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Abstract—Necessary and sufficient conditions are found under which a symmetric space X on [0, 1]
of type 2 has the following property, which was first proved for the spaces L,, p > 2, by Kadets and
Petezynski: if {u, }22 ; is an unconditional basic sequence in X such that

unllx = llunllz,,  neN,
then the norms of the spaces X and L; are equivalent on the closed linear span [u,] in X. For
sequences of martingale differences, this implication holds in any symmetric space of type 2.
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1. INTRODUCTION

The following result, which is usually called the Kadets—Pelczyriski alternative, was proved in the
classical paper [1] (see Theorem 3). II Y is an infinite-dimensional subspace of L,, p > 2, then either
Y is isomorphic to £3 or Y contains a complemented subspace of L, isomorphic to £,. The proof of this
important fact in [1] uses the following assertion, which we state in a more general situation (see [2,
Theorem 4.1], [3, Proposition 1 and its proof], or [4, Lemma 5.2.1]). In[1], Proposition 1 was proved in
the case X = L,, 1 < p < oo.

Proposition 1. /fY is a closed subspace of a separable symmetric space X on [0, 1], then one of
the following two assertions holds:

a) the norms of the spaces X and Ly are equivalent on'Y’;

b) Y contains a normalized almost disjoint sequence in X, i.e., there is a sequence
{yntnzs C Y, llynllx =1, such that

lyn — xnllx — 0 as mn— oo

for some disjoint sequence {x,}>° ; C X.

Moreover, every sequence {z,}72 ; C X,

znllx =1, satisfies one of the following two conditions:

1) ||znllz, > ¢ forsomec > 0andalln € N;
2) there is an almost disjoint sequence {z,, } C {z,}in X.
"E-mail: astash56@mail.ru
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ON A THEOREM OF KADETS AND PELCZYNSKI 173

Another interesting assertion contained in the same Theorem 3 of [ 1] (see assertion 3g)is less known:
if {un}e; is an unconditional basic sequence in L, p > 2, such that

lunllz, =< l[unllL,,  n=12,...,

then the norms of the spaces L, and L; are equivalent on the entire closed linear span [u,,] in Ly,

The main objective of the present paperis to find out to what extent one can extend the last implication
to general symmetric spaces. First of all, we obtain necessary and sufficient conditions under which this
implication is valid for symmetric spaces of Rademacher type 2. We shall also show that this implication
holds for all spaces of type 2 and for sequences of martingale differences. Using these results, we obtain
some new properties of weakly convergent sequences of normalized functions in symmetric spaces. In
conclusion, we specify a class of symmetric spaces in which any sequence of equimeasurable functions
has a subsequence equivalent to the canonical basis of the space /5.

2. PRELIMINARIES

In what follows, we use some notions and results of the theory of symmetric spaces (for details, see
the monographs [3] and [5]—7]).

A Banach space X of functions measurable on [0, 1] is said to be symmetric, or rearrangement-
invariant, if the following conditions hold:

(1) X is a function lattice, i.e., if g€ X and |f(¢)| <|g(t)| for all ¢t €[0,1], then f € X and
1 fllx < llgllx;
(2) if functions f and g are equimeasurable, i.e.,
m({t €[0,1] : [g(t)] > u}) = m({t € [0,1] : [f()] > u}),  uw>0,

where m(A) stands for the Lebesgue measure of a set A C R, and g € X, then f € X and
1f1lx = llgllx-

In what follows, without loss of generality, we assume that ||x|o 1j||x = 1 (throughout the paper, by
x r we denote the characteristic function of a set F'). Then [5, Theorem 2.4.1] the following continuous
embeddings hold for every symmetric space X on [0, 1]:

Lo CX C Ly, (2.1)

where [|f]|z, < [|fllx, f € X, and [|f]lx <[[fllzo. f € Loo-

Below we give examples of symmetric spaces. Every convex increasing function M (u), M(0) = 0,
on [0, 00) generates the Orlicz space Ly, which is a natural generalization of L,-spaces, with the norm

ufuLM:mf{A>o:/OlM<‘f<;>'>>dtg1}.

