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The theory of boundedness of solutions of systems of differential equations based on the method
of Lyapunov functions was developed in [1]. The theory of boundedness of solutions of systems in
part of the variables (or, for short, of partial boundedness of solutions) was developed on the basis of
the method of Lyapunov functions in the monograph [2]. The basic forms of partial boundedness of
solutions with partially controlled initial conditions were introduced and studied in [3]–[5] by using the
method of Lyapunov functions. In the monograph [6], the author created the method of vector Lyapunov
functions, also called the principle of comparison with vector Lyapunov functions, which offers much
more possibilities for studying the boundedness of solutions than the method of Lyapunov functions.
In [7] and [8], the method of vector Lyapunov functions was applied to study the partial boundedness
of solutions and the partial boundedness of solutions with partially controlled initial conditions. Note
that the methods of the theory of boundedness and of the theory of Lyapunov stability are very similar.
This is caused by the fact that the notions of boundedness of solutions and of Lyapunov stability of an
equilibrium position are dual in the sense that the quantifiers ∀ and ∃ preceding ε and δ are interchanged
in the corresponding εδ-definitions. This duality ensures a large formal similarity between the theories
of boundedness and stability in the sense of Lyapunov. The same considerations apply to the theories
of partial boundedness and partial stability in the sense of Lyapunov. The theory of partial boundedness
of solutions with partially controlled initial conditions and the theory of partial Lyapunov stability of
a partial equilibrium position [9]–[11] are very similar formally as well. This similarity between the
theory of boundedness and the theory of Lyapunov stability provides a natural motivation to consider
the form of boundedness of solutions that dually corresponds to the notion of positive stability in the
sense of Poisson [12] of the trajectory of motion of a dynamical system. A solution possessing this form
of boundedness, called Poisson boundedness in this paper, is not necessarily contained entirely in a ball
in the phase space, but returns to this ball countably many times. Obviously, the problem of finding an
infinite system of time intervals on which the dynamical system functions normally, i.e., the parameters
of motion of this dynamical system do not take arbitrarilyy large values, is very important. This implies
the need for studying various forms of Poisson boundedness of solutions on the basis of the method of
vector Lyapunov functions.

In the present paper, we introduce the notions of uniform-ultimate Poisson boundedness, partial
uniform-ultimate Poisson boundedness, and partial uniform-ultimate Poisson boundedness of solutions
with partially controlled initial conditions; these notions generalize the notions of the corresponding
forms of uniform-ultimate boundedness of solutions. Using the method of vector Lyapunov functions,
we obtain sufficient conditions for uniform-ultimate Poisson boundedness, partial uniform-ultimate
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Poisson boundedness, and the partial uniform-ultimate Poisson boundedness of solutions with partially
controlled initial conditions. Further, we introduce the notions of ultimate Poisson equiboundedness,
partial ultimate Poisson equiboundedness, and partial ultimate Poisson equiboundedness of solutions
with partially controlled initial conditions; these notions generalize the notions of the corresponding
forms of the ultimate equiboundedness of solutions. Using the method of vector Lyapunov functions,
we obtain sufficient conditions for ultimate Poisson equiboundedness, partial ultimate Poisson equi-
boundedness, and ultimate Poisson partial equiboundedness of solutions with partially controlled initial
conditions. We also exemplify the application of the obtained results to particular systems of differential
equations. Now we pass to precise definitions and statements.

Suppose given an arbitrary system of differential equations of n variables

dx

dt
= F (t, x), F (t, x) = (F1(t, x), . . . , Fn(t, x))

T , (1)

whose right-hand side is defined and continuous on R
+ × R

n, where R
+ = {t ∈ R | t ≥ 0}. It is

assumed that all solutions of of system (1) can be extended to the whole semiaxis R
+. The uniqueness

of a solution of the Cauchy problem for system (1) is not required.
Before introducing notation, we recall, following [2], some basic facts concerning vector Lyapunov

functions. Suppose given a continuously differentiable vector function

V (t, x) = (V1(t, x), . . . , Vl(t, x))
T , l ≥ 1, (t, x) ∈ R

+ × R
n.

The derivative of this vector function subject to system (1) is defined by

V̇ (t, x) = (V̇1(t, x), . . . , V̇l(t, x))
T ,

where V̇i(t, x) is the derivative (subject to (1)) of the function Vi(t, x), 1 ≤ i ≤ l. Given vectors
ξ = (ξ1, . . . , ξl)

T , η = (η1, . . . , ηl)
T ∈ R

l, we write ξ ≤ η if

ξi ≤ ηi for any 1 ≤ i ≤ l.

