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Abstract—Necessary and sufficient conditions are found under which a symmetric space X on [0, 1]
of type 2 has the following property, which was first proved for the spaces Lp, p > 2, by Kadets and
Pełczyński: if {un}∞n=1 is an unconditional basic sequence in X such that

‖un‖X � ‖un‖L1 , n ∈ N,

then the norms of the spaces X and L1 are equivalent on the closed linear span [un] in X . For
sequences of martingale differences, this implication holds in any symmetric space of type 2.
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1. INTRODUCTION

The following result, which is usually called the Kadets–Pełczyński alternative, was proved in the
classical paper [1] (see Theorem 3). If Y is an infinite-dimensional subspace of Lp, p > 2, then either
Y is isomorphic to �2 or Y contains a complemented subspace of Lp isomorphic to �p. The proof of this
important fact in [1] uses the following assertion, which we state in a more general situation (see [2,
Theorem 4.1], [3, Proposition 1 and its proof], or [4, Lemma 5.2.1]). In [1], Proposition 1 was proved in
the case X = Lp, 1 < p < ∞.

Proposition 1. If Y is a closed subspace of a separable symmetric space X on [0, 1], then one of
the following two assertions holds:

a) the norms of the spaces X and L1 are equivalent on Y ;

b) Y contains a normalized almost disjoint sequence in X, i.e., there is a sequence
{yn}∞n=1 ⊂ Y , ‖yn‖X = 1, such that

‖yn − xn‖X → 0 as n → ∞
for some disjoint sequence {xn}∞n=1 ⊂ X.

Moreover, every sequence {zn}∞n=1 ⊂ X, ‖zn‖X = 1, satisfies one of the following two conditions:

1) ‖zn‖L1 ≥ c for some c > 0 and all n ∈ N;

2) there is an almost disjoint sequence {znk
} ⊂ {zn} in X.
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Another interesting assertion contained in the same Theorem 3 of [1] (see assertion 3g) is less known:
if {un}∞n=1 is an unconditional basic sequence in Lp, p > 2, such that

‖un‖Lp � ‖un‖L1 , n = 1, 2, . . . ,

then the norms of the spaces Lp and L1 are equivalent on the entire closed linear span [un] in Lp.

The main objective of the present paper is to find out to what extent one can extend the last implication
to general symmetric spaces. First of all, we obtain necessary and sufficient conditions under which this
implication is valid for symmetric spaces of Rademacher type 2. We shall also show that this implication
holds for all spaces of type 2 and for sequences of martingale differences. Using these results, we obtain
some new properties of weakly convergent sequences of normalized functions in symmetric spaces. In
conclusion, we specify a class of symmetric spaces in which any sequence of equimeasurable functions
has a subsequence equivalent to the canonical basis of the space �2.

2. PRELIMINARIES

In what follows, we use some notions and results of the theory of symmetric spaces (for details, see
the monographs [3] and [5]–[7]).

A Banach space X of functions measurable on [0, 1] is said to be symmetric, or rearrangement-
invariant, if the following conditions hold:

(1) X is a function lattice, i.e., if g ∈ X and |f(t)| ≤ |g(t)| for all t ∈ [0, 1], then f ∈ X and
‖f‖X ≤ ‖g‖X ;

(2) if functions f and g are equimeasurable, i.e.,

m({t ∈ [0, 1] : |g(t)| > u}) = m({t ∈ [0, 1] : |f(t)| > u}), u > 0,

where m(A) stands for the Lebesgue measure of a set A ⊂ R, and g ∈ X, then f ∈ X and
‖f‖X = ‖g‖X .

In what follows, without loss of generality, we assume that ‖χ[0,1]‖X = 1 (throughout the paper, by
χF we denote the characteristic function of a set F ). Then [5, Theorem 2.4.1] the following continuous
embeddings hold for every symmetric space X on [0, 1]:

L∞ ⊂ X ⊂ L1, (2.1)

where ‖f‖L1 ≤ ‖f‖X , f ∈ X, and ‖f‖X ≤ ‖f‖L∞ , f ∈ L∞.

Below we give examples of symmetric spaces. Every convex increasing function M(u), M(0) = 0,
on [0,∞) generates the Orlicz space LM , which is a natural generalization of Lp-spaces, with the norm

‖f‖LM
= inf

{
λ > 0 :

ˆ 1

0
M

( |f(t)|)
λ

)
dt ≤ 1

}
.