As shown in [8], the system of Rademacher functions
re(t) = signsin(287t), 0<t<1, k=1,2,...,

is equivalent in a symmetric space X to the canonical basis in /5 if and only if X D G, where G is the
closure of Ly in the Orlicz space Ly for N(u) = v’ 1,

Another generalization of the L, spaces is the family of the spaces L, ,, which consist of all
measurable functions f on [0, 1] with the following finite norm:

! dt\ /4
(4 [ o)L <<

sup f*()t/? < oo, q = oo,
0<t<1

1 <p<oo.

11|z =
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174 ASTASHKIN

It follows from the definition that L, , = L,. 1T ¢ > p, then || - ||, , is a quasi-norm equivalent to the

1o

If1 < ¢ < ooand p(t) is a concave increasing function on [0, 1], ¢(0) = 0, then by A4(¢) we denote
the Lorentz space with the norm

o= ( | oy dso(t))l/q,

where f*(t) is the decreasing rearrangement of | f(¢)| [5, Sec. 2.2].

prq

On every symmetric space X, the following dilation operators act boundedly:

x<t>, 0 <t < min(l,7),
orx(t) = T

0, min(l,7) <t <1,
where 7 > 0[5, Theorem 2.4.5]. The numbers

o Inflor|lx
—0 In7 fx = Th_}rrgo Int

are called the Boyd indices of X. We always have 0 < ax < 8x < 1. For example, ar, = 8, = 1/p

forall p € [1, o0].

Let X and Y be two symmetric spaces such that X C Y. The inclusion X C Y is said to be strictly
singular (disjointly strictly singular) if, for every sequence of functions (respectively, of disjoint
functions) {x} C X, the norms of X and Y are not equivalent on the closed linear span [z]. Obviously,
every strictly singular inclusion is disjointly strictly singular. The converse is false: for example, the
inclusion L, C Ly, 1 < g < p < o0, is disjointly strictly singular and not strictly singular. Indeed, on
the one hand, every sequence of normalized disjoint functions {x,,} C L,[0, 1] is equivalent in L, to the
canonical basis of the space ¢,., 1 <r < oo [4, Proposition 6.4.1]. On the other hand, as mentioned
above, for every r < oo, the system of Rademacher functions is equivalent in L, to the canonical basis of
the space ¢5.

We say that a Banach space F is of Rademacher type (cotype) p if there is a constant K > 0 such
that the following inequality holds for every finite family {z;}" , C E:

1 n 1/p
/ k(Y lalt)
0 E i=1

E is of Rademacher cotype p if there is a constant K > 0 such that, for every finite {x;}} | C E,

n 1/p 1 n
(Z ||a:z-||%) <K /0 S rit)a
i=1 =1

[f a Banach space E has type (cotype) p, then 1 < p < 2 (respectively, 2 < p < c0); any Banach space
has type 1 and cotype co. The notions of type and cotype are closely related to the notions of p-convexity
and p-concavity.

n

Z T (t):L‘Z

=1

dt.
E

Let 1 < p < oo. A Banach function lattice X is said to be p-convex if there is a constant C' > 0 such
that, for every finite family {z;}; C X, we have

| (Z o) =C (Z )
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and X is said to be p-concave if there is a constant C' > 0 such that, for every finite {x;}}*; C X,

(g Hxiué’()l/” <] @ o "

For p = o0, the expressions in these inequalities are modified in a natural way.
For an arbitrary symmetric space X on [0, 1] and any § > 0, we set
Uxs(f):=={t [0, 1] [f(O)| > ol flx},  feX,
Mxs :={f € X :m(Ux;s(f)) = d}.
In what follows, we repeatedly use the simple fact that condition (a) of Proposition 1 is equivalent to the
existence of a > O such that Y C Mx s [1, Theorem I].

Finally, f < g means that cf < g < C'f for some constants ¢ > 0 and C' > 0, and these constants do
not depend on all or some arguments of the functions (quasi-norms) f and g.

X

3. RESULTS

Proposmon 2. Let X be a symmetric space on [0,1], and let {u,}>2; C X be an unconditional
= |lun||lx =1, n € N. Then the following assertions hold:

a) forsomec > 0and all (ay) € o,

L2 cll(ar)lles

b) if, in addition, the space X has type 2, then {u,} is equivalent in X to the canonical basis
Of ls.

