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1. INTRODUCTION

In 1950, Nelson and Hadwiger posed the problem of finding the chromatic number χ(Rn) of the
space R

n. This quantity is equal to the least number of colors that can be used to paint all points of Rn

so that the distance between points of the same color is distinct from 1 (the distance 1 is said to be
forbidden). Note that the value of χ(Rn) is independent of the value of the positive number taken for
the forbidden distance. This problem is now considered as one of the classical problems of combinatorial
geometry. The main results for the real space are given, e.g., in [1] and [2]. In fact, the given problem can
also be stated for the case of an arbitrary metric space X with metric ρ and forbidden distance d. Such
a chromatic number will be denoted by χ((X, ρ), d). So, in 1976, Benda and Perles (see [3]) proposed
to consider X = Q

n, ρ = l2, where l2 is the Euclidean metric. The value of the chromatic number of the
space Q

n depends on the forbidden distance, which, for every pair of points with rational coordinates is
either a rational number or a quadratic irrationality. For the chromatic numbers of the rational space
many results were obtained.

• χ((Q1, l2), 1) = 2; this result is obvious;

• χ((Q2, l2), 1), 1) = 2; this result is due to Woodall, 1973 (see [4]);

• χ((Q3, l2), 1) = 2;

• χ((Q4, l2), 1) = 4; both results are due to Benda and Perles, 1976 (see [3]);

• χ((Q5, l2), 1) ≥ 8; this estimate is due to Cibulka (see [5]), 2008; in 1993, Chilakamarri (see [6])
conjectured that here the equality is attained; however, the upper bound has not been established
yet;

• χ((Q6, l2), 1) ≥ 10; this result is due to Mann, 2003, (see [7]);

• χ((Q7, l2), 1) ≥ 15 (see [5]);

• χ((Q8, l2), 1) ≥ 16 (see [7]);
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• χ((Q9, l2), 1) ≥ 22;

• χ((Q10, l2), 1) ≥ 30;

• χ((Q11, l2), 1) ≥ 35;

• χ((Q12, l2), 1) ≥ 37; these results are due to Cherkashin, Kulikov, and Raigorodskii, 2017
(see [8], [9]);

• in Raigorodskii’s 2004 paper (see [10]), the following estimate was obtained for d ∈ Q:

χ((Qn, l1), d) ≥ (ζ2 + o(1))n, ζ2 = 1.365 . . . ;

• it was also proved in [10] that, for all u ∈ N and d ∈ Q, there exists an ε = ε(u) > 0 such that the
following estimate holds:

χ((Qn, lu), d) ≥ (1 + ε+ o(1))n;

• the following estimates hold:

(1.199 + o(1))n ≤ χ((Qn, l2), 1) ≤ χ((Rn, l2), 1) ≤ (3 + o(1))n;

the lower bound is due to Ponomarenko and Raigorodskii (see [11], [12]), 2013, and the upper
bound is due to Larman and Rogers, 1972 (see [13]);

• for particular irrational values of d and an increasing number n, a series of estimates for the
quantity χ((Qn, lu), d) was obtained in [14], 2016, for u ≥ 2 and d = u

√
2pα, where p is a prime

and α ∈ N.

And this is all that is known.
By a distance graph in the metric space X with metric ρ we mean a graph G = (V,E) whose vertex

set V is contained in X and edge set

E ⊆ {{x, y} : x, y ∈ V, ρ(x, y) = a}, a ∈ R+.

Distance graphs are of interest, because they arise in a natural way in connection with the problem of
the chromatic number of a space. Indeed, let us take, for example, the graph G = (V,E) with

V = R
n, E = {{x, y} : l2(x, y) = 1}.

Consider its chromatic number χ(G) (the least number of colors that can be used to paint all vertices
of the graph so that there are no edges with endpoints of one color). Obviously, χ(Rn) = χ(G). By
the Erdős–de Bruijn theorem (see, e.g., [2]), to evaluate χ(Rn), it suffices to restrict the study to finite
distance graphs.

In the present paper, we solve a number of extremal problems for distance graphs in the Euclidean
spaces Rn and Q

n of increasing dimension.
Let us give the necessary definitions.

Let a′−1, a′1, and q′ be positive real numbers less than 1. For each natural number n, we put a1 = [a′1n]
and a−1 = [a′−1n]− 1 and let q be a natural number such that q = q′n(1 + o(1)).