As shown in [8], the system of Rademacher functions

rk(t) = sign sin(2kπt), 0 ≤ t ≤ 1, k = 1, 2, . . . ,

is equivalent in a symmetric space X to the canonical basis in �2 if and only if X ⊃ G, where G is the
closure of L∞ in the Orlicz space LN for N(u) = eu2 − 1.

Another generalization of the Lp spaces is the family of the spaces Lp,q, which consist of all
measurable functions f on [0, 1] with the following finite norm:

‖f‖Lp,q :=

⎧⎪⎪⎨
⎪⎪⎩

(
q

p

ˆ 1

0
(f∗(t)t1/p)q

dt

t

)1/q

, 1 ≤ q < ∞,

sup
0<t≤1

f∗(t)t1/p < ∞, q = ∞,
1 < p < ∞.
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It follows from the definition that Lp,p = Lp. If q > p, then ‖ · ‖Lp,q is a quasi-norm equivalent to the
norm ∥∥∥∥1

t

ˆ t

0
f∗(s) ds

∥∥∥∥
Lp,q

.

If 1 ≤ q < ∞ and ϕ(t) is a concave increasing function on [0, 1], ϕ(0) = 0, then by Λq(ϕ) we denote
the Lorentz space with the norm

‖f‖Λq(ϕ) :=
(ˆ 1

0
(f∗(t))q dϕ(t)

)1/q

,

where f∗(t) is the decreasing rearrangement of |f(t)| [5, Sec. 2.2].

On every symmetric space X, the following dilation operators act boundedly:

στx(t) =

⎧⎪⎨
⎪⎩

x

(
t

τ

)
, 0 ≤ t ≤ min(1, τ),

0, min(1, τ) < t ≤ 1,

where τ > 0 [5, Theorem 2.4.5]. The numbers

αX = lim
τ→0

ln ‖στ‖X

ln τ
, βX = lim

τ→∞
ln ‖στ‖X

ln τ

are called the Boyd indices of X. We always have 0 ≤ αX ≤ βX ≤ 1. For example, αLp = βLp = 1/p
for all p ∈ [1,∞].

Let X and Y be two symmetric spaces such that X ⊂ Y . The inclusion X ⊂ Y is said to be strictly
singular (disjointly strictly singular) if, for every sequence of functions (respectively, of disjoint
functions) {xk} ⊂ X, the norms of X and Y are not equivalent on the closed linear span [xk]. Obviously,
every strictly singular inclusion is disjointly strictly singular. The converse is false: for example, the
inclusion Lp ⊂ Lq, 1 ≤ q < p ≤ ∞, is disjointly strictly singular and not strictly singular. Indeed, on
the one hand, every sequence of normalized disjoint functions {xn} ⊂ Lr[0, 1] is equivalent in Lr to the
canonical basis of the space �r, 1 ≤ r ≤ ∞ [4, Proposition 6.4.1]. On the other hand, as mentioned
above, for every r < ∞, the system of Rademacher functions is equivalent in Lr to the canonical basis of
the space �2.

We say that a Banach space E is of Rademacher type (cotype) p if there is a constant K > 0 such
that the following inequality holds for every finite family {xi}n

i=1 ⊂ E:
ˆ 1

0

∥∥∥∥
n∑

i=1

ri(t)xi

∥∥∥∥
E

dt ≤ K

( n∑
i=1

‖xi‖p
E

)1/p

;

E is of Rademacher cotype p if there is a constant K > 0 such that, for every finite {xi}n
i=1 ⊂ E,

( n∑
i=1

‖xi‖p
E

)1/p

≤ K

ˆ 1

0

∥∥∥∥
n∑

i=1

ri(t)xi

∥∥∥∥
E

dt.

If a Banach space E has type (cotype) p, then 1 ≤ p ≤ 2 (respectively, 2 ≤ p ≤ ∞); any Banach space
has type 1 and cotype ∞. The notions of type and cotype are closely related to the notions of p-convexity
and p-concavity.

Let 1 ≤ p ≤ ∞. A Banach function lattice X is said to be p-convex if there is a constant C > 0 such
that, for every finite family {xi}n

i=1 ⊂ X, we have
∥∥∥∥
( n∑

i=1

|xi|p
)1/p∥∥∥∥

X

≤ C

( n∑
i=1

‖xi‖p
X

)1/p

,
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and X is said to be p-concave if there is a constant C > 0 such that, for every finite {xi}n
i=1 ⊂ X,

( n∑
i=1

‖xi‖p
X

)1/p

≤ C

∥∥∥∥
( n∑

i=1

|xi|p
)1/p∥∥∥∥

X

.

