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Abstract—Balder’s well-known existence theorem (1983) for infinite-horizon optimal control
problems is extended to the case in which the integral functional is understood as an improper
integral. Simultaneously, the condition of strong uniform integrability (over all admissible controls
and trajectories) of the positive part max{f0, 0} of the utility function (integrand) f0 is relaxed to the
requirement that the integrals of f0 over intervals [T, T ′] be uniformly bounded above by a function
ω(T, T ′) such that ω(T, T ′) → 0 as T, T ′ → ∞. This requirement was proposed by A.V. Dmitruk
and N.V. Kuz’kina (2005); however, the proof in the present paper does not follow their scheme, but
is instead derived in a rather simple way from the auxiliary results of Balder himself. An illustrative
example is also given.
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One of the most general and well-known results on the existence of solutions to infinite-horizon
optimal control problems was proved by Balder [1]. Almost all conditions of his theorem are local in time
(i.e., they must hold only at each separate instant of time or on each finite time interval) and ensure the
existence of solutions to similar problems on finite time intervals. The only condition that regulates the
behavior of the system at infinity is the requirement of strong uniform integrability of the positive part
of the integrand in the objective functional over all admissible controls and corresponding trajectories.
Later several authors achieved some progress in weakening this condition.

The present paper also contributes to this direction. As an alternative to Balder’s uniform integra-
bility, we use the condition of “uniform boundedness of pieces of the objective functional” proposed by
Dmitruk and Kuz’kina [2]. Note that they considered a significantly narrower class of optimal control
problems, while for the general case only a scheme was outlined (without statement of particular results
that can be obtained by following this scheme1). So the present paper is in a sense a logical completion
of the paper [2]. However, we do not follow the scheme proposed in [2] but rather show that the result
can be derived from those of Balder himself [3], [1] in a fairly simple way.

Recently, Bogusz [4] also obtained an existence theorem in the case when the integral functional is
understood as an improper integral. However, one of the hypotheses in her theorem is the existence of
a locally integrable function λ : R+ → R that has a finite improper integral

´∞
0 λ(t) dt and bounds from

above (from below in the case of minimization problem) the integrand in the objective functional for all
admissible controls and corresponding trajectories. Such a condition is essentially stronger (although
formally this is not so) than strong uniform integrability, because subtracting (adding in the case of
minimization problem) the function λ from (to) the integrand reduces the problem to the one with
negative (positive) integrand in the objective functional.

Some results on the existence of optimal solutions under conditions of different kind and/or for
different problem statements were obtained in [5], [6].

Note that existence theorems are an inherent part of the method for solving optimal control problems
based on applying necessary optimality conditions (see, e.g., [7], [8], [9], [10], [11]). Therefore, it

*E-mail: kbesov@mi.ras.ru
1The absence of exact statements to which one could refer when solving particular optimal control problems was one of the
reasons for writing the present note.
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is important to have an existence theorem under hypotheses maximally close to those under which
necessary optimality conditions are valid. At present, it is the condition of “uniform boundedness of
pieces of the objective functional” that is often required for necessary optimality conditions to be valid
(see, e.g., [7], [10]).

Let us proceed to the statement of the problem and formulate the conditions under which we will
study it.

The main object of our study is the optimal control problem

I(x, u) :=

ˆ ∞

0
f0(t, x(t), u(t)) dt → max, (1)

ẋ(t) = f(t, x(t), u(t)) for a.e. t ∈ R+ := [0,+∞), (2)

x(t) ∈ A(t), u(t) ∈ U(t, x(t)) for a.e. t ∈ R+, (3)

for which the following conditions hold (where m,n ∈ N are fixed dimensions of the control and state
vectors, respectively):

(i) A : R+ ⇒ R
n is a set-valued map with (L × Bn)-measurable2 graph A;

(ii) U : A ⇒ R
m is a set-valued map with (L × Bn+m)-measurable graph U ;

(iii) the functions f : U → R
n and f0 : U → R ∪ {−∞} are (L × Bn+m)-measurable3.

By definition, the set Ω of admissible pairs (x, u) consists of pairs of vector functions x and u such that
x ∈ ACn

loc(R+) and u : R+ → R
m is a Lebesgue measurable function for which conditions (2), (3) are

satisfied. Here ACn
loc(R+) is the space of locally absolutely continuous (i.e., absolutely continuous on

any finite interval) functions x : R+ → R
n with the topology described in [1].

The integral in (1) is understood in [1] in the following sense:
ˆ ∞

0
g(t) dt :=

ˆ ∞

0
g+(t) dt−

ˆ ∞

0
g−(t) dt, where g± := max{±g, 0}, (4)

with the convention4 that (+∞)− (+∞) = −∞. Thus, the value of the functional (4) (which is equal
to a finite number or to ±∞) is defined on any admissible pair.