Proof. (a)By virtue of Fubini’s theorem, Khinchine’s L1 -inequality [9], and Minkowski’s inequality, we

have
1/2
dtds>\/ / (Zakuk > ds

_¢< ak</ (s |ds> >1/2d8252<,§a%>1/2'

Since the sequence {u, }° , is unconditional in X, these relations, together with the embeddings (2.1),
yield

dt

t)aguy (t)akug(s)

~
—~

C/ o] ) 1/2
dt > dt > a .
- - \/2<Z ’“)

k=1

L1

00 1] ©© 1] ©©
> apuy > ri(t)agus > re(t)agu
k=1 X k=1 X k=1

(b) It suffices to prove the upper f2-bound. Since the sequence {u;}72, is unconditional in the
space X of type 2, it follows that, for arbitrary n € N and a; € R, we have

n 1 n n 1/2
> apuy > re(taguy|| di < K(Z ||<11<:Uk||%(>
k=1 X k=1 X k=1

< K swpfugllxli(an)lle = Kl(ar)le.

=1,4,...

~
—~

This inequality extends in a standard way to infinite sums, which completes the proof of the proposition.
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176 ASTASHKIN

Corollary 1. /f a symmetric space X has type 2, X # Lo, and {u, }°2 is an unconditional basis
in X, then

lunllz, # llunllx, n € N.

Proof. If we assume that {w, }7 ; is an unconditional basis in X and ||u,||r, < ||un|x, n € N, then,
by Proposition 2, this basis is equivalent in X to the canonical basis of /5. Hence X is isomorphic to
a separable Hilbert space. Let us show that, in this case, X = Lo (with the equivalence of the norms).
Since this contradicts the assumption, we see that the corollary will be proved. First of all, since the
parallelogram identity holds in every Hilbert space, it follows that X has also cotype 2. Hence, for some
constant K > 0independent of n € N and of the functions f1,..., f, € X, we have

n 1/2 1 n n 1/2
K (SIAE) < [ Snon] a<x(X i) (3.1)
i=1 0 =1 X i=1
Let f € X, [|fl|x = 1. Then it follows from the definition of the operator ¢y ,, that f = 7", f;, where
the functions f; are disjoint and, for every ¢ = 1,2, ..., n, the function f; is equimeasurable with the

function oy /,, f. Therefore, substituting these functions into (3.1), we obtain
K 'n 12 < loymfllx < Kn~'/2, n € N.
In particular, if f = x| 1}, then this implies (since ||x[ 1l|x = 1)
K'Y < Ix(m1y/mimllx < Kn='/?

foralln € Nandi =1,2,...,n. In conclusion, applying (3.1) once again and using the last inequalities,
we see that, for constants independent of n € N and ¢; € R, we have
> ri)eiX (1) /nifm)

/1
X 0 1=

n 1/2 n
= <Z|Ci‘2HX[(i—1)/n,i/n}H?X’) Xn_l/2<Z|Ci‘2>
=1 i—1

Since the space X is separable, it follows that the norms of X and Ls are equivalent on a dense set. As
a result, as claimed, X = Lo.

n

dt
X

Z CiX[(i—1)/n,i/n)
i=1

1/2

Theorem 1. Suppose that X is a symmetric spaceon [0,1], X D G. Then the following conditions
are equivalent:

i) if {un}°, C X is an arbitrary basic sequence in X equivalent to the canonical basis of {2
and |up ||z, < [Jun|lx =1, n €N, then [u,] C Mx,, for somen > 0;

ii) there are no sequences of disjoint functions in X equivalent in X to the canonical basis
Of Eg.

Proof. (ii) = (i). Recall (see Sec. 2 and [1, Theorem 1]) that Y C Mx , for some n >0 (Y is a
subset of the symmetric space X)) if and only if the norms of the spaces X and L, are equivalent on Y.
Therefore, if (i) fails to hold, then, by Proposition 1, there is a sequence {u,}52; C X equivalent to the
canonical basis of /5 such that ||uy|, < ||lun|lx =1, n € N, and the closed linear span [u,] contains
a sequence {vi}, ||vk|lx =1, equivalent in X to some disjoint sequence {zy}. By the principle of
small perturbations [4, Theorem 1.3.9], we can assume (passing to a subsequence if necessary) that the
sequence {vy} (together with {z;}) is unconditional. Therefore, since the subspace [u,] is isomorphic
to ¢y by assumption, it follows that {v;} is equivalent to the canonical basis of ¢s (see, e.g., [10,
Proposition 1.1]). Finally, the disjoint sequence {zy} is also equivalent to the ¢5-basis, which contradicts
condition (ii).
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ON A THEOREM OF KADETS AND PELCZYNSKI 177

(i) = (ii). Since every normalized disjoint sequence in the space L; is equivalent to the canonical
basis of ¢; (see, e.g., [4, Proposition 6.4.1]), it follows that, without loss of generality, we may assume
that X # L.