For p = ∞, the expressions in these inequalities are modified in a natural way.
For an arbitrary symmetric space X on [0, 1] and any δ > 0, we set

UX,δ(f) := {t ∈ [0, 1] : |f(t)| > δ‖f‖X}, f ∈ X,

MX,δ := {f ∈ X : m(UX,δ(f)) ≥ δ}.
In what follows, we repeatedly use the simple fact that condition (a) of Proposition 1 is equivalent to the
existence of a δ > 0 such that Y ⊂ MX,δ [1, Theorem 1].

Finally, f � g means that cf ≤ g ≤ Cf for some constants c > 0 and C > 0, and these constants do
not depend on all or some arguments of the functions (quasi-norms) f and g.

3. RESULTS

Proposition 2. Let X be a symmetric space on [0, 1], and let {un}∞n=1 ⊂ X be an unconditional
basic sequence in X, ‖un‖L1 � ‖un‖X = 1, n ∈ N. Then the following assertions hold:

a) for some c > 0 and all (ak) ∈ �2, ∥∥∥∥
∞∑

k=1

akuk

∥∥∥∥
X

≥ c‖(ak)‖�2 ;

b) if, in addition, the space X has type 2, then {un} is equivalent in X to the canonical basis
of �2.

Proof. (a) By virtue of Fubini’s theorem, Khinchine’s L1-inequality [9], and Minkowski’s inequality, we
have ˆ 1

0

∥∥∥∥
∞∑

k=1

rk(t)akuk

∥∥∥∥
L1

dt =
ˆ 1

0

ˆ 1

0

∣∣∣∣
∞∑

k=1

rk(t)akuk(s)
∣∣∣∣ dt ds ≥ 1√

2

ˆ 1

0

( ∞∑
k=1

a2
kuk(s)2

)1/2

ds

≥ 1√
2

( ∞∑
k=1

a2
k

(ˆ 1

0
|uk(s)| ds

)2)1/2

ds ≥ c′√
2

( ∞∑
k=1

a2
k

)1/2

.

Since the sequence {un}∞n=1 is unconditional in X, these relations, together with the embeddings (2.1),
yield ∥∥∥∥

∞∑
k=1

akuk

∥∥∥∥
X

�
ˆ 1

0

∥∥∥∥
∞∑

k=1

rk(t)akuk

∥∥∥∥
X

dt ≥
ˆ 1

0

∥∥∥∥
∞∑

k=1

rk(t)akuk

∥∥∥∥
L1

dt ≥ c′√
2

( ∞∑
k=1

a2
k

)1/2

.

(b) It suffices to prove the upper �2-bound. Since the sequence {uk}∞k=1 is unconditional in the
space X of type 2, it follows that, for arbitrary n ∈ N and ak ∈ R, we have∥∥∥∥

n∑
k=1

akuk

∥∥∥∥
X

�
ˆ 1

0

∥∥∥∥
n∑

k=1

rk(t)akuk

∥∥∥∥
X

dt ≤ K

( n∑
k=1

‖akuk‖2
X

)1/2

≤ K sup
k=1,2,...

‖uk‖X‖(ak)‖�2 = K‖(ak)‖�2 .

This inequality extends in a standard way to infinite sums, which completes the proof of the proposition.
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Corollary 1. If a symmetric space X has type 2, X �= L2, and {un}∞n=1 is an unconditional basis
in X, then

‖un‖L1 �� ‖un‖X , n ∈ N.

Proof. If we assume that {un}∞n=1 is an unconditional basis in X and ‖un‖L1 � ‖un‖X , n ∈ N, then,
by Proposition 2, this basis is equivalent in X to the canonical basis of �2. Hence X is isomorphic to
a separable Hilbert space. Let us show that, in this case, X = L2 (with the equivalence of the norms).
Since this contradicts the assumption, we see that the corollary will be proved. First of all, since the
parallelogram identity holds in every Hilbert space, it follows that X has also cotype 2. Hence, for some
constant K > 0 independent of n ∈ N and of the functions f1, . . . , fn ∈ X, we have

K−1

( n∑
i=1

‖fi‖2
X

)1/2

≤
ˆ 1

0

∥∥∥∥
n∑

i=1

ri(t)fi

∥∥∥∥
X

dt ≤ K

( n∑
i=1

‖fi‖2
X

)1/2

. (3.1)

Let f ∈ X, ‖f‖X = 1. Then it follows from the definition of the operator σ1/n that f =
∑n

i=1 fi, where
the functions fi are disjoint and, for every i = 1, 2, . . . , n, the function fi is equimeasurable with the
function σ1/nf . Therefore, substituting these functions into (3.1), we obtain

K−1n−1/2 ≤ ‖σ1/nf‖X ≤ Kn−1/2, n ∈ N.