Definition 1. We introduce the sequence {Gn(a1, q)}n∈N = {Gn}n∈N of graphs Gn = (Vn, En) with
vertex sets

Vn = {x = (x1, . . . , xn) : xi ∈ {0, 1}, |{i : xi = 1}| = a1}
and edge sets

En = {{x, y} : l2(x, y) =
√

2q }.
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Definition 2. We introduce the sequence {G′
n(a1, q)}n∈N = {G′

n}n∈N of graphs G′
n = (V ′

n, E
′
n) with

vertex sets

V ′
n =

{
x = (x1, . . . , xn) : xi ∈

{
0,

1√
2q

}
,

∣∣
∣∣

{
i : xi =

1√
2q

}∣∣
∣∣ = a1

}

and edge sets

E′
n = {{x, y} : l2(x, y) = 1}.

Definition 3. We introduce the sequence {G̃n({a−1, a1}, q)}n∈N = {G̃n}n∈N of graphs G̃n = (Ṽn, Ẽn)
with vertex sets

Ṽn =
{
x = (x1, . . . , xn) : xi ∈ {−1, 0, 1}, |{i : xi = −1}| = a−1, |{i : xi = 1}| = a1

}

and edge sets

Ẽn = {{x, y} : l2(x, y) =
√

2q }.

Definition 4. We introduce the sequence {G̃′
n({a−1, a1}, q)}n∈N = {G̃′

n}n∈N of graphs G̃′
n = (Ṽ ′

n, Ẽ
′
n)

with vertex sets

Ṽ ′
n =

{
x = (x1, . . . , xn) : xi ∈

{
− 1√

2q
, 0,

1√
2q

}
,

∣∣
∣
∣

{
i : xi = − 1√

2q

}∣∣
∣
∣ = a−1,

∣∣
∣
∣

{
i : xi =

1√
2q

}∣∣
∣
∣ = a1

}
.

and edge sets

Ẽ′
n = {{x, y} : l2(x, y) = 1}.

We are interested in the behavior of the chromatic numbers of distance graphs under the additional
condition that these graphs do not contain cliques of given size.

Let ω(G) be the number of vertices in the maximal complete subgraph of the graph G = (V,E):

ω(G) = max{|W | : W ⊆ V, ∀x, y ∈ W {x, y} ∈ E}.
The quantity ω(G) is called the clique number of the graph.

For X ∈ {R,Q}, we set

ζk(X) = sup
{
ζ : ∃ a function δ = δ(n) such that lim

n→∞
δ(n) = 0

and ∀n ∃G, a distance graph in X
n

such that ω(G) < k, χ(G) ≥ (ζ + δ(n))n
}
.

These quantities were studied in [1] and [15] for the case of the real space. In the present paper,
we obtain constraints under which graphs from the sequences {G′

n}n∈N and {G̃′
n}n∈N do not con-

tain k-cliques and, further, prove new estimates for the quantity ζk(Q), using an explicit construction.
We also refine a probabilistic result from the paper [15], thus improving estimates of ζk(R). In addition,
we obtain new probabilistic estimates of ζk(Q) for all k.

Concluding the introduction, we note that the history of the problem of the chromatic number of a
space and various results concerning distance graphs can be learned from the surveys, papers, and books
[16]–[35].

2. FORMULATION OF THE RESULTS AND COMPARISON OF THE ESTIMATES
WITH THE PREVIOUS ONES

This section is divided into two parts.
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2.1. Graphs without Cliques
In this subsection, we describe the graphs of the form indicated above that do not contain cliques

of given size. For the graphs of the sequencess {Gn}n∈N, {G̃n}n∈N, Kupavskii [15, Theorems 1 and 2]
obtained conditions under which these graphs do not contain k-cliques. Below we state this result not
only for such graphs but also for the graphs of the sequencess {G′

n}n∈N, {G̃′
n}n∈N (in this case, the proof

is similar to that of Theorems 1 and 2 from [15]).

Theorem 1. (1) Suppose that a′1, q
′ > 0, q′ < a′1, and a′1, q

′ ∈ R. Consider the sequence {Gn}n∈N
(the sequence {G′

n}n∈N) of distance graphs. Let k be a natural number, k ≥ 3. If the inequality

a′1 −
(ka′1)

2 − {ka′1}2 − [ka′1]

k(k − 1)
< q′

holds, then, for sufficiently large n, the graphs of the sequence {Gn}n∈N (respectively, {G′
n}n∈N)

do not contain complete subgraphs (respectively, cliques) on k vertices.
(2) Suppose that a′1, a

′
−1, q

′ > 0, q′ < a′1, and a′1, a
′
−1, q

′ ∈ R. Consider the sequence {G̃n}n∈N
(the sequence {G̃′

n}n∈N) of distance graphs. Let k be a natural number, k ≥ 3.
If the inequalities k(1− a′1 − a′−1) + {ka′1} ≥ 1 and

a′1 + a′−1 +
k(a′1 + a′−1)− (k(a′1 − a′−1))

