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Abstract—For the irrationality measures of the numbers
√
2k − 1 arctan(

√
2k − 1/(k− 1)), where

k is an even positive integer, upper bounds are presented.
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1. INTRODUCTION

By the irrationality measure μ(α) of a number α /∈ Q we mean the least upper bound for the set of
numbers κ such that the inequality

∣
∣
∣
∣
α− p

q

∣
∣
∣
∣
< q−κ

has an infinite number of solutions in rational p/q.
The present paper is devoted to the proof of upper bounds for the irrationality measures of the numbers

αk =
√
2k − 1 arctan

√
2k − 1

k − 1
, where k = 2m, m ∈ N.

Some of the numerical results of this paper are summarized in Table 1 (see Theorem 1).

Table 1.

k μ(αk) ≤

2 4.60105 . . .

4 3.94704 . . .

6 3.76069 . . .

8 3.66666 . . .

10 3.60809 . . .

12 3.56730 . . .

In particular, the bound for the irrationality measure of the number π/
√
3 is improved. In Hata’s

paper [1], it was proved that μ(π/
√
3) ≤ 4.60158 . . . . For k = 2, we have μ(π/

√
3) ≤ 4.60105 . . . (see
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the table). The same estimate was also obtained by Androsenko and Salikhov in [2] by using the Mar-
covecchio integral (see [3]). Quite recently, in [4], Androsenko proved that μ(π/

√
3) ≤ 4.230464 . . . ;

the proof uses a modified version of the Marcovecchio integral. For the numbers αk, where k = 2m > 2
and m is an integer, upper bounds for the irrationality measures are obtained for the first time.

The present paper is a continuation of the papers [5]–[9], in which a general integral construction
was considered and for the principal parameter a real positive number was taken. In this paper, we use a
complex-valued parameter.

The paper consists of five sections. The introduction briefly presents the history of the problem.
In Sec. 2, auxiliary functions are introduced. In Sec. 3, arithmetic properties of these functions at certain
points are proved. In Sec. 4, asymptotic properties of the values of these functions at cerain points are
determined. In the last section, we conclude the proof of bounds for the irrationality exponents of the
numbers αk by using the information obtained Secs. 3 and 4 and Hata’s lemma.

2. AUXILIARY INTEGRALS

Consider the polynomial

An(x) :=

⎛

⎝
x+ 5n

3n

⎞

⎠

⎛

⎝
x+ 6n

5n

⎞

⎠

⎛

⎝
x+ 7n

7n

⎞

⎠

=
(x+ 2n + 1) · · · (x+ 5n)

(3n)!

(x+ n+ 1) · · · (x+ 6n)

(5n)!

(x+ 1) · · · (x+ 7n)

(7n)!
,

where n is an odd natural number. We indroduce the functions

Ψ1,n(ζ, t) := An(ζ)

(
π

sinπζ

)

(−t)−ζ , Ψ2,n(ζ, t) := An(ζ)

(
π

sin πζ

)2

t−ζ ,

where t is a fixed number. We assume that

(−t)−ζ = e−ζ ln(−t) and t−ζ = e−ζ ln t,

where the branches of the logarithms are chosen as follows:

ln(−t) = ln |t|+ i arg t+ iπ, ln t = ln |t|+ i arg t, where − 2π < arg t < 0.

Now we introduce the integrals

Ji,n(t) := t−(7n+1)/2Ii,n(t) :=
t−(7n+1)/2

2πi

ˆ
L
Ψi,n(ζ, t) dζ for i = 1, 2,

where t �= 0 and the vertical line L is given by Re ζ = −7n/2 and is passed from below upward.

Let λk denote the following points on the unit circle:

λk := e−i arctan(
√
2k−1/(k−1)) =

k − 1− i
√
2k − 1

k
, where k = 2m, m ∈ N.

Choosing the parameter value t = λk, we obtain bounds for the irrationality measures of the numbersαk.

Proposition 1. For any t ∈ C satisfying the conditions 0 < |t| ≤ 1 and −2π < arg t < 0,

J1,n(t) = −Un(t), J2,n(t) = Un(t) ln t− Vn(t), (2.1)

where the functions Un(t), Vn(t) ∈ Q(t), 0 < |t| ≤ 1, and −2π < arg t < 0 are defined by

Un(t) := t−(7n+1)/2

(
t

t− 1

)7n+1 15n∑

j=7n

aj

(
t

t− 1

)j−7n

,
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where

aj :=

j+1
∑

k=7n+1

(−1)k−1An(−k)

⎛

⎝
j

k − 1

⎞

⎠ , Vn(t) := t−(5n+1)/2

(
t

t− 1

)5n+1 15n−1∑

j=5n

bj

(
t

t− 1

)j−5n

;

here

bj :=

j+1
∑

k=5n+1

(−1)k−1A′
n(−k − n)

⎛

⎝
j

k − 1

⎞

⎠ .