In particular, if f = χ[0,1], then this implies (since ‖χ[0,1]‖X = 1)

K−1n−1/2 ≤ ‖χ[(i−1)/n,i/n]‖X ≤ Kn−1/2

for all n ∈ N and i = 1, 2, . . . , n. In conclusion, applying (3.1) once again and using the last inequalities,
we see that, for constants independent of n ∈ N and ci ∈ R, we have∥∥∥∥

n∑
i=1

ciχ[(i−1)/n,i/n]

∥∥∥∥
X

=
ˆ 1

0

∥∥∥∥
n∑

i=1

ri(t)ciχ[(i−1)/n,i/n]

∥∥∥∥
X

dt

�
( n∑

i=1

|ci|2‖χ[(i−1)/n,i/n]‖2
X

)1/2

� n−1/2

( n∑
i=1

|ci|2
)1/2

.

Since the space X is separable, it follows that the norms of X and L2 are equivalent on a dense set. As
a result, as claimed, X = L2.

Theorem 1. Suppose that X is a symmetric space on [0, 1], X ⊃ G. Then the following conditions
are equivalent:

i) if {un}∞n=1 ⊂ X is an arbitrary basic sequence in X equivalent to the canonical basis of �2

and ‖un‖L1 � ‖un‖X = 1, n ∈ N, then [un] ⊂ MX,η for some η > 0;

ii) there are no sequences of disjoint functions in X equivalent in X to the canonical basis
of �2.

Proof. (ii) ⇒ (i). Recall (see Sec. 2 and [1, Theorem 1]) that Y ⊂ MX,η for some η > 0 (Y is a
subset of the symmetric space X) if and only if the norms of the spaces X and L1 are equivalent on Y .
Therefore, if (i) fails to hold, then, by Proposition 1, there is a sequence {un}∞n=1 ⊂ X equivalent to the
canonical basis of �2 such that ‖un‖L1 � ‖un‖X = 1, n ∈ N, and the closed linear span [un] contains
a sequence {vk}, ‖vk‖X = 1, equivalent in X to some disjoint sequence {xk}. By the principle of
small perturbations [4, Theorem 1.3.9], we can assume (passing to a subsequence if necessary) that the
sequence {vk} (together with {xk}) is unconditional. Therefore, since the subspace [un] is isomorphic
to �2 by assumption, it follows that {vk} is equivalent to the canonical basis of �2 (see, e.g., [10,
Proposition 1.1]). Finally, the disjoint sequence {xk} is also equivalent to the �2-basis, which contradicts
condition (ii).
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(i) ⇒ (ii). Since every normalized disjoint sequence in the space L1 is equivalent to the canonical
basis of �1 (see, e.g., [4, Proposition 6.4.1]), it follows that, without loss of generality, we may assume
that X �= L1.

Suppose that condition (ii) fails to hold. Then there is a disjoint sequence {fk}∞k=1 ⊂ X,
‖fk‖X = 1, equivalent in X to the canonical basis of �2. Since X is symmetric, we may assume that
{t : fk(t) �= 0} ⊂ [2−k−1, 2−k], k = 1, 2, . . . . Consider the sequence {uk}∞k=1 defined by

u2i−1 := f2i−1 + riχ[1/2,1] and u2i := f2i + riχ[1/2,1], i = 1, 2, . . . .

To prove the theorem, it suffices to show that the sequence {un} satisfies all conditions in (i) (i.e., {un}
is equivalent in X to the canonical basis of �2 and ‖un‖L1 � ‖un‖X = 1, n ∈ N) but some its block-basis
consists of disjoint functions. Indeed, if this is the case and assertion (i) holds, then the norms of
the spaces X and L1 turn out to be equivalent on some infinite-dimensional subspace generated by a
sequence of disjoint functions. This means (see Sec. 2) that the inclusion X ⊂ L1 is not disjointly strictly
singular. However, since X �= L1, this is impossible (see [11] or [12, Corollary 3]). For completeness, we
give a simple proof of this fact. If we assume that, for some sequence {gk}∞k=1 ⊂ X of pairwise disjoint
functions, the norms of X and L1 are equivalent on the closed linear span [gk] in X, then [gk] ⊂ MX,η

for some η > 0. Note that the sets UX,η(gk) are pairwise disjoint and

m(UX,η(gk)) ≥ η, k = 1, 2, . . .