Now, suppose given a continuous vector function

f(t, ξ) = (f1(t, ξ), . . . , fl(t, ξ))
T

on R
+ ×R

l. We write f(t, ξ) ∈ W if f(t, ξ) satisfies the Ważewski condition, namely, for each 1 ≤ s ≤ l,
the function fs(t, ξ) is nondecreasing in the variables ξ1, . . . , ξs−1, ξs+1, . . . , ξl, i.e.,

if ξi ≤ ηi, 1 ≤ i ≤ l, i �= s, ξs = ηs then fs(t, ξ) ≤ fs(t, η).

It is easy to see that, for l = 1, the condition f(t, ξ) ∈ W always holds. A continuously differentiable
vector function V (t, x) and a system

dξ

dt
= f(t, ξ), f(t, ξ) ∈ W, (2)

are called, respectively, the vector Lyapunov function and the comparison system for system (1) if the
following condition holds:

V̇ (t, x) ≤ f(t, V (t, x)). (3)

Since the right-hand side of system (2) is continuous, a solution of the Cauchy problem for this system
may be nonunique. However, using the condition f(t, ξ) ∈ W , among all solutions of system (2) passing
through an arbitrary point (t0, ξ0) we can choose the upper solution ξ(t, t0, ξ0, ), i.e., the solution for
which

ξ(t, t0, ξ0, ) ≤ ξ(t, t0, ξ0, ) for all t ≥ t0,

where ξ(t, t0, ξ0) is an arbitrary solution of system (2). It follows from Ważewski’s theorem (see,
e.g., [2]) that the solutions x(t, t0, x0) of system (1), the vector Lyapunov function V (t, x), and the upper
solution ξ(t, t0, V (t0, x0)) of the comparison system (2) for system (1) are related for all t ≥ t0 by

V (t, x(t, t0, t0) ≤ ξ(t, t0, V (t0, x0)). (4)
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In what follows, we denote the usual Euclidean norm by ‖ · ‖. For a solution x = x(t) of system (1)
passing through the point (t0, x0) ∈ R

+ × R
n, we use the notation x = x(t, t0, x0). For any t0 ∈ R

+,
by R

+(t0) we denote the set {t ∈ R | t ≥ t0}. By a P-sequence we mean a nonnegative increasing
number sequence τ = {τi}i≥1 with limi→∞ τi = +∞. For each P-sequence τ = {τi}i≥1, we set

M(τ) =
∞⋃

i=1

[τ2i−1; τ2i].

Recall [1] that a solution x = x(t, t0, x0) of system (1) is said to be bounded if there exists a number
β > 0 such that

‖x(t, t0, x0)‖ < β for all t ∈ R
+(t0).

Definition 1. We say that a solution x = x(t, t0, x0) of system (1) is Poisson bounded if there exists a
P-sequence τ = {τi}i≥1, where t0 ∈ M(τ), and a number β > 0 such that

‖x(t, t0, x0)‖ < β for all t ∈ R+(t0) ∩M(τ).

Geometrically, Definition 1 means that the solution starting at some instant of time from the ball of
radius β > 0 centered at the origin will return to this ball countably many times. Obviously, if a solution
of system (1) is bounded, then this solution is also Poisson bounded.

Recall [1] that the solutions of system (1) are said to be uniform-ultimately bounded (uniform-
ultimately bounded in the limit) if there exists a number B > 0 such that, given any α ≥ 0, there is
a T ≥ 0 for which any solution x = x(t, t0, x0) of system (1) with t0 ≥ 0 and ‖x0‖ ≤ α satisfies the
condition

‖x(t, t0, x0)‖ < B for all t ∈ R
+(t0 + T ).

Now we introduce the notion of uniform-ultimate Poisson boundedness of solutions, which general-
izes the notion of uniform-ultimate boundedness.

Definition 2. We say that the solutions of system (1) are uniform-ultimately Poisson bounded if
there exist a number B > 0 and a P-sequence τ = {τi}i≥1 such that, given any α ≥ 0, there is a number
T ≥ 0 for which any solution x = x(t, t0, x0) of (1) with t0 ∈ M(τ) and ‖x0‖ ≤ α satisfies the condition

‖x(t, t0, x0)‖ < B for all t ∈ R
+(t0 + T ) ∩M(τ).