Suppose that condition (ii) fails to hold. Then there is a disjoint sequence {f;}p>, C X,
I fxllx = 1, equivalent in X to the canonical basis of #5. Since X is symmetric, we may assume that
{t: fe(t) £0} C[27%71,27k) k= 1,2,... . Consider the sequence {uy}32, defined by

u2i—1 = foim1 + X121 and  ug; i= foi + riX(1/2,1 i=12,....

To prove the theorem, it suffices to show that the sequence {u,, } satisfies all conditions in (i) (i.e., {u, }
is equivalent in X to the canonical basis of ¢5 and ||uy, ||, =< |lun|lx = 1,n € N)but some its block-basis
consists of disjoint functions. Indeed, if this is the case and assertion (i) holds, then the norms of
the spaces X and L; turn out to be equivalent on some infinite-dimensional subspace generated by a
sequence of disjoint functions. This means (see Sec. 2) that the inclusion X C L; is not disjointly strictly
singular. However, since X # L, this is impossible (see[11]or[12, Corollary 3]). For completeness, we
give a simple proof of this fact. If we assume that, for some sequence {g; }?°; C X of pairwise disjoint
functions, the norms of X and L; are equivalent on the closed linear span [g;] in X, then [g;] C Mx,,
for some 7 > 0. Note that the sets Ux,(gx) are pairwise disjoint and

m(UX,U(gk)) 2 7, k = 1727 e

(see the definition of these sets in Sec. 2). Therefore,

m(U Ux,n<gk>> =3 (U () = oo,
k=1

k=1
which is impossible by virtue of the inclusion Uz~ Ux (g%) C [0,1].
Thus, let us prove that the sequence {uy} satisfies the conditions in (i). First of all, since
[IX0,17llx = 1 (see Sec. 2), it follows that
Jugillx < |l f2illx + Iraxp2llx <2 =4lrixpeylle, < 4lluaillz,-
In the same way, we obtain
uzi—1llx < 4llugi—alle,, i=1,2,....

Further, since X D G, it follows from Khinchine’s inequality (see, e.g., [13, Theorem 5.8.7] or [7,
Remark 2.1]) and the equivalence of the sequence { fx } in X to the canonical basis of /5 that, for arbitrary
ar € R, we have

Soaru| <IN anfr| 4D (a2 +az)ri| < Cll(ar)es-
k=1 X k=1 X i=1 X

On the other hand,
S ]| > H (Z akuk)xw} — S an] = 1@
k=1 X k=1 X k=1 X

Therefore, the sequence {uy } is equivalent to the canonical basis of £5. At the same time, the functions
Ui — U2i—1 = fo;i — f2i—1, i=1,2,...,

form a disjoint sequence. Thus, the theorem is proved.

Remark 1. If X is a symmetric space and X # G, then X contains no sequence {u,}>%; C X
equivalent to the canonical basis ¢5 and such that

[unllz, < [Junlx =1, neN.
Indeed, suppose that such a sequence {u,} exists. Then, since it is equivalent to the canonical basis
of 4o, it follows that w, — 0 weakly in X and so also in L;. Therefore (since ||uy|r, <1, n € N),
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{un} contains no subsequences convergent in Li. Thus, applying the well-known Aldous—Fremlin
theorem [14], one can extract a subsequence {uy,, } C {u,} such that

o0
E akunk
k=1

for some constant ¢ > 0 and all a;, € R. This, together with (2.1) and properties of the sequence {u,, },
implies that {u,, } is equivalent to the canonical basis of ¢ both in X and in Ly. Thus, the inclusion
X C Ly is not strictly singular. Since X 2 G, it follows from a well-known characterization of strictly
singular inclusions of symmetric spaces (see Theorem 2 of [15]) that this inclusion is not even disjointly
strictly singular. The last property fails to hold (see the proof of the implication (i) = (ii) of Theorem 1)
and, therefore, our assertion is proved.

