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Abstract—Sufficient conditions for the compactness in generalized Morrey spaces of the composi-
tion of a convolution operator and the operator of multiplication by an essentially bounded function
are obtained. Very weak conditions on the function are also obtained under which the commutator
of the operator of multiplication by such a function and a convolution operator is compact. The
compactness of convolution operators in domains of cone type is investigated.
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1. INTRODUCTION

In the past three decades, many authors have investigated Morrey-type spaces and operators acting
on these spaces (see, e.g., the survey papers [1] and [2] by Burenkov and the references cited therein).
The study of these spaces goes back to the work of Morrey [3] and is extensively continued at present.
Along with the theory of Morrey-type spaces themselves, much attention has been paid to classical
operators of analysis on these spaces, including the maximum operator, the Riesz potential, and a
certain singular integral operator (see [2]). However, the important class of integral operators formed
by convolution operators on Morrey spaces has been little studied. In this connection, first of all, it is
worth to mention the papers [4] and [5], in which convolution operators on general Morrey-type spaces
were considered and an analog of Young’s inequality for convolutions in these spaces was obtained.
In [6], the compactness of some operators of convolution type on the Morrey space was studied.

This paper is a continuation and generalization of [6]. In the paper, we consider products of the
convolution operator with integrable kernel and the operator of multiplication by a function a ∈ L∞(Rn),
on generalized Morrey spaces. Using results of [7], we show that, if the function a vanishes at infinity,
then the product is a compact operator. We alo obtain weak conditions on a function a ensuring
the compactness of the commutator of a convolution operator and the operator of multiplication by
this function. In the concluding part of the paper, convolution operators on cone-type domains are
considered.

We use the following notation:

• R
n is n-dimensional Euclidean space;

• x = (x1, . . . , xn) ∈ R
n;

• |x| =
√

x21 + . . . + x2n ;
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• R+ = (0,∞);

• B(x, r) is the open ball in R
n of radius r centered at x;

• CB(x, r) = R
n \ B(x, r);

• χD is the characteristic function of a measurable set D ⊂ R
n;

• PD is the operator of multiplication by the characteristic function χD;

• C∞
0 (Rn) is the class of compactly supported infinitely differentiable functions.

2. PRELIMINARIES

Let 1 ≤ p ≤ ∞, and let D ⊆ R
n be a measurable set. Then Lp(D) is the space of (classes of)

measurable complex-valued functions with norm

‖f‖Lp(D) =

(ˆ
D
|f(x)|p dx

)1/p

, 1 ≤ p < ∞,

‖f‖L∞(D) = ess sup
x∈D

|f(x)|.

In the case D = R
n, we use the notation ‖ · ‖p instead of ‖ · ‖Lp(D). We say that f ∈ Lloc

p (Rn) if
f ∈ Lp(K) for any compact set K ⊂ R

n.

Definition 1. Let 1 ≤ p ≤ ∞, and let w be a nonnegative Lebesgue measurable function on R+ not
equivalent to zero. The generalized Morrey space Lp,w(R

n) is the space of all functions f ∈ Lloc
p (Rn)

such that

‖f‖Lp,w(Rn) ≡ ‖f‖p,w = sup
x∈Rn

‖w(r)‖f‖Lp(B(x,r))‖L∞(R+) < ∞. (2.1)

If w(r) = r−λ, where 0 ≤ λ ≤ n/p, then the space Lp,w(R
n) coincides with the classical Morrey

space Lp,λ(R
n). For w(r) ≡ 1, the space Lp,w(R

n) coincides with the ordinary space Lp(R
n).

Definition 2 (see [8]). Let 1 ≤ p ≤ ∞. The set Ωp∞ is the family of all functions w that are nonnegative,
Lebesgue measurable on R+, and not equivalent to zero which satisfy the conditions

‖w(r)rn/p‖L∞(0,t) < ∞, ‖w(r)‖L∞(t,∞) < ∞

for some t > 0.

As is known (see [9] and [10]), the generalized Morrey space Lp,w(R
n) is nontrivial, i.e., contains

functions not equivalent to zero on R
n, if and only if w ∈ Ωp∞.

Below we present conditions for the precompactness of a set contained in a generalized Morrey space.

Proposition 1 ([7]). Given 1 ≤ p ≤ ∞ and w ∈ Ωp∞, let Ψ be a set of functions in Lp,w(R
n)

satisfying the following conditions:

i) supψ∈Ψ ‖ψ‖p,w < ∞;

ii) limδ→0 supψ∈Ψ ‖ψ( · + δ)− ψ( · )‖p,w = 0;

iii) limR→∞ supψ∈Ψ ‖ψχ
CB(0,R)

‖p,w = 0.