2 − {k(a′1 − a′−1)}+ {k(a′1 − a′−1)}2
k(k − 1)

< q′

or k(1 − a′1 − a′−1) + {ka′1} < 1 and

(k − k2)(2a′1 + 2a′−1 − 1) + (4k − 4){ka′1}+ 4{ka′1}2 + 4k(a′1 + a′−1)[ka
′
1]− 4(ka′1)

2

k(k − 1)

+ a′1 + a′−1 < q′

hold, then, for sufficiently large n, the graphs of the sequence {G̃n}n∈N (respectively, of the
{G̃′

n}n∈N) do not contain k-cliques.

2.2. Chromatic Numbers
In this subsection, we study the dependence of the constants ζk(R) and ζk(Q) on k. Results for

the case of the real space were obtained in [1], and [15], where two approaches, constructive and
probabilistic, were used.

The first approach is based on the construction of explicit distance graphs without cliques. All pairs
of vertices at distance 1 from each other are joined by edges. As the graphs we use the graphs from the
sequences {Gn}n∈N and {G̃n}n∈N, and optimization with respect to the parameters a′−1, a′1, and q′ is
performed.

In the second approach, we begin by taking graphs with cliques of arbitrarily large size and then
remove part of the edges of these graphs, eliminating all cliques of the given size, and, from the set
of examined graphs, choose the optimal one. Thus, we use subgraphs of the graphs of the sequences
{Gn}n∈N and {G̃n}n∈N and also perform optimization with respect to the parameters a′−1, a′1, and q′.

In the case of the rational space, we shall use the same approaches but based on the se-
quences {G′

n}n∈N and {G̃′
n}n∈N, and optimization with respect to q will be more complicated.

2.2.1. Constructive approach. The following theorems are valid.

Theorem 2. Let k ≥ 3 be a natural number. Then

ζk(Q) ≥ max
x∈(0;1/8)

min
q′∈[x;4x]

max
a′1

q′q
′
(1− q′)1−q′

(a′1)
a′1(1− a′1)

1−a′1
,

where the maximum is taken over all a′1 satisfying the constraints

a′1 ∈ (0, 1), a′1 < 2q′, q′ < a′1, a′1 −
(ka′1)

2 − {ka′1}2 − [ka′1]

k(k − 1)
< q′.
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Theorem 3. Let k ≥ 3 be a natural number. Then

ζk(Q) ≥ max
x∈(0;1/8)

min
q′∈[x;4x]

max
a′1,a

′
−1

(q′ − 2l)q
′−2l(1− q′ + l)1−q′+l

(a′1)
a′1(a′−1)

a′−1(1− a′1 − a′−1)
1−a′1−a′−1

,

where the maximum is taken over all a′−1 and a′1 satisfying the constraints

a′−1 < a′1, a′1 + a′−1 <
1

2
, 3a′−1 + a′1 = 2q′,

a′1 + a′−1 +
k(a′1 + a′−1)− (k(a′1 − a′−1))

2 − {k(a′1 − a′−1)}+ {k(a′1 − a′−1)}2

k(k − 1)
< q′,

and l = (3q′ + 1−
√

1 + 6q′ − 3(q′)2 )/6.

2.2.2. Probabilistic method. Using this method, estimates for the case of the real space were obtained
in [1], [38]–[40]. Further, Kupavskii [15] succeeded in improving these estimates by studying the
structure of the graphs in greater detail. For the probabilistic method and other results obtained by
its use, see [41]–[43].

In this paper, we succeeded in improving the probabilistic results from [15] for ζk(R), as well as in
obtaining similar results for the space Q.

First, let us give necessary definitions. We shall consider the sequences of graphs {Gn}n∈N and
{G̃n}n∈N. Let Gn = (V,E) be a graph belonging to one of these sequences. Let Nn denote the number
of its vertices. We introduce the notation connjk(Gn, v1, . . . , vj), j < k, for the number of k-cliques in
the graph Gn which contain the vertices v1, . . . , vj . Let

connjk(Gn) = max
v1,...,vj

connjk(Gn, v1, . . . , vj).

By sjk({Gn}n∈N) and sjk({G̃n}n∈N) we denote the following quantities:

sjk({Gn}n∈N) = lim
n→∞

logNn
connjk(Gn), Gn ∈ {Gn}n∈N,

sjk({G̃n}n∈N) = lim
n→∞

logNn
connjk(Gn), Gn ∈ {G̃n}n∈N.

