R) = {g ∈ Bσ̂,2 : ‖g‖ ≤ ρ},
where

ρ :=
1

σ̂ r
inf

{
Φ(τ)

|wM(τ σ̂)|∗
: 0 < τ ≤ t∗

νπ

}
(3.9)

and the function |wM|∗ is defined by relation (3.1).
By the Wiener–Paley theorem (see, e.g., [16, Chap. IV, Sec. 4.6.1]), for an arbitrary entire function

q ∈ Bσ̂,2 on the real axis R, we have the representation

q(x) =
1√
2π

ˆ σ̂

−σ̂
F(q, t)eixtdt,

where its Fourier transform

F(q, x) =
1√
2π

d

dx

ˆ ∞

−∞
q(t)

e−itx − 1

−it
dt
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is zero for almost all x ∈ R such that |x| > σ̂. Note that if q ∈ Bσ̂,2, then the rth derivative q(r) will also
belong to the subspace Bσ̂,2. Using formulas (1.10) and (3.9) and taking into account the fact that, for
an arbitrary function q ∈ Bσ̂,2, the inequality ‖q(r)‖ ≤ σ̂r‖q‖ holds (see, e.g., [16, Chap. IV, Sec. 4.8.61]),
for any element g from the set Bσ̂(ρ), we obtain

ωM(g(r), t) = sup

{(ˆ σ̂

−σ̂
|F(g(r), x)|2 |wM(hx)|2 dx

)1/2

: 0 < h ≤ t

}

≤ |wM(σ̂t)|∗
{ˆ σ̂

−σ̂
|F(g(r), x)|2 dx

}1/2

= |wM(σ̂t)|∗‖g(r)‖ ≤ |wM(σ̂t)|∗ ρ σ̂r

= |wM(σ̂t)|∗ inf
{

Φ(τ)

|wM(τ σ̂)|∗
: 0 < τ ≤ t∗

νπ

}
. (3.10)

Let us show that the set Bσ̂(ρ) belongs to the class W r(ωM,Φ), i.e., for an arbitrary element
g ∈ Bσ̂(ρ) and any t ∈ (0,∞), the following inequality holds:

ωM(g(r), t) ≤ Φ(t). (3.11)

To this end, we consider the following two cases: 0 < t < t∗/σ̂ and t∗/σ̂ ≤ t < ∞. In the first case,
taking into account the inequality σ̂ > νπ, and setting τ = t on the right-hand side of relation (3.10),
we obtain ωM(g(r), t) ≤ Φ(t). In the second case, in view of (3.1), we have |wM(σ̂t)|∗ = |wM(t∗)|, and
hence, from (3.10), for τ = t∗/σ̂, we obtain

ωM(g(r), t) ≤ Φ

(
t∗
σ̂

)
≤ Φ(t).

Therefore, inequality (3.11) holds and Bσ̂(ρ) ⊂ W r(ωM,Φ).
Using the definition of the mean ν-width in the sense of Bernstein, we can write

bν(W
r(ωM,Φ);L2(R)) ≥ bν(Bσ̂(ρ), L2(R)) ≥ ρ,

or, in view of (3.9),

bν(W
r(ωM,Φ);L2(R)) ≥

1

(νπ)r
inf

{
Φ(τ)

Nν,r,τ (ε)
: 0 < τ ≤ t∗

νπ

}
, (3.12)

where

Nν,r,τ (ε) := (1 + ε)r|wM(τνπ(1 + ε))|∗. (3.13)

The quantity (3.13) is monotonically increasing in ε for fixed values of the other parameters ν, r, and τ ,
and, in view of (3.1),

lim{Nν,r,τ (ε) : ε → 0+} = |wM(τνπ)|.
It follows that, for an arbitrary, but fixed, number τ ∈ (0, t∗/(νπ)] and an arbitrarily small number
λ ∈ (0,Φ(t∗/(νπ))), there exists a value of ε̃ = ε̃(λ, τ) ∈ (0, ν̃) for which the following inequality holds:

1

Nν,r,τ (ε̃)
>

1

|wM(τνπ)| −
λ

Φ(t∗/(νπ))
.

Multiplying both sides of this inequality by Φ(τ) and taking into account the fact that Φ is an increasing
function, we obtain

Φ(τ)

Nν,r,τ (ε̃)
>

Φ(τ)

|wM(τνπ)| − λ.

Then

inf

{
Φ(τ)

Nν,r,τ (ε̃)
: 0 < τ ≤ t∗

νπ

}
> inf

{
Φ(τ)

|wM(τνπ)| : 0 < τ ≤ t∗
νπ

}
− λ. (3.14)
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Using the definition of the supremum of a number set, from (3.14) we obtain

sup

{
inf

{
Φ(τ)

Nν,r,τ (ε)
: 0 < τ ≤ t∗

νπ

}
: 0 < ε < ν̃

}
= inf

{
Φ(τ)

|wM(τνπ)| : 0 < τ ≤ t∗
νπ

}
. (3.15)

Calculating the infimum of the right-hand side of inequality (3.12) over ε ∈ (0, ν̃) and using equal-
ity (3.15), we write

bν(W
r(ωM,Φ);L2(R)) ≥

1

(νπ)r
inf

{
Φ(τ)

|wM(τνπ)| : 0 < τ ≤ t∗
νπ

}
. (3.16)

The required result (3.4) is obtained from relations (3.8) and (3.16), which concludes the proof of the
theorem.