When it is required to specify the corresponding P-sequence τ = {τi}i≥1, we say that the solutions of
system (1) are uniform-ultimately Poisson bounded with respect to the P-sequence τ = {τi}i≥1.

It is easy to see that if the solutions of system (1) are uniform-ultimately bounded, then they are also
uniform-ultimately Poisson bounded. Moreover, it is easy to see that we can always assume without
loss of generality that the function T = T (α) in Definition 2 is nondecreasing.

Further, let a(r), a(t, r), and b(r) denote arbitrary functions, where r ≥ 0 and t ≥ 0, with the
following properties:

(1) a(r) > 0 is an increasing function;
(2) a(t, r) > 0 is an increasing function in r for each fixed t ≥ 0;
(3) b(r) ≥ 0 is a nondecreasing function and b(r) → ∞ as r → ∞.
Below we state and prove a sufficient condition for the uniform-ultimate Poisson boundedness of the

solutions of system (1), which is based on the method of vector Lyapunov functions.

Theorem 1. Suppose that, for system (1), there exists a P-sequence τ = {τi}i≥1 and a vector
Lyapunov function V (t, x) such that the following conditions hold:

(1) V1(t, x) ≥ 0, . . . , Vl(t, x) ≥ 0;

(2) b(‖x‖) ≤
∑l

i=1 Vi(t, x) ≤ a(‖x‖) for all (t, x) ∈ M(τ)× R
n.
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Suppose also that the solutions of the comparison system (2) for system (1) are uniform-
ultimately Poisson bounded with respect to the P-sequence τ = {τi}i≥1. Then the solutions of
system (1) are uniform-ultimately Poisson bounded.

Proof. Given system (1), we must find a number B > 0 and numbers T = T (α) ≥ 0 for all α ≥ 0 such
that any solution x = x(t, t0, x0) of (1) with t0 ∈ M(τ) and ‖x0‖ ≤ α satisfies the condition

‖x(t, t0, x0)‖ < B for all t ∈ R+(t0 + T ) ∩M(τ).

Using condition (2) and inequality (4),
we obtain the inequalities

b(‖x(t, t0, t0)‖) ≤
l∑

i=1

Vi(t, x(t, t0, x0)) ≤
l∑

i=1

ξi(t, t0, V (t0, x0))

for a solution of x(t, t0, x0) and the upper solution ξ(t, t0, V (t0, x0)) of the comparison system (2); these
inequalities hold for all t ∈ M(τ). In addition, for any t ≥ 0, we have the obvious inequalities

l∑

i=1

ξi(t, t0, V (t0, x0)) ≤
l∑

i=1

| ξi(t, t0, V (t0, x0))| ≤ l · ‖ ξ(t, t0, V (t0, x0))‖.

Under the assumptions of the theorem, the solutions of the comparison system (2) are uniform-
ultimately Poisson bounded with respect to the P-sequence τ = {τi}i≥1; therefore, for the upper
solution ξ(t, t0, V (t0, x0)) and the numbers ν = ‖V (t0, x0)‖, there exist numbers C > 0 and Λ(ν) ≥ 0
such that

‖ξ(t, t0, V (t0, x0))‖ < C for all t ∈ R
+(t0 + Λ) ∩M(τ).

From this inequality we see that b(‖x(t, t0, x0)‖) ≤ l ·C for any t ∈ R
+(t0 +Λ) ∩M(τ). Conditions (1)

and (2) of the theorem imply

‖V (t0, x0)‖ ≤
l∑

i=1

|Vi(t0, x0)| =
l∑

i=1

Vi(t0, x0) ≤ a(‖x0‖) ≤ a(α)

for each t ∈ M(τ). Since the function Λ(r) is nondecreasing, we have Λ(‖V (t0, x0)‖) ≤ Λ(a(α)).
Defining the required number T = T (α) by T (α) = Λ(a(α)), we obtain

b(‖x(t, t0, x0)‖) ≤ l · C for all t ∈ R
+(t0 + T ) ∩M(τ).