For the sequences of graphs specified above, the given limit exists; for details concerning this fact and
other properties of the quantities introduced above, see [15]. We set

sjk(a
′
1, a

′
1 − q′) = sjk({Gn}n∈N) = sjk({G

′
n}n∈N),

sjk(a
′
1, a

′
−1, a

′
1 + a′−1 − q′) = sjk({Gn}n∈N) = sjk({G̃

′
n}n∈N).

The existence of the limit implies that it is the same for all q(n) asymptotically equal to one another.
Therefore, we write that the quantities in question depend on the values of the positive real numbers q′.

In what follows, we shall need Theorem 6 from [15]; we will cite it below. Using it and taking
into account the stronger estimate sjk({Gn}n∈N) for q′ = a′1/2 in Proposition 2, we have succeeded in
strengthening the estimate for ζk(R).

Theorem 4. Let k ≥ 3 be a natural number. Consider an arbitrary real number a′1 satisfying the
constraint a′1 ∈ (0, 1/2) and the quantities

τ0 = τ0(a
′
1) =

(
a′1
2

)−a′1/2
(
1− a′1

2

)−1+a′1/2

, τ1 = τ1(a
′
1) = (a′1)

−a′1(1− a′1)
−1+a′1 .

Then

ζk(R) ≥ max
a′1∈(0,1/2)

τ1(a
′
1)

1−2s2k(a
′
1,a

′
1/2)/((k−2)(k+1))

τ0(a′1)
.
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Let us now state two more theorems proved in the present paper.

Theorem 5. Let k ≥ 3 be a natural number. Let x ∈ (0; 1/8) be an arbitrary number. For each q′

from the closed interval [x; 4x], consider an arbitrary real number a′1 satisfying the constraints

a′1 ∈
(
0,

1

2

)
, a′1 < 2q′

and the quantities

τ0 = τ0(q
′) = (q′)−q′(1− q′)−1+q′ , τ1 = τ1(a

′
1) = (a′1)

−a′1(1− a′1)
−1+a′1 .

Then

ζk(Q) ≥ max
x∈(0;1/8)

min
q′∈[x;4x]

max
a′1

τ1(a
′
1)

1−2s2k(a
′
1,a

′
1−q′)/((k−2)(k+1))

τ0(q′)
,

where the maximum is taken over a′1 under the constraints on this parameter indicated in the
statement of the theorem.

Theorem 6. Let k ≥ 3 be a natural number. Let x ∈ (0; 1/8) be an arbitrary number. For
each q′ from the closed interval [x; 4x], consider arbitrary real numbers a′−1 and a′1 satisfying
the constraints

a′−1, a
′
1 ∈ (0, 1), a′−1 + a′1 ≤

1

2
, a′−1 ≤ a′1, 3a′−1 + a′1 = 2q′

and the quantities

A =
2 + 9a′−1 + 3a′1 −

√
(2 + 9a′−1 + 3a′1)

2 − 12(3a′−1 + a′1)
2

12
,

B =
3a′−1 + a′1

2
− 2A, C = 1 +A−

3a′−1 + a′1
2

.

Further, let

ρ0 = ρ0(a
′
−1, a

′
1) = A−AB−BC−C ,

ρ1 = ρ1(a
′
−1, a

′
1) = (1 − a′1 − a′−1)

−1+a′1+a′−1(a′−1)
−a′−1(a′1)

−a′1 .

Then

ζk(Q) ≥ max
x∈(0;1/8)

min
q′∈[x;4x]

max
a′−1,a

′
1

ρ1(a
′
−1, a

′
1)

1−2s2k(a
′
1,a

′
−1,a

′
1+a′−1−q′)/((k−2)(k+1))

ρ0(a
′
−1, a

′
1)

,

where the maximum is taken over a′−1 and a′1 under the constraints on these parameters indicated
in the statement of the theorem.

To prove Theorems 4–6, we need some auxiliary propositions.

Proposition 1. For all k ≥ i ≥ j and the sequences of graphs indicated above, the following
inequalities hold:

sjk(a
′
1, a

′
1 − q′) ≤ sji (a

′
1, a

′
1 − q′) + (k − i)sii+1(a

′
1, a

′
1 − q′), (1)

sjk(a
′
1, a

′
−1, a

′
1 + a′−1 − q′) ≤ sji (a

′
1, a

′
−1, a

′
1 + a′−1 − q′) + (k − i)sii+1(a

′
1, a

′
−1, a

′
1 + a′−1 − q′).