Then the set Ψ is precompact in the space Lp,w(R
n).
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Consider the following convolution operator on Lp,w(R
n):

(Hϕ)(x) =

ˆ
Rn

h(x− y)ϕ(y) dy, x ∈ R
n, (2.2)

where h ∈ L1(R
n). The papers [4] and [5] devoted to convolutions in Morrey-type spaces contain, in

particular, the following assertion.

Proposition 2 ([4]). If 1 ≤ p ≤ ∞, w ∈ Ωp∞, and h ∈ L1(R
n), then the operator H is bounded on

the space Lp,w(R
n) and

‖Hϕ‖p,w ≤ ‖h‖1‖ϕ‖p,w (2.3)

for every function ϕ ∈ Lp,w(R
n).

3. MAIN RESULTS
3.1. In this section, we study the compactness of the product of a convolution operator and the operator
of multiplication by a bounded function.

Let Ma denote the operator of multiplication by a function a ∈ L∞(Rn). It can readily be seen that
this operator is bounded on the space Lp,w(R

n); moreover, for any function ϕ ∈ Lp,w(R
n), we have

‖Maϕ‖p,w ≤ ‖a‖∞‖ϕ‖p,w.
Let C0(R

n) be the family of all functions a that are continuous on R
n and satisfy the condition

limx→∞ a(x) = 0. The following assertion is an analog of Lemma 1 in [6]. For completeness, we present
a detailed proof of this assertion.

Lemma 1. If 1 ≤ p ≤ ∞, w ∈ Ωp∞, a ∈ C0(R
n), and h ∈ L1(R

n), then the operator Ha := MaH is
compact on the space Lp,w(R

n).

Proof. Let Φ = {ϕ} be an arbitrary bounded set in Lp,w(R
n), i.e., such that ‖ϕ‖p,w ≤ C for every

ϕ ∈ Φ. We claim that the set {Haϕ}, where ϕ ∈ Φ, is precompact in Lp,w(R
n). Let us verify

conditions (i)–(iii) of Proposition 1.
The validity of condition (i) follows from the boundedness of the operator Ha. Let us prove (ii). For

every function ϕ ∈ Φ, we have

‖(Haϕ)( · + δ) − (Haϕ)( · )‖p,w
≤ ‖(a( · + δ) − a( · ))(Hϕ)( · + δ)‖p,w + ‖a( · )((Hϕ)( · + δ) − (Hϕ)( · ))‖p,w
≤ ‖a( · + δ)− a( · )‖∞‖Hϕ‖p,w + ‖a‖∞‖(Hϕ)( · + δ) − (Hϕ)( · )‖p,w.

Applying inequality (2.3) and taking into account the assumption ‖ϕ‖p,w ≤ C, we obtain

‖(Haϕ)( · + δ)− (Haϕ)( · )‖p,w
≤ C(‖a( · + δ) − a( · )‖∞‖h‖1 + ‖a‖∞‖h( · + δ)− h( · )‖1).

The first summand on the right-hand side of this inequality tends to zero as δ → 0 because a ∈ C0(R
n),

and the other summands tend to zero because the function h ∈ L1(R
n) is continuous with respect to the

L1 norm. Hence

lim
δ→0

sup
ϕ∈Φ

‖(Haϕ)( · + δ) − (Haϕ)( · )‖p,w = 0.

We proceed to condition (iii). Again using inequality (2.3), we obtain

‖χ
CB(0,R)

Haϕ‖p,w ≤ ‖χ
CB(0,R)

a‖∞‖Hϕ‖p,w ≤ C‖h‖1 sup
|x|≥R

|a(x)|.

Since limx→∞ a(x) = 0, it follows that

lim
R→∞

sup
ϕ∈Φ

‖χ
CB(0,R)

Haϕ‖p,w = 0.

This completes the proof of the lemma.
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Lemma 2. If 1 ≤ p ≤ ∞, w ∈ Ωp∞, h ∈ L1(R
n), and D is a bounded measurable set in R

n, then the
operator PDH is compact on the space Lp,w(R

n).

Proof. Let a ∈ C0(R
n) be a function such that a(x) ≡ 1 for all x ∈ D. Then we have

PDH = PDMaH.

By Lemma 1, the operator MaH is compact on Lp,w(R
n); thus, so is the operator PDMaH .

Let us extend the class of coefficients under consideration.

Definition 3 ([11, p. 37]). We say that a function a ∈ L∞(Rn) belongs to the class Bsup
0 (Rn) if

lim
N→∞

ess sup
|x|>N

|a(x)| = 0.

Note that the class Bsup
0 (Rn) is the closure with respect to the L∞ norm of the set of all compactly

supported functions in L∞(Rn).

Theorem 1. If 1 ≤ p ≤ ∞, w ∈ Ωp∞, a ∈ Bsup
0 (Rn), and h ∈ L1(R

n), then the operator MaH is
compact on the space Lp,w(R

n).