Corollary 1. If the majorant Φ satisfies the condition

inf

{
Φ(τ)

|wM(τνπ)| : 0 < τ ≤ t∗
νπ

}
= lim

τ→0+

Φ(τ)

|wM(τνπ)| , (3.17)

then the following equalities hold:

Πν(W
r(ωM,Φ);L2(R)) = Aνπ(W

r(ωM,Φ)) = sup{‖f − Lνπ(f)‖ : f ∈ W r(ωM,Φ)}

=
1

(νπ)r
inf

{
Φ(τ)

|wM(τνπ)| : 0 < τ ≤ t∗
νπ

}
, (3.18)

where ν ∈ (0,∞), r ∈ Z+, and Πν( · ) is any one of the mean ν-widths considered above. Moreover,
the pair (Lr

2(R),Lνπ), where the operator Lνπ is defined by (3.2) for σ = νπ, is extremal for the
mean linear ν-width δν(W

r(ωM,Φ);L2(R)) and the subspace Bνπ,2 is extremal for the mean
Kolmogorov ν-width dν(W

r(ωM,Φ);L2(R)).

4. APPLICATIONS OF THE OBTAINED RESULTS

Further, we consider, for example, the following majorants:

Φ1,m(t) := tm, m ∈ N.

4.1. Consider the number set M = M1,m, m ∈ N. Since, in this case,

|wM1,m(x)| = 2m sinm
(
x

2

)
, |x| ≤ π,

and t∗ = π, it follows that condition (3.17) holds; namely,

inf

{(
τ

sin(τνπ/2)

)m

: 0 < τ ≤ 1

ν

}
= lim

τ→0+

(
τ

2 sin(τνπ/2)

)m

=
1

(νπ)m
.

Taking into account the equality ωM1,m = ωm and using (3.18), we obtain

Πν(W
r(ωm,Φ1,m);L2(R)) = Aνπ(W

r(ωm,Φ1,m))

= sup{‖f − Lνπ(f)‖ : f ∈ W r(ωm,Φ1,m)} =
1

(νπ)r+m
.

4.2. Consider the number set

M2 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μj =
4

(πj)2
if j = 2ν + 1, ν ∈ Z,

μj = 0 if j = 2ν, ν ∈ Z \ {0},
μj = −1 if j = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

j∈Z

.
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By formula (1.2), to this set there corresponds the generalized difference operator

Δ̂h := ΔM2
h = T̂h − I,

where I is the identity operator on the space L2(R) and

T̂h(f, x) :=
4

π2

∑
ν∈Z

f(x+ (2ν + 1)h)

(2ν + 1)2

almost everywhere on R. Using formula (1.3), we obtain the following smoothness characteristic
in L2(R):

ω̂(f, t) := ωM2(f, t) = sup{‖Δ̂h(f)‖ : |h| ≤ t}, t ≥ 0,

which, in the case of 2π-periodic functions from the spaces Lp([0, 2π]), 1 ≤ p ≤ ∞, was first studied
in [8].

Using (1.6) and [23, Sec. 5.4.6.5], for 0 ≤ x ≤ π, we have

wM2(x) = −1 +
8

π2

∑
ν∈Z+

cos((2ν + 1)x)

(2ν + 1)2
= −2x

π
.

Therefore, for a 2π-periodic even function |wM2 |, we can write

|wM2(x)| =
2|x|
π

, where |x| ≤ π,

and t∗ = π. For the majorant Φ1,1, we obtain

inf

{
Φ1,1(τ)

|wM2(τνπ)|
: 0 < τ ≤ 1

ν

}
= lim

τ→0+

Φ1,1(τ)

|wM2(τνπ)|
=

1

2ν
,

and hence, using relation (3.18), we can write

Πν(W
r(ω̂,Φ1,1);L2(R)) = Aνπ(W

r(ω̂,Φ1,1)) = sup{‖f − Lνπ(f)‖ : f ∈ W r(ω̂,Φ1,1)} =
1

2πrνr+1
.

4.3. Consider the following number set:

M3 :=

⎧⎨
⎩
μj =

3

(πj)2
if j �= 0,

μj = −1 if j = 0

⎫⎬
⎭

j∈Z

.

In view of (1.2), to this set the generalized difference operator Δh := T h − I corresponds, where, for
f ∈ L2(R), we have

T h(f, x) := (3/π2)
∑

j∈Z\{0}

f(x+ jh)

j2

almost everywhere on R.

Using (1.3), we obtain the following smoothness characteristic in the space L2(R):

ω〈′〉(f, t) := ωM3(f, t) = sup{‖Δh(f)‖ : |h| ≤ t}, t ≥ 0,

which was considered earlier in [14].