Proposition 2. The following estimates hold:

s2k(a
′
1, a

′
−1, a

′
1 + a′−1 − q′) ≤ k − 2, (2)

s2k(a
′
1, a

′
1 − q′) ≤ s23(a

′
1, a

′
1 − q′) + (k − 3)s34(a

′
1, a

′
1 − q′), (3)
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s23(a
′
1, a

′
1 − q′) = max

t
log

1/((a′1)
a′1(1−a′1)

1−a′1 )

P

Q
, (4)

s34(a
′
1, a

′
1 − q′) = max

t,l,m,p,r
log

1/((a′1)
a′1 (1−a′1)

1−a′1 )

L

M
, (5)

as well as

P = P (a′1, b) = bb(a′1 − b)2(a
′
1−b)(1− 2a′1 + b)1−2a′1+b,

Q = Q(a′1, b, t) = t2t(b− t)3(b−t)(a′1 − 2b+ t)2(a
′
1−2b+t)(1− 2a′1 + b− t)1−2a′1+b−t,

L = L(a′1, b, t, l,m, p, r)

= (t+ l)(t+l)(b− t− l)3(b−t−l)(a′1 − 2b+ t+ l)3(a
′
1−2b+t+l)

× (1− 3a′1 + 3b− t− l)1−3a′1+3b−t−l,

M = M(a′1, b, t, l,m, p, r)

= ttmmllpprr(b− t− l −m)b−t−l−m(b− t− l − p)b−t−l−p

× (b− t− l − r)b−t−l−r(b− t−m− p)b−t−m−p

× (b− t−m− r)b−t−m−r(b− t− p− r)b−t−p−r

× (a′1 − 3b+ 2t+ l +m+ p)a
′
1−3b+2t+l+m+p

× (a′1 − 3b+ 2t+ l +m+ r)a
′
1−3b+2t+l+m+r

× (a′1 − 3b+ 2t+ l + p+ r)a
′
1−3b+2t+l+p+r

× (a′1 − 3b+ 2t+m+ p+ r)a
′
1−3b+2t+m+p+r

× (1− 4a′1 + 6b− 3t− l −m− p− r)1−4a′1+6b−3t−l−m−p−r,

where b = a′1 − q′. It is assumed that the parameters a′1, b, t, l, m, p, and r take only those values
for which the functions P , Q, L, and M are well defined.

2.2.3. Comments and tables of estimates. Here we present the numerical values of lower bounds for
the quantities ζk(R) and ζk(Q). In Table 1, the first column contains the values of k, and in columns
2–5, we give the values of ζk(R) obtained in [15] for each k. The last column contains the constants
obtained in Theorem 4 of this paper. The sharpest bounds for all values of k are highlighted in bold.

Theorem 4 is a refinement of Theorem 6 from [15] and improves the results for k from 11 to 19. By
using distance graphs with vertices from {0, 1}n, the following estimate for the chromatic number of the
space R

n was obtained in [19]:

χ(Rn) ≥
(
1 +

√
2

2
+ o(1)

)n

= (1.207 . . . + o(1))n.

It is seen from the table that, as k increases, the constant ζk(R) becomes closer to (1 +
√
2 )/2. This

means that, in a certain sense, our results are consistent with those in [19] and that, in a certain sense,
Theorem 4 provides the optimal (within the framework of the given method) result for each k and in the
asymptotics in k.

In Table 2, the first column contains the values of k, and in columns 2–5, for each k, we give the lower
bounds for ζk(Q) obtained in Theorems 2, 3, 5, and 6, respectively. The sharpest bounds are highlighted
in bold.

It is seen that, for certain values of k, Theorems 2 and 3 yield values less than 1. This means
that Theorems 2 and 3 yield weak results in the case of the rational space. It should be noted that,
for the real space, the explicit approach used in [1] and [15] yielded the best results for small k. In
addition, it is seen that, in the fourth column, ζk(Q) tends to 1.150 . . . , and in the fourth column,
ζk(Q) approaches 1.199 . . . These are precisely the constants obtained in the papers [14] and [11], [12],
respectively, in which the best now available estimates for χ(Qn) were obtained. Thus, for each k and in
the asymptotics in k, Theorems 5 and 6 yield the optimal (in a certain sense) results within the framework
of the methods used.
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Table 1