Proof. Consider the function aN (x) = a(x)χ
B(0,N)

(x). We have

MaNH = MaNPB(0,N)H,

and the operator MaNH is compact by Lemma 2. Since a ∈ Bsup
0 (Rn), it follows that

‖MaH −MaNH‖Lp,w→Lp,w ≤ ess sup
|x|>N

|a(x)| ‖H‖Lp,w→Lp,w → 0

as N → ∞. Hence the operator MaH is compact on Lp,w(R
n).

3.2. We proceed to study the commutator [Ma,H] of operators Ma and H . As is well known, the
commutator is defined by the formula

[Ma,H] = MaH −HMa.

By virtue of (2.2), we have

([Ma,H]ϕ)(x) =

ˆ
Rn

(a(x)− a(y))h(x − y)ϕ(y) dy

=

ˆ
Rn

(a(x)− a(x− t))h(t)ϕ(x − t) dt, x ∈ R
n.

In [6], to describe compactness conditions for the commutator [Ma,H] in classical Morrey spaces, the
author introduced the class Ω∞(Rn) which consists of all functions a ∈ L∞(Rn) such that the following
equation holds for every compact set K ⊂ R

n:

lim
N→∞

ess sup
|x|>N

‖a(x)− a(x− · )‖L∞(K) = 0.

Here we introduce and use a wider class of functions.

Definition 4. We say that a function a ∈ L∞(Rn) belongs to the class A0(R
n) if the following

condition holds for every compact set K ⊂ R
n:

lim
N→∞

ess sup
|x|>N

ˆ
K
|a(x)− a(x− t)| dt = 0. (3.1)

It can readily be seen that Ω∞(Rn) ⊂ A0(R
n). As shown below, the condition a ∈ A0(R

n) is
sufficient for the compactness of the operator [Ma,H].
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Lemma 3. If a ∈ A0(R
n), then, for every function f ∈ L1(R

n),

lim
N→∞

ess sup
|x|>N

ˆ
Rn

|a(x)− a(x− t)||f(t)| dt = 0. (3.2)

Proof. Take an arbitrary ε > 0. Using the density of the class C∞
0 (Rn) in the space L1(R

n), we choose
g ∈ C∞

0 (Rn) so that

‖f − g‖1 <
ε

4‖a‖∞
and fix this function g. We haveˆ

Rn

|a(x)− a(x− t)||f(t)| dt ≤
ˆ
Rn

|a(x) − a(x− t)||f(t)− g(t)| dt

+

ˆ
supp g

|a(x)− a(x− t)||g(t)| dt

≤ 2‖a‖∞‖f − g‖1 + sup
t∈Rn

|g(t)|
ˆ
supp g

|a(x)− a(x− t)| dt

<
ε

2
+ ‖g‖∞

ˆ
supp g

|a(x)− a(x− t)| dt,

where supp g stands for the support of the function g ∈ C∞
0 (Rn). By virtue of (3.1), there is an N0 > 0

such that, for all N > N0,

ess sup
|x|>N

ˆ
supp g

|a(x)− a(x− t)| dt < ε

2‖g‖∞
.

Thus, the inequality

ess sup
|x|>N

ˆ
Rn

|a(x)− a(x− t)||f(t)| dt < ε

holds for all N > N0, which proves (3.2).

Theorem 2. If 1 < p < ∞, w ∈ Ωp∞, a ∈ A0(R
n), and h ∈ L1(R

n), then the commutator [Ma,H] is
compact on the space Lp,w(R

n).

Proof. Let us show that the operator [Ma,H] can be approximated with respect to the operator norm
by compact operators. Take arbitrary ε > 0. Using Lemma 3, we choose an N > 0 so that

AN := ess sup
|x|≥N

ˆ
Rn

|a(x) − a(x− t)||h(t)| dt < εp
′

(2‖a‖∞‖h‖1)p′/p
,

and fix this N . Let

PN = PB(0,N), QN = I − PN ,

where I is the identity operator. Applying Hölder’s inequality, we obtain

|(QN [Ma,H]ϕ)(x)| ≤
ˆ
Rn

|a(x)− a(x− t)||h(t)||ϕ(x − t)| dt
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≤
(ˆ

Rn

|a(x)− a(x− t)||h(t)| dt
)1/p′(ˆ

Rn

|a(x)− a(x− t)||h(t)||ϕ(x − t)|p dt
)1/p

≤ A
1/p′

N

(
2‖a‖∞

ˆ
Rn

|h(t)||ϕ(x − t)|p dt
)1/p

< ε‖h‖−1/p
1

(ˆ
Rn

|h(t)||ϕ(x − t)|p dt
)1/p

for almost all x ∈ CB(0, N). Thus, for arbitrary x ∈ R
n and r > 0, we have

‖QN [Ma,H]ϕ‖Lp(B(x,r)) < ε‖h‖−1/p
1

(ˆ
B(x,r)

dy

ˆ
Rn

|h(t)||ϕ(y − t)|p dt
)1/p

= ε‖h‖−1/p
1

(ˆ
Rn

|h(t)| dt
ˆ
B(x,r)

|ϕ(y − t)|p dy
)1/p

= ε‖h‖−1/p
1

(ˆ
Rn

|h(t)|‖ϕ‖pLp(B(x−t,r)) dt

)1/p

.