Proof. In [5] (see the second formula from above on p. 552), it was proved that, for |t| < 1,

J2,n(t) = t−(7n+1)/2

(

−
( +∞∑

k=7n+1

An(−k)tk
)

ln t+

+∞∑

k=6n+1

A′
n(−k)tk

)

.

It can also be shown in a similar way that, for |t| < 1,

J1,n(t) = t−(7n+1)/2
+∞∑

k=7n+1

An(−k)tk.

Therefore, it suffices to show that

Un(t) = −t−(7n+1)/2
+∞∑

k=7n+1

An(−k)tk, Vn(t) = −t−(7n+1)/2
+∞∑

k=5n+1

A′
n(−k)tk. (2.2)

To this end, we use Lemma 1 from [5] cited below.

Lemma 1. Let P (x) ∈ C[x] be a polynomial of degree m. Then, for each t ∈ C, |t| < 1,

−
+∞∑

k=1

P (−k)tk =

m∑

j=0

hj

(
t

t− 1

)j+1

,

where

hj :=

j+1
∑

k=1

(−1)k−1P (−k)

⎛

⎝
j

k − 1

⎞

⎠ , j ≥ 0.

Applying Lemma 1 to the polynomial An(x), we obtain

−
+∞∑

k=7n+1

An(−k)tk = −
∞∑

k=1

An(−k)tk =
15n∑

j=0

aj

(
t

t− 1

)j+1

=

(
t

t− 1

)7n+1 15n∑

j=7n+1

aj

(
t

t− 1

)j+1

,

because aj = 0 for 1 ≤ j ≤ 7n. Similarly, applying the same lemma to A′
n(x+ n), we obtain

−
+∞∑

k=5n+1

A′
n(−k)tk = −

∞∑

k=n+1

A′
n(−k)tk = −tn

∞∑

k=1

A′
n(−k − n)tk

= tn
15n∑

j=0

bj

(
t

t− 1

)j+1

= tn
(

t

t− 1

)5n+1 15n−1∑

j=5n+1

bj

(
t

t− 1

)j+1

,

because bj = 0 for 1 ≤ j ≤ 5n. Substituting these expressions for the sums of series into the right-hand
side of (2.2), we obtain the required identity.

To complete the proof of the proposition, it remains to consider the case where |t| = 1 and
−2π < arg t < 0. For |t| ≤ 1, the right- and left-hand sides of relations in (2.1) are defined, and we
have proved the required relations for |t| < 1; by continuity, they hold also for |t| = 1.
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3. ARITHMETIC PROPERTIES
In [5, Lemma 1], the following lemma was proved.

Lemma 2. The set Ω of numbers y, 0 ≤ y < 1, such that

[x− 2y] + [x− y] + [x]− [x− 5y]− [x− 6y]− [x− 6y]− [3y]− [5y]− [7y] ≥ 1

for each x ∈ R, has the form

Ω =

[
1

6
,
3

7

)

∪
[
1

2
,
5

7

)

∪
[
3

4
,
6

7

)

.

Let Δ =
∏

p, where the multiplication is over all primes p >
√
7n for which {n/p} ∈ Ω, and let dn

denote the least common multiple of the numbers 1, 2, . . . , n. We set

D1,n,k = m−(7n+1)/2, D2,n,k = m−(5n+1)/2 d7n
Δ

, if k = 2m.

Lemma 3. The numbers D1,n,kUn(λk), D2,n,k(i
√
2k − 1Vn(λk)) are integers.

Proof. Let us prove that X := D2,n,k(i
√
2k − 1Vn(λk)) is integer (the proof for D1,n,kUn(λk) is

completely similar). Note that it suffices to prove that X2 is an algebraic integer (and hence so is X) and
X is rational.