Now, since b(r) → ∞ as r → ∞ and the numbers l and C are fixed, we can choose a number B > 0
such that l · C < b(B). This gives

b(‖x(t, t0, x0)‖) < b(B) for all t ∈ R
+(t0 + T ) ∩M(τ),

where B is independent of the solution x = x(t, t0, x0). Since the function b(r) is nondecreasing, it
follows from the last inequality that

‖x(t, t0, x0)‖ < B for all t ∈ R
+(t0 + T ) ∩M(τ).

Thus, we have shown that the solutions of system (1) are uniform-ultimately Poisson bounded.

Taking l = 1 for the vector Lyapunov function in Theorem 1, i.e., considering conventional functions
as vector ones, we obtain the following statement.

Corollary 1. Suppose that, for system (1), there exists a P-sequence τ = {τi}i≥1, a continuously
differentiable function V (t, x) ≥ 0 defined on R

+ × R
n, and a continuous function f(t, ξ) defined

on R
+ × R for which the following conditions hold:

(1) b(‖x‖) ≤ V (t, x) ≤ a(‖x‖) for all (t, x) ∈ M(τ)× R
n;
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(2) V̇ (t, x) ≤ f(t, V (t, x)) for all (t, x) ∈ R
+ × R

n;

(3) the solutions of the equation ξ̇ = f(t, ξ) are uniform-ultimately Poisson bounded with
respect to the P-sequence τ = {τi}i≥1.

Then the solutions of system (1) are uniform-ultimately Poisson bounded.

In what follows, for any x = (x1, . . . , xn)
T ∈ R

n and any fixed number 1 ≤ k ≤ n, we use the notation
y = (x1, . . . , xk)

T ∈ R
k.

Recall [2] that the solutions of system (1) are said to be uniform-ultimately y-bounded if there
exists a number B > 0 such that, given any α ≥ 0, there is a number T ≥ 0 for which any solution
x = x(t, t0, x0) of (1) with t0 ≥ 0 and ‖x0‖ ≤ α satisfies the condition

‖y(t, t0, x0)‖ < B for all t ∈ R
+(t0 + T ).

Below we introduce the notion of uniform-ultimate Poisson y-boundedness of solutions, which
generalizes the notion of uniform-ultimate y-boundedness.

Definition 3. We say that the solutions of system (1) are uniform-ultimately Poisson y-bounded
if there exists a number B > 0 and a P-sequence τ = {τi}i≥1 such that, given any α ≥ 0, there is a
number T ≥ 0 for which any solution x = x(t, t0, x0) of (1) with t0 ∈ M(τ) and ‖x0‖ ≤ α, satisfies the
condition

‖y(t, t0, x0)‖ < B for all t ∈ R
+(t0 + T ) ∩M(τ).

When it is required to specify the corresponding P-sequence τ = {τi}i≥1, we say that the solutions of
system (1) are uniform-ultimately Poisson y-bounded with respect to the P-sequence τ = {τi}i≥1.

Obviously, if the solutions of system (1) are uniform-ultimately y-bounded, then they are uniform-
ultimately Poisson y-bounded.

In what follows, for any ξ = (ξ1, . . . , ξl)
T ∈ R

l and any fixed number 1 ≤ p ≤ l, we use the notation
μ = (ξ1, . . . , ξp)

T ∈ R
p.

The following statement, whose proof is similar to that of Theorem 1, provides a sufficient condition
for the uniform-ultimate Poisson y-boundedness of solutions; it is based on the method of vector
Lyapunov functions.

Theorem 2. Suppose that, for system (1), there exists a P-sequence τ = {τi}i≥1, a vector
Lyapunov function V (t, x), and a number 1 ≤ p ≤ l for which the following conditions hold:

(1) V1(t, x) ≥ 0, . . . , Vl(t, x) ≥ 0;

(2) b(‖y‖) ≤
∑p

i=1 Vi(t, x) for all (t, x) ∈ M(τ)× R
n;

(3)
∑l

i=1 Vi(t, x) ≤ a(‖x‖) for all (t, x) ∈ M(τ)× R
n.

Suppose also that the solutions of the comparison system (2) for system (1) are uniform-
ultimately Poisson μ-bounded with respect to the P-sequence τ = {τi}i≥1. Then the solutions
of system (1) are uniform-ultimately Poisson y-bounded.