k T4 [15] T5 [15] T6 [15] T7 [15] T4

, ζk(R) ≥

3 1.0582 is 1.0147 is 1.0147

4 1.0663 1.0374 1.0321 1.0028 1.0365

5 1.0857 1.0601 1.0491 1.0169 1.0529

6 1.0898 1.0754 1.0641 1.0339 1.0683

7 1.0995 1.0865 1.0771 1.0501 1.0812

8 1.1019 1.0948 1.0881 1.0646 1.0918

9 1.1077 1.1013 1.0976 1.0773 1.1008

10 1.1093 1.1066 1.1057 1.0886 1.1088

11 1.1131 1.1109 1.1128 1.0985 1.1157

12 1.1142 1.1145 1.1190 1.1073 1.1218

13 1.1170 1.1175 1.1245 1.1151 1.1271

14 1.1178 1.1201 1.1293 1.1220 1.1317

15 1.1198 1.1224 1.1336 1.1283 1.1358

16 1.1205 1.1225 1.1375 1.1339 1.1396

17 1.1220 1.1241 1.1409 1.1390 1.1430

18 1.1226 1.1254 1.1441 1.1437 1.1461

19 1.1239 1.1266 1.1470 1.1479 1.1488

20 1.1243 1.1278 1.1496 1.1518 1.1513

100 1.1366 1.1446 1.1947 1.2197 1.1945

1000 1.1394 1.1491 1.2058 1.2375 1.2058

1000000 1.1394 1.1542 1.2071 1.2395 1.2071

3. PROOFS. CHROMATIC NUMBERS

3.1. Proof of Theorem 2

Let x ∈ (0, 1/8) be an arbitrary number. For each n (the dimension), we set

q = 22[log2(2xn)/2]+1.

Consider the graph G′
n from the sequence of graphs {G′

n}n∈N. In view of such a choice of q, the sets V ′
n

are embedded in Q
n.

By the Dirichlet principle, it be easy to obtain the following estimate1 for the chromatic number of the
graph:

χ(G′
n) ≥

|V ′
n|

α(G′
n)

=
Ca1
n

α(G′
n)

,

where α(G′
n) is the independence number of the graph, i.e., the maximal cardinality of a subset of the

vertex set in which there are no edges.

1Translator’s note. Here and elsewhere, Cm
n stands for the binomial coefficient

(
n
m

)
.
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Table 2

k T2 T3 T5 T6

, ζk(Q) ≥

3 0.9980 0.9843 1.0088 0.9972

4 0.9980 0.9887 1.0176 1.0019

5 0.9980 0.9926 1.0270 1.0131

6 0.9980 0.9961 1.0405 1.0267

7 0.9980 0.9995 1.0468 1.0398

8 0.9980 1.0027 1.0517 1.0519

9 1.0020 1.0058 1.0555 1.0626

10 1.0062 1.0088 1.0614 1.0722

11 1.0083 1.0117 1.0715 1.0808

12 1.0104 1.0146 1.0801 1.0881

13 1.0106 1.0174 1.0875 1.0950

14 1.0125 1.0202 1.0939 1.1007

15 1.0126 1.0229 1.0996 1.1061

16 1.0126 1.0256 1.1046 1.1107

17 1.0126 1.0283 1.1083 1.1151

18 1.0127 1.0309 1.1097 1.1096

19 1.0143 1.0335 1.1110 1.1225

20 1.0149 1.0347 1.1121 1.1262

100 1.0220 1.0692 1.1445 1.1828

1000 1.0242 1.0721 1.1498 1.1968

1000000 1.0256 1.0721 1.1504 1.1989

Lemma 1. The following estimate holds:

α(G′
n) ≤

∑

i≤q−1

Ci
n.

This lemma is precisely Lemma 2 from the paper [14], which also contains its proof. This lemma uses
the condition a′1 < 2q′. Then, using the lemma and optimizing the expression, we obtain

χ(G′
n) ≥ max

x∈(0;1/8)
max
a′1

C
[a′1n]
n

nCq
n

.

In view of the constraints on the parameters in Theorem 1, we have a graph without k-cliques for
sufficiently large n. The value of q depends on n. Note that q′ takes values in the closed interval [x; 4x].
Therefore, to obtain a lower bound for the quantity ζk(Q), we may take, for example, its minimum over
all q′ from the closed interval [x; 4x]. Now, applying Stirling’s formula, for ζk(Q), we obtain

ζk(Q) ≥ max
x∈(0;1/8)

min
q′∈[x;4x]

max
a′1

(q′)q
′
(1− q′)1−q′

(a′1)
a′1(1− a′1)

1−a′1
.
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3.2. Proof of Theorem 3

Let x ∈ (0, 1/8) be an arbitrary number. For each n (the dimension), we set

q = 22[log2(2xn)/2]+1.

Consider the graph G̃′
n from the sequence of graphs {G̃′

n}n∈N. By the choice of q, the sets V ′
n are

embedded in Q
n. Just as in the proof of Theorem 1, we shall use the inequality

χ(G̃′
n) ≥

|V ′
n|

α(G̃′
n)

=
Ca1
n C

a−1
n−a1

α(G̃′
n)

.