Let us first prove that X is rational. Bashmakova proved the relations (see Statement 2 and Lemma 1
in [6])

Un(t) = Un

(
1

t

)

= Û

(

t+
1

t

)

, Vn(t) = −Vn

(
1

t

)

=

(

t− 1

t

)

V̂

(

t+
1

t

)

, (3.1)

where Û(t), V̂ (t) ∈ Q(t), i.e.,

Un(t),
Vn(t)

t− 1/t
∈ Q

provided that t+ 1/t ∈ Q. Note that λk + 1/λk = 2(k − 1)/k ∈ Q; hence X is a rational number.
Let us now prove that X2 is an algebraic integer. To do this, we use Lemma 4 from Nesterenko’s

paper [5], which claims that

d7n
Δ

A′
n(−k) ∈ Z, where k ∈ Z,

i.e., bj ∈ Z (see the definition of bj in Proposition 1). Note that

λk

λk − 1
=

1 + i
√
2k − 1

2
=: t1,

1

1− λk
=

1− i
√
2k − 1

2
=: t2

are the roots of the equation t2 − t+ k/2 = 0. Obviously, t1 and t2 are algebraic integers.
Applying (3.1) and the expression for Vn(z) in Proposition 1, we obtain

−(Vn(λk))
2 = V (λk)Vn

(
1

λk

)

= (t1t2)
5n+1

15n−1∑

j=5n

bjt
j−5n
1

15n−1∑

j=5n

bjt
j−5n
2

=

(
k

2

)5n+1 15n−1∑

j=5n

bjt
j−5n
1

15n−1∑

j=5n

bjt
j−5n
2 .

Since the numbers t1, t2, and bj are algebraic integers, it follows that the number

X2 = −
15n−1∑

j=5n

bjt
j−5n
1

15n−1∑

j=5n

bjt
j−5n
2

is an algebraic integer. This completes the proof of the lemma.
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4. ASYMPTOTIC PROPERTIES

We shall repeatedly use Stirling’s formula (see [10, Sec. 12.31])

ln Γ(z) =

(

z − 1

2

)

ln z − z +
1

2
ln 2π + r(z), where |r(z)| < c

Re z
,

c > 0 is a constant, ln Γ(1) = 0, ln z = ln |z|+ i arg z, |arg z| < π

2
.

(4.1)

In this section, we obtain asymptotic expressions for J1,n(γ), J2,n(γ), where γ is any point such that
|γ| = 1 and Im γ < 0.

Consider the equation

(z + 7)(z + 6)(z + 5)

(−z)(−z − 1)(−z − 2)(−γ)
= 1 (4.2)

and the function

gγ(y) = arg(3.5 + iy) + arg(2.5 + iy) + arg(1.5 + iy)

− arg(3.5 − iy)− arg(2.5 − iy)− arg(1.5 − iy)− π − arg γ,

where −π < arg γ < 0 and −π/2 ≤ arg(c+ iy) ≤ π/2 for c = 1.5, 2.5, 3.5.

Equation (4.2) has exactly three roots, and they all lie on the line Re z = −3.5. Indeed, in the domain
Re z < −3.5, the following inequalities hold:

|z + 7| < | − z|, |z + 6| < | − (z + 1)|, |z + 5| < | − (z + 2)|.

Therefore, since |γ| = 1, it follows that the absolute value of the left-hand side of Eq. (4.2) in the
half-plane Re z < −3.5 is less than 1. In the same way, we can prove that the absolute value of the
left-hand side of Eq. (4.2) in the half-plane Re z > −3.5 is greater than 1. Hence all the three roots of
Eq. (4.2) lie on the line Re z = −3.5.

Hence, clearly, gγ(y′) = 2πm for m ∈ Z if and only if z = −b/2 + iy′ is a root of Eq. (4.2). The
function g(y) increases continuously from −4π− arg γ (which is greater than −4π) to 2π− arg γ (which
is greater than 2π) as y varies from −∞ to +∞. Since g(0) = −π − arg γ < 0, it follows that two roots
of Eq. (4.2) lie in the upper half-plane and one root lies in the lower half-plane. These are the points

z1,γ = −3.5 + iy1,γ , z2,γ = −3.5 + iy2,γ , z3,γ = −3.5 + iy3,γ ,

at which

gγ(y1,γ) = 2π, gγ(y2,γ) = 0, gγ(y3,γ) = −2π.

It is also easy to verify that y1,γ > |y3,γ | > y2,γ > 0.

Consider the function

h(z) = ln
(z + 7)7(z + 6)6(z + 5)5

(−z − 1)(−z − 2)2775533
. (4.3)

The main statement of this section is as follows.