Thus, in the case where X 2 G, condition (i) always formally holds. Therefore, if such a space
contains a sequence of disjoint functions that is equivalent in X to the canonical basis of /5, then the
implication (i) == (ii) of Theorem 1 fails to hold. For X one can take, for example, the Lorentz space
Ao () such that! As(p) 2 G2, Theorem 5.1].

> cll(ax)lle,
L1

Suppose that a symmetric space X has Rademacher type 2. Then X is 2-convex and g-concave for
some q < oo [3, Proposition 1.1.17]. Applying the definitions of these properties to disjoint families of
equimeasurable functions, we readily see that the Boyd indices of the space X satisfy the inequalities
0 < ax < fBx <1/2. In particular, this implies X D G. Finally, applying Theorem 1 together with
Proposition 2, we obtain the following result.

Corollary 2. /[ X is a symmetric space of type 2 on [0,1], then the following conditions are
equivalent:

i) if {un}o2y C Xisanarbitrary unconditional basic sequence in X and ||uy||r, < |lunllx =1,
n €N, then [u,] C Mx,, for somen > 0;

ii) thereis no sequence of disjoint functions in X that is equivalent in X to the canonical basis
Of ls.

As mentioned in Sec. 1, in the case of L, spaces, p > 2, the last result was obtained in the paper[1]

(see Theorem 3g). In the same paper (see Corollary 5), the following assertion was proved (also for
X=L,p>2).

Corollary 3. Let X be a symmetric space of type 2 on [0,1]. Then every sequence {x,}°, C X
such that ||z,||x =1 and x,, — 0 weakly in X contains a subsequence which is equivalent in X
either to a sequence of pairwise disjoint functions or to the canonical basis of ¢5. The second
possibility is realized in the case where

liminf 171X o (3.2)

n—oo HanLl

Proof. Since the space X has type 2, it is g-concave for some ¢ < co. Hence it follows from a
well-known connection between the g-concavity and the separability of Banach lattices (see, e.g., [3,
Theorem 1.1.12(ii)] and [3, Proposition 1.a.7]) that X is separable. Therefore, by Proposition 1, we may
assume that (3.2) holds. Moreover, without loss of generality, we also assume that ||z, ||z, > cfor some
¢ > 0and all n € N. We claim that, in this case, {z,,} contains a subsequence equivalent in X to the
canonical basis of /5.

As above, we have 0 < ax < Bx < 1/2. Hence there is an unconditional basis in X (for example, the
Haar system; see [3, Theorem 2.¢.6]), and according to the Bessaga—Pelczynski selection principle [4,
Proposition 1.3.10], since x,, weakly converges to 0, we may assume (passing to a subsequence if
needed) that {z,,} is an unconditional basis sequence in X. Finally, applying Proposition 2(b), we
obtain the desired result.

'The condition A2(yp) 2 G is equivalent to the condition Supg. <1 ¢(t) log(e/t) = co.
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Let us show that, for sequences of martingale differences, condition (i) of Corollary 2 holds in any
symmetric space of type 2 without any assumptions concerning properties of disjoint sequences.

Theorem 2. Let X be a symmetric space on [0,1] of type 2 such that X # Lo, and let {u,}32, C X
be a sequence of martingale differences such that ||uy, ||, < ||usl|x =1, n € N. Then [u,] C Mx s
for some § > 0.

In particular, if Y is a symmetric space andY D X, then the sequence {uy,} is equivalent in' Y
to the canonical basis of {s.

We present two proofs of this result. The first of them uses the unconditionality of sequences of
martingale differences in a symmetric space with nontrivial Boyd indices. The other proof is substantially
shorter, because some known results are used.

First proof. First of all, recall (see [16] or [17]) that, for every symmetric space Y with nontrivial
Boyd indices (i.e., such that 0 < ay < By < 1) and an arbitrary sequence {u,}2°; C Y of martingale
differences, we have

n n 1/2
Zakuk = H <Z aiui) (3.3)
k=1 Y k=1 Y
with constants independent of n € N and a; € R. Therefore, since the space X has type 2 (and hence
0 < ax < fBx < 1/2), it follows that the previous equivalence holds, in particular, for X. Thus, the
sequence {u}32, is unconditional in X, and by Proposition 2(b) it is equivalent in X to the canonical
basis of £5.