(see the definition of these sets in Sec. 2). Therefore,

m

( ∞⋃
k=1

UX,η(gk)
)

=
∞∑

k=1

m(UX,η(gk)) = ∞,

which is impossible by virtue of the inclusion
⋃∞

k=1 UX,η(gk) ⊂ [0, 1].
Thus, let us prove that the sequence {uk} satisfies the conditions in (i). First of all, since

‖χ[0,1]‖X = 1 (see Sec. 2), it follows that

‖u2i‖X ≤ ‖f2i‖X + ‖riχ[1/2,1]‖X ≤ 2 = 4‖riχ[1/2,1]‖L1 ≤ 4‖u2i‖L1 .

In the same way, we obtain

‖u2i−1‖X ≤ 4‖u2i−1‖L1 , i = 1, 2, . . . .

Further, since X ⊃ G, it follows from Khinchine’s inequality (see, e.g., [13, Theorem 5.8.7] or [7,
Remark 2.1]) and the equivalence of the sequence {fk} in X to the canonical basis of �2 that, for arbitrary
ak ∈ R, we have ∥∥∥∥

∞∑
k=1

akuk

∥∥∥∥
X

≤
∥∥∥∥

∞∑
k=1

akfk

∥∥∥∥
X

+
∥∥∥∥

∞∑
i=1

(a2i−1 + a2i)ri

∥∥∥∥
X

≤ C‖(ak)‖�2 .

On the other hand,∥∥∥∥
∞∑

k=1

akuk

∥∥∥∥
X

≥
∥∥∥∥
( ∞∑

k=1

akuk

)
χ[0,1/2]

∥∥∥∥
X

=
∥∥∥∥

∞∑
k=1

akfk

∥∥∥∥
X

� ‖(ak)‖�2 .

Therefore, the sequence {uk} is equivalent to the canonical basis of �2. At the same time, the functions

u2i − u2i−1 = f2i − f2i−1, i = 1, 2, . . . ,

form a disjoint sequence. Thus, the theorem is proved.

Remark 1. If X is a symmetric space and X �⊃ G, then X contains no sequence {un}∞n=1 ⊂ X
equivalent to the canonical basis �2 and such that

‖un‖L1 � ‖un‖X = 1, n ∈ N.

Indeed, suppose that such a sequence {un} exists. Then, since it is equivalent to the canonical basis
of �2, it follows that un → 0 weakly in X and so also in L1. Therefore (since ‖un‖L1 � 1, n ∈ N),
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{un} contains no subsequences convergent in L1. Thus, applying the well-known Aldous–Fremlin
theorem [14], one can extract a subsequence {unk

} ⊂ {un} such that∥∥∥∥
∞∑

k=1

akunk

∥∥∥∥
L1

≥ c‖(ak)‖�2

for some constant c > 0 and all ak ∈ R. This, together with (2.1) and properties of the sequence {un},
implies that {unk

} is equivalent to the canonical basis of �2 both in X and in L1. Thus, the inclusion
X ⊂ L1 is not strictly singular. Since X �⊃ G, it follows from a well-known characterization of strictly
singular inclusions of symmetric spaces (see Theorem 2 of [15]) that this inclusion is not even disjointly
strictly singular. The last property fails to hold (see the proof of the implication (i) =⇒ (ii) of Theorem 1)
and, therefore, our assertion is proved.

Thus, in the case where X �⊃ G, condition (i) always formally holds. Therefore, if such a space
contains a sequence of disjoint functions that is equivalent in X to the canonical basis of �2, then the
implication (i) =⇒ (ii) of Theorem 1 fails to hold. For X one can take, for example, the Lorentz space
Λ2(ϕ) such that1 Λ2(ϕ) �⊃ G [2, Theorem 5.1].

Suppose that a symmetric space X has Rademacher type 2. Then X is 2-convex and q-concave for
some q < ∞ [3, Proposition 1.f.17]. Applying the definitions of these properties to disjoint families of
equimeasurable functions, we readily see that the Boyd indices of the space X satisfy the inequalities
0 < αX ≤ βX ≤ 1/2. In particular, this implies X ⊃ G. Finally, applying Theorem 1 together with
Proposition 2, we obtain the following result.