Proposition 2. The following asymptotic relations hold:

lim
n→+∞

1

n
ln |J1,n(γ)| = lim

n→+∞
1

n
ln |Un(γ)| = Reh(z1,γ) =: M1(γ);

lim
n→+∞

1

n
ln |J2,n(γ)| = Reh(z3,γ) =: M2(γ).
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Proof of Proposition 2. We give the proof for J1,n(γ). The case of J2,n(γ) is similar. It suffices to find
an asymptotics for I1,n(γ), because |γ| = 1.

Thus, the function Ψ1,n(ζ, γ) can be represented as

Ψ1,n(ζ, γ) =
Γ(ζ + 5n+ 1)Γ(−ζ − 2n)

Γ(3n+ 1)

Γ(ζ + 6n+ 1)Γ(−ζ − n)

Γ(5n + 1)

× Γ(ζ + 7n + 1)Γ(−ζ)

Γ(7n+ 1)

(
sinπζ

π

)2

e−ζ(lnγ+iπ).

Now, we represent the integral I1,n(γ) as the sum of the two integrals

I1,n(γ) =
1

2πi

ˆ
L′
Ψ1,n(ζ, γ) dζ +

1

2πi

ˆ
L′′

Ψ1,n(ζ, γ) dζ := I ′1,n(γ) + I ′′1,n(γ);

here L′ is the ray determined by Re ζ = −3.5n and Im ζ ≥ 0 and L′′ is the ray determined by
Re ζ = −3.5n and Im ζ ≤ 0.

Consider I ′1,n(γ). The case of I ′′1,n(γ) is similar. In view of (4.1), we have

Ψ1,n(zn, γ) = enfγ(z)ϕn(z)

(

1 +O

(
1

n

))

,

where

fγ(z) := (z + 7) ln(z + 7) + (z + 6) ln(z + 6) + (z + 5) ln(z + 5)

− z ln(−z)− (z + 1) ln(−z − 1)− (z + 2) ln(−z − 2)

− 3 ln 3− 5 ln 5− 7 ln 7− z ln γ − izπ − 2izπ,

ϕn(z) :=

(
e2izπn − 1

2i

)2
√

(
2π

n

)3 (z + 7)(z + 6)(z + 5)

(−z)(−z − 1)(−z − 2)7 · 5 · 3 .

Here the constant in O(1/n) is independent of z. On the ray L′, for sufficiently large n, the following
inequalities hold for some constants C1, C2 > 0:

C1n
−3/2 ≤

∣
∣
∣
∣
ϕn(z)

(

1 +O

(
1

n

))∣
∣
∣
∣
≤ C2n

−3/2.

The change z = −3.5 + iy yields

I ′1,n(γ) =
1

2πi

ˆ
L′
Ψ1,n(ζ, γ) dζ =

1

2π

ˆ +∞

0
enfγ(z)(ϕn(z)n) dy.

Thus, let qγ(y) = Re fγ(z), where z = −3.5 + iy. Then

q′γ(y) = − Im

[
∂fγ
∂x

]

= − Im

[
∂fγ
∂z

]

= −(arg(z + 7) + arg(z + 6) + arg(z + 5)

− arg(−z)− arg(−z − 1)− arg(−z − 2)− arg γ − π − 2π) = −(gγ(y)− 2π).

The equality q′γ(y) = 0 can hold only if gγ(y) = 2π, i.e., y = y1,γ . In this case, z1,γ = −3.5 + iy1,γ is a
root of Eq. (4.2), i.e.,

ef
′
γ(z1,γ ) =

(z1,γ + 7)(z1,γ + 6)(z1,γ + 5)

(−z1,γ)(−z1,γ − 1)(−z1,γ − 2)(−γ)
= 1;

therefore, f ′
γ(z1,γ) = 0. It is also easy to verify that y1,γ is a point of maximum of qγ(y) on [0;+∞). For

z = −3.5 + iy, we have

fγ(−3.5 + iy) = fγ(z1,γ)−
f ′′
γ (z1,γ)

2
(y − y1,γ)

2 +O((y − y1,γ)
3),
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632 POLYANSKII

f ′′
γ (z) = −1

z
− 1

z + 1
− 1

z + 2
+

1

z + 7
+

1

z + 6
+

1

z + 5

=
3.5

(3.5)2 + y2
+

2.5

(2.5)2 + y2
+

1.5

(1.5)2 + y2
> 0.

Using the saddle-point method (see Theorem 3 in [11, p. 59], which is convenient to apply in the case
under consideration), we obtain

lim
n→+∞

1

n
ln |I ′1,n(γ)| = Re fγ(z1,γ) = Reh(z1,γ).