Lemma 2. The following estimate holds:

α(G̃′
n) ≤

[(q−1)/2]∑

j=0

q−1−2j∑

i=0

Cj
nC

i
n−j.

This lemma is precisely Lemma 1 from the paper [14], in which its proof can be found.
Using the lemma, we obtain

α(G̃′
n) ≤

[(q−1)/2]∑

j=0

q−1−2j∑

i=0

Cj
nC

i
n−j ≤ n

[(q−1)/2]∑

j=0

Cj
nC

q−1−2j
n−j = nF.

Let f = C
[κn]
n C

q−2[κn]
n−[κn] , where κ is a real number from the interval (0, 1/2). We take l from the

assumption of Theorem 3. At κ = l, the function f attains its maximum, which will be denoted by fmax

(for details, see [15], [16]). We see that the inequality F < nfmax holds. Hence

χ(G̃′
n) ≥ max

x∈(0;1/8)
max
a′1,a

′
−1

C
[a′1n]
n C

[a′−1n]

n−[a′1n]

n2fmax
.

For sufficiently large n, the graph will not contain k-cliques due to the choice of the parameters in
Theorem 3. Just as in the proof of Theorem 3, to obtain a lower bound for the quantity ζk(Q), we
may take, for example, its minimum over all q′ from the closed interval [x; 4x]. Now, applying Stirling’s
formula, for ζk(Q), we obtain

ζk(Q) ≥ max
x∈(0;1/8)

min
q′∈[x;4x]

max
a′1,a

′
−1

(q′ − 2l)q
′−2l(1− q′ + l)1−q′+l

(a′1)
a′1(a′−1)

a′−1(1− a′1 − a′−1)
1−a′1−a′−1

.

3.3. Proof of Theorem 5

Let x ∈ (0, 1/8) be an arbitrary number. For each n (the dimension), we set

q = 22[log2(2xn)/2]+1.

Let

c(a′1, q
′) =

τ1(a
′
1)

1−2s2k(a
′
1,a

′
1−q′)/((k−2)(k+1))

τ0(q′)
.

Let us fix k, x, q′, and a′1 and, thereby, τ0, τ1, and c. If c ≤ 1, then the assertion of Theorem 5 is trivial.
Consider the case in which c > 1.

Let c′ ∈ (1, c) be an arbitrary number. Here it is important that c′ is strictly less than c, although it
can be arbitrarily close to c. If we show that ζk(Q) ≥ c′, then, taking the supremum with respect to c′ on
both sides of the inequality, we obtain the required inequality ζk(Q) ≥ c.

Thus, we need to verify the existence of a function δ(n) = o(1) such that, for all n, there exists a
distance graph G′ = (V ′, E′) in Q

n for which, simultaneously, ω(G′) < k and χ(G′) ≥ (c′ + δ(n))n.
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Let a1 satisfy the inequality a1 − 2q < 0. For each sufficiently large n ∈ N, consider the graph
G′

n = (V ′
n, E

′
n) ∈ {G′

n}n∈N. Just as in Lemma 2 from [12], we perform a renormalization and find that
Gn = (Vn, En) ∈ {Gn}n∈N.

By using Stirling’s formula, it is easy to show that

N = |Vn| = (τ1 + o(1))n.

The estimate

α = α(Gn) ≤ nCq
n

was obtained in Lemma 2 from [14] Since q = q′n, it follows from Stirling’s formula that, as n → ∞,
α ≤ (τ0 + δ1)

n with some δ1 = o(1).

Now, using the standard estimate χ(G) ≥ |V |/α(G), we obtain

χ(Gn) ≥
(
τ1
τ0

+ δ2(n)

)n

with some δ2 = o(1); this result is better than that in Theorem 5. However, the distance graph Gn

contains cliques of size greater than k.

In what follows, we shall use the probabilistic method.

We set G = (Vn, E) ∈ {Gn}n∈N, including each edge from En in E with probability p = γn without
regard to the other edges; here γ ∈ (τ0c

′/τ1, 1) (such an edge exists, because c′ < c ≤ τ1/τ0). We obtain
a probability space (Ωn,Bn, Pn) in which

Ωn = {G = (Vn, E), E ⊆ En}, Bn = 2Ωn ,

Pn(G) = p|E|(1− p)|En|−|E|, G = (Vn, E).

We set l = [(τ1/c
′)n]. On Ωn, we define two families of events. Let us number all l-element subsets

of Vn and introduce the events

Xi = {the ith l-element subset does not contain edges}, i = 1, . . . , C l
N .