Taking into account (2.1), we obtain the following relations for the norm of the function QN [Ma,H]ϕ in
the space Lp,w(R

n):

‖QN [Ma,H]ϕ‖p,w = sup
x∈Rn

‖w(r)‖QN [Ma,H]ϕ‖Lp(B(x,r))‖L∞(R+)

< ε‖h‖−1/p
1 sup

x∈Rn

∥
∥∥
∥w(r)

(ˆ
Rn

|h(t)| ‖ϕ‖pLp(B(x−t,r)) dt

)1/p∥∥∥
∥
L∞(R+)

= ε‖h‖−1/p
1 sup

x∈Rn

∥
∥∥
∥

ˆ
Rn

|h(t)|[w(r)‖ϕ‖Lp(B(x−t,r))]
p dt

∥
∥∥
∥

1/p

L∞(R+)

= ε‖h‖−1/p
1 sup

x∈Rn

(ˆ
Rn

|h(t)| ‖w(r)‖ϕ‖Lp (B(x−t,r))‖pL∞(R+) dt

)1/p

≤ ε‖h‖−1/p
1 ‖ϕ‖p,w

(ˆ
Rn

|h(t)| dt
)1/p

= ε‖ϕ‖p,w.

Since the function ϕ ∈ Lp,w(R
n) is arbitrary, we have

‖[Ma,H]− PN [Ma,H]‖Lp,w→Lp,w = ‖QN [Ma,H]‖Lp,w→Lp,w < ε.

Since ε is an arbitrary positive number and PN [Ma,H] is a compact operator (by Lemma 2), it follows
that the operator [Ma,H] is compact as well. This completes the proof of the theorem.

Corollary 1. If 1 < p < ∞, w ∈ Ωp∞, a ∈ Bsup
0 (Rn), and h ∈ L1(R

n), then the operator HMa is
compact on the space Lp,w(R

n). In particular, the operator HPD is compact for every measurable
bounded set D ⊂ R

n.

Proof. Since a ∈ Bsup
0 (Rn), it follows that a ∈ A0(R

n). Therefore, the equation

HMa = MaH − [Ma,H]

and Theorems 1 and 2 imply the compactness of the operator HMa.
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In conclusion of this section, we mention the papers [12]–[14], in which commutators of certain
operators acting on Morrey spaces were considered, too.

3.3. As shown above, the operators PDH and HPD are compact if the set D is bounded. In this
subsection, we study the compactness of operators of the form PD1HPD2 in the case of unbounded
sets D1 and D2. Given arbitrary D ⊂ R

n, we set

DN = D ∩ B(0, N), CDN = D \DN .

We denote the distance between sets D1 and D2 by dist(D1,D2).

Theorem 3. If 1 ≤ p ≤ ∞, w ∈ Ωp∞, h ∈ L1(R
n), and D1 and D2 are measurable unbounded sets

in R
n such that dist(CD1N , CD2N ) → ∞ as N → ∞, then the operator PD1HPD2 is compact on

the space Lp,w(R
n).

Proof. First, suppose that h ∈ C∞
0 (Rn). Then there is a ρ > 0 for which supph ⊂ B(0, ρ). Choose an

N > 0 so large that |x− y| > ρ for all x ∈ CD1N and y ∈ D2. We have PCD1N
HPD2 = 0. Hence

PD1HPD2 = PD1N
HPD2 + PCD1N

HPD2 = PD1N
HPD2

and the operator PD1HPD2 is compact by Lemma 2.
Now suppose that h is an arbitrary function in L1(R

n). Then there is a sequence {hk} ⊂ C∞
0 (Rn)

such that ‖h− hk‖1 → 0 as k → ∞. By virtue of (2.3), we have

‖PD1HPD2 − PD1HkPD2‖Lp,w→Lp,w ≤ ‖h− hk‖1 → 0.

Since the operators PD1HkPD2 are compact, it follows that the operator PD1HPD2 is compact
on Lp,w(R

n). This completes the proof of the theorem.

Corollary 2. If 1 ≤ p ≤ ∞, w ∈ Ωp∞, h ∈ L1(R
n), and Γ1 and Γ2 are cones in R

n whose clo-
sures have no common points except the origin. Then the operator PΓ1HPΓ2 is compact on
the space Lp,w(R

n).

In conclusion, we mention that the operators of convolution in cones on Lp-spaces were first
considered in [15].
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