The last equality follows from f ′
γ(z1,γ) = 0.

In a similar way, for Im ζ ≤ 0, we obtain

lim
n→+∞

1

n
ln |I ′′1,n(γ)| = Reh(z3,γ).

In view of the inequality y1,γ > |y3,γ | > 0, it is easy to verify that

lim
n→+∞

1

n
ln |I1,n(γ)| = Reh(z1,γ).

This completes the proof of Proposition 2.

5. END OF THE PROOF

It is easy to check that

M(λk) := lim
n→∞

1

n
ln(D2,n,k) = −2.5 lnm+ 7− lim

n→∞
1

n
lnΔ for k = 2m;

the last summand can be calculated by using the following lemma.

Lemma 4 ([5, Lemma 6]). Let u and v be real numbers satisfying the inequalities 0 < u < v < 1.
Then

lim
n→∞

1

n

∑

u≤{n/p}<v

ln p = ψ(v)− ψ(u),

where ψ(x) = Γ′(x)/Γ(x) is the logarithmic derivative of the gamma function and the summation
is over all primes p such that the fractional part {n/p} satisfies the inequality under the
summation sign.

Theorem 1. If M2(λk) +M(λk) < 0, then

μ(αk) ≤ 1− M1(λk) +M(λk)

M2(λk) +M(λk)
.

Proof. In what follows, we use Hata’s lemma stated below (see also [1, Statement 2.1]).

Lemma 5. If n ∈ N, α ∈ R \Q, ln = qnα+ pn for qn, pn ∈ Z, and

lim
n→∞

1

n
ln |qn| = σ, lim sup

n→∞

1

n
ln |ln| ≤ −τ, σ, τ > 0,

then μ(α) ≤ 1 + σ/τ .

Theorem 1 follows from Lemma 5 applied to the sequence

Ln = D2,n,k(i
√
2k − 1 I2(λk)) = D2,n,kU(λk)αk −D2,n,k(i

√
2k − 1V (λk)) = Pnαk +Qn.

Lemma 3 implies that Pn and Qn are integers, and Proposition 2 and Lemma 4 give the asymptotics
of Ln and Pn; thus, Lemma 5 implies Theorem 1.
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Table 2.

k μ2(αk) ≤ a b

2 —

4 44.87472 . . . 1 7

6 19.19130 . . . 2 23

8 14.37384 . . . 1 13

10 12.28656 . . . 1 13

12 11.11119 . . . 1 13

Remark. Using similar methods, we can obtain upper bounds for the nonquadraticity measures of the
numbers αk (for more details, see [11]).

The nonquadraticity measure of a number α which is not a root of a quadratic equation with integer
coefficients is defined as the least upper bound for the set of numbers κ such that the inequality

|α− β| < H−κ(β)

has an infinite number of solutions in quadratic irrationalities β. The number H(β) is the greatest (in
absolute value) integer coefficient of a primitive quadratic trinomial with root β. The nonquadraticity
measure is denoted by μ2(α).

To obtain upper bounds for the nonquadraticity measures, we consider the following integrals for
t = λk:

Ji,n(t) :=
t−(bn+1)/2

2πi

ˆ
L
Ψi,n(ζ, t) dζ, i = 1, 2, 3,

where

Ψ1,n(ζ, t) := An(ζ)

(
π

sin(πζ)

)

(−t)−ζ , Ψ2,n(ζ, t) = An(ζ)

(
π

sin(πζ)

)2

t−ζ ,

Ψ3,n(ζ, t) = An(ζ)

(
π

sin(πζ)

)3

(−t)−ζ ,

An(x) :=

⎛

⎝
x+ (b− 2a)n

(b− 4a)n

⎞

⎠

⎛

⎝
x+ (b− a)n

(b− 2a)n

⎞

⎠

⎛

⎝
x+ bn

bn

⎞

⎠

=
(x+ 2an+ 1) · · · (x+ (b− 2a)n)

((b− 4a)n)!

(x+ an+ 1) · · · (x+ (b− a)n)

((b− 2a)n)!

(x+ 1) · · · (x+ bn)

(bn)!
.

Here a, b, and n are positive integers (b > 4a and n is odd) and the vertical line L is given by
Re ζ = −bn/2 and is passed from below upward. To obtain bounds for the nonquadraticity measures
of the numbers αk, the author used a lemma similar to Lemma 5 and stated in [12, Lemma 2.3]. Table 2
contains bounds for the nonquadraticity measures and the parameters a and b for which these bounds
were obtained.
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