Corollary 2. Suppose that, for system (1), there exists a P-sequence τ = {τi}i≥1, a continuously
differentiable function V (t, x) ≥ 0 defined on R

+ × R
n, and a continuous function f(t, ξ) defined

on R
+ × R for which the following conditions hold:

(1) b(‖y‖) ≤ V (t, x) ≤ a(‖x‖) for all (t, x) ∈ M(τ)× R
n;

(2) V̇ (t, x) ≤ f(t, V (t, x)) for all (t, x) ∈ R
+ × R

n;
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(3) the solutions of the equation ξ̇ = f(t, ξ) are uniform-ultimately Poisson bounded with
respect to the P-sequence τ = {τi}i≥1.

Then the solutions of system (1) are uniform-ultimately Poisson y-bounded.

In what follows, for any element x = (x1, . . . , xn) ∈ R
n and any fixed numbers 1 ≤ k ≤ m ≤ n, we

use the notations y = (x1, . . . , xk) ∈ R
k and z = (x1, . . . , xm) ∈ R

m.
Recall [3] that the solutions of system (1) are said to be uniform-ultimately y-bounded with

z0-control if there exists a number B > 0 such that, given any α ≥ 0, there is a number T ≥ 0 for
which any solution x = x(t, t0, x0) of (1) with t0 ≥ 0 and ‖z0‖ ≤ α satisfies the condition

‖y(t, t0, x0)‖ < B for all t ∈ R
+(t0 + T ).

Below we introduce the notion of uniform-ultimate y-boundedness with Poisson z0-control of
solutions, which generalizes the notion of uniform-ultimate y-boundedness with z0-control.

Definition 4. We say that the solutions of system (1) are uniform-ultimately y-bounded with
Poisson z0-control if there exists a number B > 0 and a P-sequence τ = {τi}i≥1 such that, for any
α ≥ 0, there is a number T ≥ 0 for which any solution x = x(t, t0, x0) of (1) with t0 ∈ M(τ) and
‖z0‖ ≤ α satisfies the condition

‖y(t, t0, x0)‖ < B for all t ∈ R
+(t0 + T ) ∩M(τ).

When it is required to specify the corresponding P-sequence τ = {τi}i≥1, we say that the solutions
of system (1) are uniform-ultimately y-bounded with Poisson z0-control with respect to the
P-sequence τ = {τi}i≥1.

It is easy to see that if the solutions of system (1) are uniform-ultimately y-bounded with z0-control,
then they are also uniform-ultimately y-bounded with Poisson z0-control.

In what follows, for any element ξ = (ξ1, . . . , ξl)
T ∈ R

l and arbitrary fixed numbers 1 ≤ p ≤ q ≤ l,
we use the notations μ = (ξ1, . . . , ξp)

T and γ = (ξ1, . . . , ξq)
T .

The following statement, whose proof is similar to that of Theorems 1 and 2, provides a sufficient
condition for the uniform-ultimate y-boundedness with Poisson z0-control of solutions; it is based on
the method of vector Lyapunov functions.

Theorem 3. Suppose that, for system (1), there exists a P-sequence τ = {τi}i≥1, a vector
Lyapunov function V (t, x), and numbers 1 ≤ p ≤ q ≤ l for which the following conditions hold:

(1) V1(t, x) ≥ 0, . . . , Vq(t, x) ≥ 0;

(2) b(‖y‖) ≤
∑p

i=1 Vi(t, x) for all (t, x) ∈ M(τ)× R
n;

(3)
∑q

i=1 Vi(t, x) ≤ a(‖z‖) for all (t, x) ∈ M(τ)× R
n.

Suppose also that the solutions of the comparison system (2) for system (1) are uniform-
ultimately μ-bounded with Poisson γ0-control with respect to the P-sequence τ = {τi}i≥1. Then
the solutions of system (1) are uniform-ultimately y-bounded with Poisson z0-control.

Corollary 3. Suppose that, for system (1), there exists a P-sequence τ = {τi}i≥1, a continuously
differentiable function V (t, x) ≥ 0 defined on R

+ × R
n, and a continuous function f(t, ξ), defined

on R
+ × R for which the following conditions hold:

(1) b(‖y‖) ≤ V (t, x) ≤ a(‖z‖) for all (t, x) ∈ M(τ)× R
n;

(2) V̇ (t, x) ≤ f(t, V (t, x)) for all (t, x) ∈ R
+ × R

n;
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(3) the solutions of the equation ξ̇ = f(t, ξ) are uniform-ultimately Poisson bounded with
respect to the P-sequence τ = {τi}i≥1.