Corollary 2. If X is a symmetric space of type 2 on [0, 1], then the following conditions are
equivalent:

i) if {un}∞n=1 ⊂ X is an arbitrary unconditional basic sequence in X and ‖un‖L1 � ‖un‖X = 1,
n ∈ N, then [un] ⊂ MX,η for some η > 0;

ii) there is no sequence of disjoint functions in X that is equivalent in X to the canonical basis
of �2.

As mentioned in Sec. 1, in the case of Lp spaces, p > 2, the last result was obtained in the paper [1]
(see Theorem 3g). In the same paper (see Corollary 5), the following assertion was proved (also for
X = Lp, p > 2).

Corollary 3. Let X be a symmetric space of type 2 on [0, 1]. Then every sequence {xn}∞n=1 ⊂ X
such that ‖xn‖X = 1 and xn → 0 weakly in X contains a subsequence which is equivalent in X
either to a sequence of pairwise disjoint functions or to the canonical basis of �2. The second
possibility is realized in the case where

lim inf
n→∞

‖xn‖X

‖xn‖L1

< ∞. (3.2)

Proof. Since the space X has type 2, it is q-concave for some q < ∞. Hence it follows from a
well-known connection between the q-concavity and the separability of Banach lattices (see, e.g., [3,
Theorem 1.f.12(ii)] and [3, Proposition 1.a.7]) that X is separable. Therefore, by Proposition 1, we may
assume that (3.2) holds. Moreover, without loss of generality, we also assume that ‖xn‖L1 ≥ c for some
c > 0 and all n ∈ N. We claim that, in this case, {xn} contains a subsequence equivalent in X to the
canonical basis of �2.

As above, we have 0 < αX ≤ βX ≤ 1/2. Hence there is an unconditional basis in X (for example, the
Haar system; see [3, Theorem 2.c.6]), and according to the Bessaga–Pełczyński selection principle [4,
Proposition 1.3.10], since xn weakly converges to 0, we may assume (passing to a subsequence if
needed) that {xn} is an unconditional basis sequence in X. Finally, applying Proposition 2 (b), we
obtain the desired result.

1The condition Λ2(ϕ) �⊃ G is equivalent to the condition sup0<t≤1 ϕ(t) log(e/t) = ∞.
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Let us show that, for sequences of martingale differences, condition (i) of Corollary 2 holds in any
symmetric space of type 2 without any assumptions concerning properties of disjoint sequences.

Theorem 2. Let X be a symmetric space on [0, 1] of type 2 such that X �= L2, and let {un}∞n=1 ⊂ X
be a sequence of martingale differences such that ‖un‖L1 � ‖un‖X = 1, n ∈ N. Then [un] ⊂ MX,δ

for some δ > 0.
In particular, if Y is a symmetric space and Y ⊃ X, then the sequence {un} is equivalent in Y

to the canonical basis of �2.

We present two proofs of this result. The first of them uses the unconditionality of sequences of
martingale differences in a symmetric space with nontrivial Boyd indices. The other proof is substantially
shorter, because some known results are used.

First proof. First of all, recall (see [16] or [17]) that, for every symmetric space Y with nontrivial
Boyd indices (i.e., such that 0 < αY ≤ βY < 1) and an arbitrary sequence {un}∞n=1 ⊂ Y of martingale
differences, we have ∥∥∥∥

n∑
k=1

akuk

∥∥∥∥
Y

�
∥∥∥∥
( n∑

k=1

a2
ku

2
k

)1/2∥∥∥∥
Y

(3.3)

with constants independent of n ∈ N and ak ∈ R. Therefore, since the space X has type 2 (and hence
0 < αX ≤ βX ≤ 1/2), it follows that the previous equivalence holds, in particular, for X. Thus, the
sequence {uk}∞k=1 is unconditional in X, and by Proposition 2 (b) it is equivalent in X to the canonical
basis of �2.

Further, since X has type 2, it follows that X is 2-convex and hence the norm on X can be represented

in the form ‖x‖X = ‖x2‖1/2
Y , where Y is a symmetric space on [0, 1] [3, Sec. 1.d, p. 53]. Therefore,

by (2.1),

‖x‖X ≥ ‖x2‖1/2
L1

= ‖x‖L2 ,

i.e., X ⊂ L2. Thus, {uk} ⊂ L2 and ‖uk‖L1 � ‖uk‖L2 , k ∈ N. Moreover, the sequence {uk} is equivalent
to the canonical basis of �2 also in L2 (this follows, e.g., from (3.3) in the case of Y = L2). Thus, the
norms of the spaces X and L2 are equivalent on the closed linear span [uk] in X. Therefore, in particular,
the inclusion X ⊂ L2 is not strictly singular. Let us show that, at the same time, it is disjointly strictly
singular.