Further, let us number all k-cliques of the graph Gn. We denote their number by clk(Gn) and introduce
the events

Yj = {the jth k-element subset is a clique}, i = 1, . . . , clk(Gn).

Since c′ > 1, it follows that, for large n, we have l < N = |Vn|; therefore, the events Xi are well defined.

If we show that

P

(Cl
N∧

i=1

Xi ∧
clk(Gn)∧

j=1

Yj

)
> 0,

then this will imply the existence of a subgraph G in Gn not containing k-cliques and such that α(G)
does not exceed l. This inequality holds for γ close to τ0c/τ1 and

γ < τ
1−2s2k(a

′
1,a

′
1−q′)/((k−2)(k+1))

1 .

The detailed proof of this inequality was described in Theorem 6 from [15]. Given the graph G, we
perform the inverse renormalization, obtaining a graph G′ in the space Q

n.

As a result, we have

χ(G′) = χ(G) ≥ max
x∈(0;1/8)

min
q′∈[x;4x]

max
a′1

(
τ1(a

′
1)

1−2s2k(a
′
1,a

′
1−q′)/((k−2)(k+1))

τ0(q′)
+ δ(n)

)n

,

and the theorem is proved.
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3.4. Proof of Theorem 6

The scheme of proof is practically the same for Theorem 6 as in its analog from the previous
section. The essential difference is only in the construction of the graph G̃n. For each sufficiently
large n, we consider the graph G̃′

n = (Ṽ ′
n, Ẽ

′
n) ∈ {G̃′

n}n∈N. Just as in Lemma 1 from [14], we perform
renormalization and obtain the graph G̃n = (Ṽn, Ẽn) ∈ {G̃n}n∈N.

Let a′−1 and a′1 be real numbers satisfying the condition

[a′−1n] + [a′1n]− 2q < −2[a′−1n]

(required for the applicability of the linear algebraic method).

By Stirling’s formula, we have |Ṽn| = (ρ1 + o(1))n. In addition, it is known that

α = α(G̃n) ≤ (ρ0 + o(1))n.

Subsequent arguments are obvious, and the theorem is proved.

3.5. Proofs of the Propositions

Proposition 1 is precisely Statement 1 from [15], where its proof is given. Inequality (2) and
equality (4) are analogs of inequality (7) and equality (8) of assertion 2 of Proposition 2 of [15] with
q′ = (a′1 + 3a′−1)/2 and q′ = a′1/2, respectively. The proof is carried out in a similar way. Inequality (3)
follows from inequality (1) of Proposition 1 with i = 3 and j = 2.

To obtain equality (5), we must calculate the number of ways needed to complete a prescribed triangle
on vertices u, v, and w of the graph Gn to a 4-clique on vertices u, v, w, and y of this graph. We shall
denote by [tn] the number of unit coordinates in which all the four vectors intersect, by [ln] the number
of unit coordinates in which only u, v, and w intersect, by [mn] the number of unit coordinates in which
only u, v, and y intersect, by [pn] the number of unit coordinates in which only u, w, and y intersect,
and by [rn] the number of unit coordinates in which only v, w, and y intersect; here t, l, m, p, and r are
nonnegative real numbers. Let us find the maximum of this quantity with respect to t, l, m, p, and r
(we denote it by R(a′1, b)); then the number of all vectors generating the 4-clique containing the given
triangle will not exceed

(n)4R(a′1, x) = R(a′1, x)(1 + o(1))n.

It is easy to obtain the following expression:

R(a′1, b, t, l,m, p, r) = C
[tn]
[tn]+[ln]C

[mn]
[bn]−[tn]−[ln]C

[pn]
[bn]−[tn]−[ln]C

[rn]
[bn]−[tn]−[ln]

× C
[bn]−[tn]−[mn]−[pn]
[a′1n]−2[bn]+[tn]+[ln]C

[bn]−[tn]−[mn]−[rn]
[a′1n]−2[bn]+[tn]+[ln]C

[bn]−[tn]−[pn]−[rn]
[a′1n]−2[bn]+[tn]+[ln]

× C
[a′1n]−3[bn]+2[tn]+[mn]+[pn]+[rn]

n−3[a′1n]+3[bn]−[tn]−[ln]

=

(
L

M
+ o(1)

)n

.

It is easy to see that

s34({Gn}n∈N) = max
t,l,m,p,r

log
1/((a′1)

a′1 (1−a′1)
1−a′1 )

L

M
.

The maximum of this expression with respect to the variables t, l, m, p, and r was found by computer,
with constraints on them for each value of the parameters a′1 and q′ taken into account.
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