Then the solutions of system (1) are uniform-ultimately y-bounded with Poisson z0-control.

Recall [1] that the solutions of system (1) are said to be ultimately equibounded if there exists a
number B > 0 such that, given any t0 ≥ 0 and α ≥ 0, there is a number T ≥ 0 for which any solution
x = x(t, t0, x0) of (1) with ‖x0‖ ≤ α satisfies the condition

‖x(t, t0, x0)‖ < B for all t ∈ R
+(t0 + T ).

Below we introduce the notion of ultimate Poisson equiboundedness of solutions, which generalizes
the notion of ultimate equiboundedness.

Definition 5. We say that the solutions of system (1) are ultimately Poisson equibounded if there
exists a number B > 0 and a P-sequence τ = {τi}i≥1 such that, given any t0 ∈ M(τ) and α ≥ 0, there
is a number T ≥ 0 for which any solution x = x(t, t0, x0) of (1) with ‖x0‖ ≤ α satisfies the condition

‖x(t, t0, x0)‖ < B for all t ∈ R
+(t0 + T ) ∩M(τ).

When it is required to specify the corresponding P-sequence τ = {τi}i≥1, we say that the solutions of
system (1) are ultimately Poisson equibounded with respect to the P-sequence τ = {τi}i≥1.

It is easy to see that if the solutions of system (1) are ultimately equibounded, then they are ultimately
Poisson equibounded.

The following statement, whose proof is similar to that of Theorem 1, gives a sufficient condition for
ultimate Poisson equiboundedness of solutions; it is based on the method of vector Lyapunov functions.

Theorem 4. Suppose that, for system (1), there exists a P-sequence τ = {τi}i≥1 and a vector
Lyapunov function V (t, x) such that the following conditions hold:

(1) V1(t, x) ≥ 0, . . . , Vl(t, x) ≥ 0;

(2) b(‖x‖) ≤
∑l

i=1 Vi(t, x) ≤ a(t, ‖x‖) for all (t, x) ∈ M(τ) ×R
n.

Suppose also that the solutions of the comparison system (2) for system (1) are ultimately
Poisson equibounded with respect to the P-sequence τ = {τi}i≥1. Then the solutions of system (1)
are ultimately Poisson equibounded.

Corollary 4. Suppose that, for system (1), there exists a P-sequence τ = {τi}i≥1, a continuously
differentiable function V (t, x) ≥ 0 defined on R

+ × R
n, and a continuous function f(t, ξ) defined

on R
+ × R for which the following conditions hold:

(1) b(‖x‖) ≤ V (t, x) ≤ a(t, ‖x‖) for all (t, x) ∈ M(τ)× R
n;

(2) V̇ (t, x) ≤ f(t, V (t, x)) for all (t, x) ∈ R
+ × R

n;

(3) the solutions of the equation ξ̇ = f(t, ξ) are ultimately Poisson equibounded with respect
to the P-sequence τ = {τi}i≥1.

Then the solutions of system (1) are ultimately Poisson equibounded.

Recall [2] that the solutions of system (1) are said to be ultimately y-equibounded if there exists a
number B > 0 such that, given any t0 ≥ 0 and α ≥ 0, there is a number T ≥ 0 for which any solution
x = x(t, t0, x0) of (1) with ‖x0‖ ≤ α satisfies the condition

‖y(t, t0, x0)‖ < B for all t ∈ R
+(t0 + T ).
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Below we introduce the notion of ultimate Poisson y-equiboundedness of solutions, which general-
izes the notion of ultimate y-equiboundedness of solutions.

Definition 6. We say that the solutions of system (1) are ultimate Poisson y-equibounded if there
exists a number B > 0 and a P-sequence τ = {τi}i≥1 such that, given any t0 ∈ M(τ) and any α ≥ 0,
there is a number T ≥ 0 for which any solution x = x(t, t0, x0) of (1) with ‖x0‖ ≤ α satisfies the
condition

‖y(t, t0, x0)‖ < B for all t ∈ R
+(t0 + T ) ∩M(τ).

When it is required to specify the corresponding P-sequence τ = {τi}i≥1, we say that the solutions of
system (1) are ultimate Poisson y-equibounded with respect to the P-sequence τ = {τi}i≥1.

It is easy to see that if the solutions of system (1) are ultimately y-equibounded, then they are ultimate
Poisson y-equibounded.