Further, since X has type 2, it follows that X is 2-convex and hence the norm on X can be represented

in the form ||z||x = HmzH;/z, where Y is a symmetric space on [0, 1] [3, Sec. 1.d, p. 53]. Therefore,
by (2.1),
1/2
lallx > 12 = o]z,

i.e., X C Lo. Thus,{ux} C Lo and |Jug|r, =< ||ukllz,, k¥ € N. Moreover, the sequence {uy} is equivalent
to the canonical basis of £9 also in Lo (this follows, e.g., from (3.3) in the case of Y = Ls). Thus, the
norms of the spaces X and Ly are equivalent on the closed linear span [uy] in X. Therefore, in particular,
the inclusion X C L is not strictly singular. Let us show that, at the same time, it is disjointly strictly
singular.

Assuming that this is not the case, we find pairwise disjoint functions vg, k = 1,2, ..., such that
o o
Z apVg = Z apvk| ar € R.
k=1 X k=1 Lo
Since ||y|ly = [[|y|"/?||%, we see from the previous relation and the disjointness of vy, k = 1,2, ..., that
(o] [o¢]
Z a%v,% = Z a%v,% ) ap € R,
k=1 Y k=1 Ly
or, equivalently,
(o] [o¢]
dobvg| =D bwvil| . breR
k=1 Y k=1 Ly

Thus, the inclusion Y C Ly, where Y # Ly, is not disjointly strictly singular either. As was already
repeatedly mentioned several times, this is false, and so the disjoint strict singularity of the inclusion
X C Ls is established.

Thus, all conditions of Theorem 1 in [18] are satisfied; applying the theorem, we conclude that the
norms of the spaces Ly and L are equivalent on the subspace [u,,]. Obviously, the norms of the spaces X
and L; have the same property. Hence (see Sec. 2), [u,] C Mx 5 for some § > 0.

The other assertion of the theorem follows from the embeddings X C Y C L; and the fact that, as
proved above, the sequence {u,, } is equivalent in X and in L; to the canonical basis of /5.
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Second proof. First of all, note that the sequence {u,, } is absolutely equi-integrable, i.e.,

lim sup/ lun(s)|ds = 0.
m(E)—0 neN

Indeed, if this is not the case, then, by the well-known Dunford—Pettis criterion (see, e.g., [4, Theo-

rem 5.2.9]), one can extract a subsequence {uy, } of {u,} which is equivalent in L; to the canonical

basis of /1. However, this contradicts the fact that {u,} is equivalent in X to the canonical basis of {5

(see the first proof).

By virtue of the property of {u,} mentioned above and the assumption inf,ey ||un ||z, > 0, we can
apply to this sequence the lemma on martingale differences from [14], according to which

> cll(an) e,

L1

for some ¢ > 0 and all a, € R. Thus, the norms of the spaces X and L; are equivalent on the
subspace [u,]| (we again apply the embeddings (2.1)). Finally, we again have [u,] C Mx s for some
0 > 0, and the theorem is proved.

In conclusion, we find sufficient conditions on a symmetric space under which every sequence of
equimeasurable functions in this space has a subsequence equivalent to the canonical basis of /5.

Theorem 3. Suppose that a symmetric space X is g-concave for some q < oo and Bx < 1/2.
Then an arbitrary sequence {u,}?° ; C X such that u,, — 0 weakly in X and u), = uj for alln > 2
contains a subsequence equivalent to the canonical basis of £s.