Using formula (1.6) and [23, Sec. 5.4.2.7], for 0 ≤ x ≤ π, we can write

wM3(x) = −1 +
6

π2

∑
j∈N

cos(jx)

j2
=

3x

π

(
x

2π
− 1

)
.
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Hence, for the even 2π-periodic function |wM3 |, we have

|wM3(x)| =
3|x|(1 − |x|/(2π))

π
, |x| ≤ π,

and t∗ = π.
Taking into account the equality

inf

{
Φ1,1(τ)

|wM3(τνπ)|
: 0 < τ ≤ 1

ν

}
= lim

τ→0+

Φ1,1(τ)

|wM3(τνπ)|
=

1

3ν
,

from (3.18) we obtain

Πν(W
r(ω〈′〉,Φ1,1);L2(R)) = Aνπ(W

r(ω〈′〉,Φ1,1))

= sup{‖f − Lνπ(f)‖ : f ∈ W r(ω〈′〉,Φ1,1)} =
1

3πrνr+1
.

4.4. In the papers [24] of Kozko and Rozhdestvenskii and [7] of Gorbachev, the Thue–Morse generalized
difference and the modulus of continuity were considered. By [7], for the Thue–Morse difference
operator, we write the function

M̃(z) :=
∑
j∈Z

μjz
j = (−1)m

m−1∏
j=0

(1− zk
j
), m, k ∈ N. (4.1)

Setting, for example, k = 1 in (4.1), we obtain

M̃(z) = (z − 1)m =

m∑
j=0

(−1)m−j

(
m

j

)
zj ,

and the number set M1,m corresponds to the function M̃.

Let the symbol M4,m(k) denote the number set {μj}j∈Z corresponding to M̃ in the general
case (4.1). Obviously, M1,m = M4,m(1). Using formula (1.2), for the generalized Thue–Morse

difference Δ̃k,m
h (f) := Δ

M4,m(k)
h (f), we can write [24]

Δ̃k,1
h (f, x) = Δ1

h(f, x) := f(x)− f(x+ h),

Δ̃k,2
h (f, x) := Δ̃k,1

h (f, x)− Δ̃k,1
h (f, x+ kh)

= f(x)− f(x+ h)− f(x+ kh) + f(x+ (k + 1)h),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Δ̃k,m
h (f, x) := Δ̃k,m−1

h (f, x)− Δ̃k,m−1
h (f, x+ km−1h),

(4.2)

or

Δ̃k,m
h = Δ1

h ◦Δ1
kh ◦ · · · ◦Δ1

km−1h.

We define the Thue–Morse modulus of continuity in the space L2(R) by formula (1.3), i.e.,

ω̃k,m(f, t) := ωM4,m(k)(f, t), t ≥ 0. (4.3)

Let us consider the particular case m = 2 that corresponds to relation (4.2). We have

M4,2(k) =

⎧⎪⎨
⎪⎩
μj = 1 if j = 0 or j = k + 1,

μj = −1 if j = 1 or j = k,

μj = 0 if j �= 0, 1, k, k + 1

⎫⎪⎬
⎪⎭

j∈Z

.

Then, using (1.6), we obtain

wM4,2(k)(x) = (1− eix)(1− eikx). (4.4)
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Further, setting k = 2 in (4.4), we can write

|wM4,2(2)(x)| = 4 sin

(
x

2

)
sin(x), |x| ≤ π. (4.5)

Since the function (4.5) attains its maximum for x satisfying the equation cos2(x/2) = 1/3, it follows
from the definition of the quantity t∗ given above that t∗ = 2arccos(1/

√
3 ). Here, the even 2π-periodic

function (4.5) also satisfies property A. Since

inf

{
Φ1,2(τ)

|wM4,2(2)(τνπ)|
: 0 < τ ≤ 2

νπ
arccos

(
1√
3

)}
= lim

τ→0+

Φ1,2(τ)

|wM4,2(2)(τνπ)|
=

1

2(νπ)2
,

using Corollaries 1 and (4.3), we obtain

Πν(W
r(ω̃2,2; Φ1,2);L2(R)) = Aνπ(W

r(ω̃2,2; Φ1,2))

= sup{‖f − Lνπ(f)‖ : f ∈ W r(ω̃2,2; Φ1,2)} =
1

2(πν)r+2
.

In conclusion, note that, in Sec. 4.1, the majorants satisfying condition (3.17) are not limited solely
to the function Φ1,m, and in Secs. 4.2, 4.3, and 4.4, they are not limited to the functions Φ1,1 and Φ1,2,
respectively. We can show that the majorant

Φ̃2,m(t) := tmψ(t), m ∈ N,

where ψ is an arbitrary continuous positive nondecreasing function such that lim{ψ(t) : t → 0+} �= 0,
satisfies condition (3.17) in Sec. 4.1, and the majorants Φ̃2,1 and Φ̃2,2 satisfy the condition specified in
Secs. 4.2, 4.3, and 4.4, respectively.
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