The following statement, whose proof is similar to that of Theorem 2, provides a sufficient condition
for ultimate Poisson y-equiboundedness of solutions; it is based on the method of vector Lyapunov
functions.

Theorem 5. Suppose that, for system (1), there exists a P-sequence τ = {τi}i≥1, a vector
Lyapunov function V (t, x), and a number 1 ≤ p ≤ l for which the following conditions hold:

(1) V1(t, x) ≥ 0, . . . , Vl(t, x) ≥ 0;

(2) b(‖y‖) ≤
∑p

i=1 Vi(t, x) for all (t, x) ∈ M(τ)× R
n;

(3)
∑l

i=1 Vi(t, x) ≤ a(t, ‖x‖) for all (t, x) ∈ M(τ)× R
n.

Suppose also that the solutions of the comparison system (2) for system (1) are ultimate Poisson
μ-equibounded with respect to the P-sequence τ = {τi}i≥1. Then the solutions of system (1) are
ultimate Poisson y-equibounded.

Corollary 5. Suppose that, for system (1), there exists a P-sequence τ = {τi}i≥1, a continuously
differentiable function V (t, x) ≥ 0 defined on R

+ × R
n, and a continuous function f(t, ξ), defined

on R
+ × R for which the following conditions hold:

(1) b(‖y‖) ≤ V (t, x) ≤ a(t, ‖x‖) for all (t, x) ∈ M(τ)× R
n;

(2) V̇ (t, x) ≤ f(t, V (t, x)) for all (t, x) ∈ R
+ × R

n;

(3) the solutions of the equation ξ̇ = f(t, ξ) are ultimately Poisson equibounded with respect
to the P-sequence τ = {τi}i≥1.

Then the solutions of system (1) are ultimate Poisson y-equibounded.

Recall [3] that the solutions of system (1) are said to be ultimately y-equibounded with z0-control
if there exists a number B > 0 such that, given any t0 ≥ 0 and any α ≥ 0, there is a number T ≥ 0 for
which any solution x = x(t, t0, x0) of (1) with ‖z0‖ ≤ α, satisfies the condition

‖y(t, t0, x0)‖ < B for all t ∈ R
+(t0 + T ).
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Below we introduce the notion of ultimate y-equiboundedness with Poisson z0-control of solutions,
which generalizes the notion of ultimate y-equiboundedness with z0-control.

Definition 7. We say that the solutions of system (1) are ultimately y-equibounded with Poisson
z0-control if there exists a numberB > 0 and a P-sequence τ = {τi}i≥1 such that, given any t0 ∈ M(τ)
and any α ≥ 0, there is a number T ≥ 0 for which any solution x = x(t, t0, x0) of (1) with ‖z0‖ ≤ α
satisfies the condition

‖y(t, t0, x0)‖ < B for all t ∈ R
+(t0 + T ) ∩M(τ).

When it is required to indicate the exact corresponding P-sequence τ = {τi}i≥1, we say that the
solutions of system (1) are ultimately y-equibounded with Poisson z0-control with respect to the
P-sequence τ = {τi}i≥1.

Obviously, if the solutions of system (1) are ultimately y-equibounded with z0-control, then they are
ultimately y-equibounded with Poisson z0-control.

The following statement, whose proof is similar to that of Theorem 3, provides a sufficient condition
for the ultimate y-equiboundedness with Poisson z0-control of solutions; it is based on the method of
vector Lyapunov functions.

Theorem 6. Suppose that, for system (1), there exists a P-sequence τ = {τi}i≥1, a vector
Lyapunov function V (t, x), and numbers 1 ≤ p ≤ q ≤ l for which the following conditions hold:

(1) V1(t, x) ≥ 0, . . . , Vq(t, x) ≥ 0;

(2) b(‖y‖) ≤
∑p

i=1 Vi(t, x) for all (t, x) ∈ M(τ)× R
n;

(3)
∑q

i=1 Vi(t, x) ≤ a(t, ‖z‖) for all (t, x) ∈ M(τ)× R
n.

Suppose also that the solutions of the comparison system (2) for system (1) are ultimately
μ-equibounded with Poisson γ0-control with respect to the P-sequence τ = {τi}i≥1. Then the
solutions of system (1) are ultimately y-equibounded with Poisson z0-control.