Proof. As above, the g-concavity with ¢ < oo ensures that X is separable and ax > 0. This, together
with the inequality Bx < 1/2, implies that X has an unconditional basis [3, Theorem 2.c.6]. Hence, as
well as in the proof of Corollary 3, we may assume that {u, }7 ; is an unconditional basic sequence in X.
Therefore, taking into account the relations

Junllx = lluallxs  flunllz, = lluall,,  n=2,3,...,

and using Proposition 2(a), we immediately obtain the following lower bound for some ¢ > 0 and all
an € R:

L2 cl[(an)lle.-

E anUn

Below we use an idea of the paper [19] (see the proof of Proposition 3.1). Since u}, = uj forn > 2, it

follows from Theorem 2.7.5 in [6] that, for every n = 1,2,. .., there is a measure-preserving mapping
wp: [0,1] — [0,1] such that |u,(t)] = uf(wn(t)). Let a sequence (an)22 4 € Ly be fixed. For every
k=1,2,...,consider the sublinear operator defined by
k 1/2
Apa(t) = <Z(anx(wn(t)))2> .
n=1

The 2-convexity (with constant 1) of the space L, forr > 2 (see, e.g., [3, Proposition 1.d.5]) implies
1/2 k 1/2
sz, < (Zanux @I, ) = (Xa) el
n=1

it follows that the operator Ay, is bounded in L, with norm not exceeding (Eﬁzl a2)'/2. The assumption
0 < ax < fBx < 1/2 and the above bounds for the norm of the operator Ay in L, enable us to apply
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the Marcinkiewicz interpolation theorem [3, Theorem 2.b.15], according to which, for some C’ > 0
independent of k =1,2,...,

()

On the other hand, since {u,, } is unconditional, applying Maurey’s inequality [3, Theorem 1.d.6(i)] (and
taking into account the g-concavity of X with ¢ < co), we obtain
k 1/2
(o)

k 1 k
E Anlnl| =< / E apUp Ty (8)
n=1 X 0 n=1 n=1

It follows from the above bounds that

k
Z Ap Uy,
n=1

where C' > 0 does not depend on £ = 1,2, ... and on the sequence (a,)52; € f2. Since X is separable,
this inequality can be extended in the standard way to infinite sums. Thus, the theorem is proved.

Remark 2. The condition that X has type 2 in Proposition 2(b), Corollary 3, and Theorem 2 (and the
condition Bx < 1/2 in Theorem 3) is exact in the sense that each of these assertions fails to hold even
for sequences of equally distributed martingale differences if, instead of this condition, we assume that
X is of type p for some p < 2 and X C Lo (respectively, x < 1/2).

First, recall that the space £, 4, 1 <p < 00, 1 < ¢ < o0, consists of all sequences of reals (ax)72,
such that

k 1/2
~ Il < /(X a) b

n=1

X

ds < C"
X

X

k 1/2
< G(Zai> Ja x.
X

n=1

o0 1/q
I(ax)le,, = <Z(a2)q(kﬂ/1’ — (k- 1)q/;n)> < 00,

k=1
where (aj) is the nonincreasing permutation of the sequence (Jax|). Therefore, by Corollary 3.6 of [20],
for every ¢, 1 < ¢ < 2, the space Ly, (see Sec. 2) contains a sequence of independent identically dis-

tributed functions {x}}32 , such that fol xr(s)ds =0,k =1,2,...,and {z}} contains no subsequence
equivalent to the canonical basis of #5. Moreover, every such sequence satisfies the inequality

00
PRLEE
k=1

for some C' > 0[19, Corollary 3.13]. Since an arbitrary disjoint sequence of normalized functions in Lj, 4

< Cll(ar)lles,
Lo g

contains a subsequence equivalent in Ly, 4 to the canonical basis of £, [21, Lemma 3.1] and £, é by 4 Tor
q < 2, it obviously follows that {x,} has no subsequence equivalent to a disjoint sequence in Ly 4. At
the same time, the functions zj, are independent,

1
/ xi(s)ds =0, E=1,2,...,
0

and hence form an orthogonal system in the space Lo; since they are identically distributed, we have
lzellz, = llz1lz, forall k> 2.
Therefore,

1
/ zi(s)y(s)ds — 0 as k— o0
0

for every function y € Ly. Suppose that 1 < ¢ < 2. In this case, the space Ls is dense in the space
(Lag)* = Loy, 1/q+1/¢" = 1; hence z, — 0 weakly in Lo 4.

Thus, the space X = Ly g4, 1 < ¢ <2, and the sequence {z,} satisfy all assumptions of Proposi-
tion 2(b), Corollary 3, and Theorem 2 (resp., Theorem 3), except the condition that X has type 2 (resp.,
Bx < 1/2), but none of these assertions holds in this case.
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