Assuming that this is not the case, we find pairwise disjoint functions vk, k = 1, 2, . . . , such that∥∥∥∥
∞∑

k=1

akvk

∥∥∥∥
X

�
∥∥∥∥

∞∑
k=1

akvk

∥∥∥∥
L2

, ak ∈ R.

Since ‖y‖Y = ‖|y|1/2‖2
X , we see from the previous relation and the disjointness of vk, k = 1, 2, . . . , that∥∥∥∥

∞∑
k=1

a2
kv

2
k

∥∥∥∥
Y

�
∥∥∥∥

∞∑
k=1

a2
kv

2
k

∥∥∥∥
L1

, ak ∈ R,

or, equivalently, ∥∥∥∥
∞∑

k=1

bkv
2
k

∥∥∥∥
Y

�
∥∥∥∥

∞∑
k=1

bkv
2
k

∥∥∥∥
L1

, bk ∈ R.

Thus, the inclusion Y ⊂ L1, where Y �= L1, is not disjointly strictly singular either. As was already
repeatedly mentioned several times, this is false, and so the disjoint strict singularity of the inclusion
X ⊂ L2 is established.

Thus, all conditions of Theorem 1 in [18] are satisfied; applying the theorem, we conclude that the
norms of the spaces L2 and L1 are equivalent on the subspace [un]. Obviously, the norms of the spaces X
and L1 have the same property. Hence (see Sec. 2), [un] ⊂ MX,δ for some δ > 0.

The other assertion of the theorem follows from the embeddings X ⊂ Y ⊂ L1 and the fact that, as
proved above, the sequence {un} is equivalent in X and in L1 to the canonical basis of �2.
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Second proof. First of all, note that the sequence {un} is absolutely equi-integrable, i.e.,

lim
m(E)→0

sup
n∈N

ˆ
E
|un(s)| ds = 0.

Indeed, if this is not the case, then, by the well-known Dunford–Pettis criterion (see, e.g., [4, Theo-
rem 5.2.9]), one can extract a subsequence {unk

} of {un} which is equivalent in L1 to the canonical
basis of �1. However, this contradicts the fact that {un} is equivalent in X to the canonical basis of �2

(see the first proof).

By virtue of the property of {un} mentioned above and the assumption infn∈N ‖un‖L1 > 0, we can
apply to this sequence the lemma on martingale differences from [14], according to which

∥∥∥∥
∞∑

n=1

anun

∥∥∥∥
L1

≥ c‖(an)‖�2

for some c > 0 and all an ∈ R. Thus, the norms of the spaces X and L1 are equivalent on the
subspace [un] (we again apply the embeddings (2.1)). Finally, we again have [un] ⊂ MX,δ for some
δ > 0, and the theorem is proved.

In conclusion, we find sufficient conditions on a symmetric space under which every sequence of
equimeasurable functions in this space has a subsequence equivalent to the canonical basis of �2.

Theorem 3. Suppose that a symmetric space X is q-concave for some q < ∞ and βX < 1/2.
Then an arbitrary sequence {un}∞n=1 ⊂ X such that un → 0 weakly in X and u∗

n = u∗
1 for all n ≥ 2

contains a subsequence equivalent to the canonical basis of �2.

Proof. As above, the q-concavity with q < ∞ ensures that X is separable and αX > 0. This, together
with the inequality βX < 1/2, implies that X has an unconditional basis [3, Theorem 2.c.6]. Hence, as
well as in the proof of Corollary 3, we may assume that {un}∞n=1 is an unconditional basic sequence in X.
Therefore, taking into account the relations

‖un‖X = ‖u1‖X , ‖un‖L1 = ‖u1‖L1 , n = 2, 3, . . . ,

and using Proposition 2 (a), we immediately obtain the following lower bound for some c > 0 and all
an ∈ R: ∥∥∥∥

∞∑
n=1

anun

∥∥∥∥
X

≥ c‖(an)‖�2 .

Below we use an idea of the paper [19] (see the proof of Proposition 3.1). Since u∗
n = u∗

1 for n ≥ 2, it
follows from Theorem 2.7.5 in [6] that, for every n = 1, 2, . . . , there is a measure-preserving mapping
ωn : [0, 1] → [0, 1] such that |un(t)| = u∗

1(ωn(t)). Let a sequence (an)∞n=1 ∈ �2 be fixed. For every
k = 1, 2, . . . , consider the sublinear operator defined by

Akx(t) :=
( k∑

n=1

(anx(ωn(t)))2
)1/2

.