Corollary 6. Suppose that, for system (1), there exists a P-sequence τ = {τi}i≥1, a continuously
differentiable function V (t, x) ≥ 0 defined on R

+ × R
n, and a continuous function f(t, ξ) defined

on R
+ × R for which the following conditions hold:

(1) b(‖y‖) ≤ V (t, x) ≤ a(t, ‖z‖) for all (t, x) ∈ M(τ)× R
n;

(2) V̇ (t, x) ≤ f(t, V (t, x)) for all (t, x) ∈ R
+ × R

n;

(3) the solutions of the equation ξ̇ = f(t, ξ) are ultimately Poisson equibounded with respect
to the P-sequence τ = {τi}i≥1.

Then the solutions of system (1) are ultimately y-equibounded with Poisson z0-control.

Example. Consider the system of differential equations
⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 =
sin(t) + cos(t)− f(t, x1, x2)

1 + sin(t) + e−t
x1 +

sin(t)− cos(t)

1 + sin(t) + e−t
x2,

ẋ2 =
sin(t)− cos(t)

1 + sin(t) + e−t
x1 +

sin(t) + cos(t)− f(t, x1, x2)

1 + sin(t) + e−t
x2,

(5)

where t ∈ R
+, (x1, x2) ∈ R

2 and f(t, x1, x2) is any continuous function satisfying the condition
f(t, x1, x2) ≥ 4 for which all solutions of system (5) can be continued to the whole semiaxis R

+. The
uniqueness of a solution of the Cauchy problem for system (5) is not required. Let us show by using
Theorem 1 that the solutions of (5) are uniform-ultimately Poisson bounded. Consider the increasing
sequence τ = {τi}i≥1, where τ1 = 0 and τ2 < τ3 < · · · < τi < . . . is the increasing sequence of the
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roots of the equation sin(t) + e−t = 0. Obviously, we have limi→∞ τi = +∞; therefore, τ = {τi}i≥1

is a P-sequence. Now consider the vector function V : R+ × R
2 → R

2 defined by as follows for each
(t, x) = (t, x1, x2) ∈ R

+ × R
2:

V1(t, x) =
1

2
(1 + sin(t) + e−t)(x1 + x2)

2 ≥ 0,

V2(t, x) =
1

2
(1 + sin(t) + e−t)(x1 − x2)

2 ≥ 0.

Obviously, for all t ∈ R
+ and x = (x1, x2) ∈ R

2, we have

V1(t, x) + V2(t, x) ≤ a(‖x‖), where a(r) = 3r2.

Since 1 ≤ 1 + sin(t) + e−t on each closed interval [τ2i−1; τ2i], i ≥ 1, if follows that we have, for all pairs
(t, x) ∈ M(τ)× R

2,

b(‖x‖) ≤ V1(t, x) + V2(t, x), where b(r) = r2.

This inequality implies that, for all (t, x) ∈ M(τ)× R
2, the double inequality

b(‖x‖) ≤ V1(t, x) + V2(t, x) ≤ a(‖x‖)
holds. Thus, conditions (1) and (2) of Theorem 1 are satisfied. Direct calculations show that, for all
(t, x) ∈ R

+ × R
2, we have

V̇1(t, x) =
(cos(t)− e−t) + 4 sin(t)− 2f(t, x1, x2)

1 + sin(t) + e−t
V1(t, x),

V̇2(t, x) =
(cos(t)− e−t) + 4 cos(t)− 2f(t, x1, x2)

1 + sin(t) + e−t
V2(t, x),

from which we obtain the inequalities

V̇1(t, x) ≤ −V1(t, x), V̇2(t, x) ≤ −V2(t, x) for all (t, x) ∈ R
+ × R

2,

because
1 + sin(t) + e−t ≤ 3, −2f(t, x1, x2) ≤ −8,

4 sin(t) ≤ 4, 4 cos(t) ≤ 4, cos(t)− e−t ≤ 1.

Obviously, the vector function f(t, ξ1, ξ2) = (−ξ1,−ξ2) satisfies the condition f(t, ξ1, ξ2) ∈ W . There-
fore, the comparison system for system (5) is

ξ̇1 = −ξ1, ξ̇2 = −ξ2.

It is easy to see that the solutions of this system are uniform-ultimately bounded and, therefore, uniform-
ultimately Poisson bounded with respect to the P-sequence τ = {τi}i≥1. Thus, all assumptions of
Theorem 1 hold and, therefore, the solutions of system (5) are uniform-ultimately Poisson bounded.
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