The 2-convexity (with constant 1) of the space Lr for r ≥ 2 (see, e.g., [3, Proposition 1.d.5]) implies

‖Akx‖Lr ≤
( k∑

n=1

a2
n‖x(ωn(t))‖2

Lr

)1/2

=
( k∑

n=1

a2
n

)1/2

‖x‖Lr ;

it follows that the operator Ak is bounded in Lr with norm not exceeding (
∑k

n=1 a2
n)1/2. The assumption

0 < αX ≤ βX < 1/2 and the above bounds for the norm of the operator Ak in Lr enable us to apply
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the Marcinkiewicz interpolation theorem [3, Theorem 2.b.15], according to which, for some C ′ > 0
independent of k = 1, 2, . . . ,∥∥∥∥

( k∑
n=1

|anun|2
)1/2∥∥∥∥

X

= ‖Aku1‖X ≤ C ′
( k∑

n=1

a2
n

)1/2

‖u1‖X .

On the other hand, since {un} is unconditional, applying Maurey’s inequality [3, Theorem 1.d.6 (i)] (and
taking into account the q-concavity of X with q < ∞), we obtain∥∥∥∥

k∑
n=1

anun

∥∥∥∥
X

�
ˆ 1

0

∥∥∥∥
k∑

n=1

anunrn(s)
∥∥∥∥

X

ds ≤ C ′′
∥∥∥∥
( k∑

n=1

|anun|2
)1/2∥∥∥∥

X

.

It follows from the above bounds that∥∥∥∥
k∑

n=1

anun

∥∥∥∥
X

≤ C

( k∑
n=1

a2
n

)1/2

‖u1‖X ,

where C > 0 does not depend on k = 1, 2, . . . and on the sequence (an)∞n=1 ∈ �2. Since X is separable,
this inequality can be extended in the standard way to infinite sums. Thus, the theorem is proved.

Remark 2. The condition that X has type 2 in Proposition 2 (b), Corollary 3, and Theorem 2 (and the
condition βX < 1/2 in Theorem 3) is exact in the sense that each of these assertions fails to hold even
for sequences of equally distributed martingale differences if, instead of this condition, we assume that
X is of type p for some p < 2 and X ⊂ L2 (respectively, βX ≤ 1/2).

First, recall that the space �p,q, 1 < p < ∞, 1 ≤ q < ∞, consists of all sequences of reals (ak)∞k=1
such that

‖(ak)‖�p,q :=
( ∞∑

k=1

(a∗k)
q(kq/p − (k − 1)q/p)

)1/q

< ∞,

where (a∗k) is the nonincreasing permutation of the sequence (|ak|). Therefore, by Corollary 3.6 of [20],
for every q, 1 ≤ q < 2, the space L2,q (see Sec. 2) contains a sequence of independent identically dis-
tributed functions {xk}∞k=1 such that

´ 1
0 xk(s) ds = 0, k = 1, 2, . . . , and {xk} contains no subsequence

equivalent to the canonical basis of �2. Moreover, every such sequence satisfies the inequality∥∥∥∥
∞∑

k=1

akxk

∥∥∥∥
L2,q

≤ C‖(ak)‖�2,q

for some C > 0 [19, Corollary 3.13]. Since an arbitrary disjoint sequence of normalized functions in Lp,q

contains a subsequence equivalent in Lp,q to the canonical basis of �q [21, Lemma 3.1] and �q

�=⊂ �2,q for
q < 2, it obviously follows that {xn} has no subsequence equivalent to a disjoint sequence in L2,q. At
the same time, the functions xk are independent,ˆ 1

0
xk(s) ds = 0, k = 1, 2, . . . ,

and hence form an orthogonal system in the space L2; since they are identically distributed, we have

‖xk‖L2 = ‖x1‖L2 for all k ≥ 2.
Therefore, ˆ 1

0
xk(s)y(s) ds → 0 as k → ∞

for every function y ∈ L2. Suppose that 1 < q < 2. In this case, the space L2 is dense in the space
(L2,q)∗ = L2,q′ , 1/q + 1/q′ = 1; hence xk → 0 weakly in L2,q.

Thus, the space X = L2,q, 1 < q < 2, and the sequence {xn} satisfy all assumptions of Proposi-
tion 2 (b), Corollary 3, and Theorem 2 (resp., Theorem 3), except the condition that X has type 2 (resp.,
βX < 1/2), but none of these assertions holds in this case.
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