We fix an α ∈ R and define Ωα := {(x, u) ∈ Ω | I(x, u) ≥ α}. The existence of a solution of
problem (1)–(3) was proved in [1] under the following assumptions:

(iv) the function f(t, · , · ) is continuous on U(t) := {(χ, υ) ∈ R
n × R

m | (t, χ, υ) ∈ U} for every
t ∈ R+;

(v) the function f0(t, · , · ) is upper semicontinuous on U(t) for every t ∈ R+;

(vi) the sets A(t) and U(t) are closed for every t ∈ R+;

(vii) the set {x(0) | (x, u) ∈ Ωα} is bounded;

(viii) for any T > 0, the set of functions F T
α := {f( · , x(·), u(·))|[0,T ] | (x, u) ∈ Ωα} is uniformly inte-

grable on the interval [0, T ], i.e.,

inf
c>0

sup
g∈FT

α

ˆ

CT
g,c

|g(t)| dt = 0, where CT
g,c = {t ∈ [0, T ] | |g(t)| > c};

2This means that the graph belongs to the σ-algebra in R+ ×R
n generated by Cartesian products of Lebesgue measurable

subsets in R+ and Borel subsets in R
n.

3This means that the preimages of Borel subsets are (L× Bn+m)-measurable.
4Here and below, without further comment, we reformulate all results obtained for minimization problems in [1], [2] in terms
of maximization problems.
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(ix) the set

Q(t, χ) :=
{
(z0, z) ∈ R× R

n | z0 ≤ f0(t, χ, υ), z = f(t, χ, υ), υ ∈ U(t, χ)
}

is convex for all (t, χ) ∈ A;

(x) we have

Q(t, χ) =
⋂

δ>0

cl

( ⋃

χ′∈A(t)∩Bδ(χ)

Q(t, χ′)

)
,

where Bδ(χ) is the ball of radius δ centered at a point χ;

(xi) the set of functions F+
0,α := {f+

0 ( · , x(·), u(·)) | (x, u) ∈ Ωα} is strongly uniformly integrable
on R+, i.e.,

inf
h∈L1(R+)

sup
g∈F+

0,α

ˆ

Cg,h

|g(t)| dt = 0, where Cg,h := {t ∈ R+ | |g(t)| > h(t)}.

Theorem A ([1, Theorem 3.6]). If there is an α ∈ R such that Ωα �= ∅ and conditions (i)–(xi)
are satisfied, then, in problem (1)–(3), there exists an admissible pair (x∗, u∗) ∈ Ω such that
I(x∗, u∗) = sup(x,u)∈Ω I(x, u).

As was already mentioned, the only condition in Theorem A which regulates the behavior of
system (1)–(3) at infinity is condition (xi). At the same time, in many optimal economic growth
problems, it seems more natural to define the value of the objective functional not in the sense of (4),
but rather in the sense of the limit

J(x, u) := lim
T→+∞

ˆ T

0
f0(t, x(t), u(t)) dt, (5)

provided that this limit exists (see, e.g., [7], [4]). We also follow this definition; then problem (1)–(3) is
replaced by the problem

J(x, u) → max (6)

under the conditions (2), (3).

Remark 1. It is clear that if the value of the functional I(x, u) is finite for an admissible pair (x, u), then
J(x, u) = I(x, u).

As noticed in [2], instead of condition (xi), one can consider the following condition:

(xii) the inequality

lim
T→+∞

sup
T ′>T

sup
(x,u)∈Ω

ˆ T ′

T
f0(t, x(t), u(t)) dt ≤ 0

is satisfied.

It is easy to see that, for admissible pairs in Ωα, condition (xii) is weaker5 than condition (xi). Indeed,

lim
T→+∞

sup
T ′>T

sup
(x,u)∈Ωα

ˆ T ′

T
f0(t, x(t), u(t)) dt ≤ lim

T→+∞
sup
T ′>T

sup
g∈F+

0,α

ˆ T ′

T
g(t) dt

5On the whole, it would be incorrect to say that condition (xii) is weaker than condition (xi), because condition (xii) is
considered for the set Ω, while condition (xi), only for the subset Ωα ⊂ Ω. Therefore, formally, neither of these conditions
follows from the other.
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≤ inf
h∈L1(R+)

lim
T→+∞

sup
T ′>T

sup
g∈F+

0,α

(ˆ

[T,T ′]∩Cg,h

g(t) dt+

ˆ

[T,T ′]\Cg,h

h(t) dt

)

≤ inf
h∈L1(R+)

lim
T→+∞

sup
T ′>T

sup
g∈F+

0,α

ˆ

Cg,h

g(t) dt+ 0 = inf
h∈L1(R+)

sup
g∈F+

0,α

ˆ

Cg,h

g(t) dt.

However, below we will still need a local version of condition (xi), namely,

(xi′) for every T > 0, the set of functions

F T,+
0 := {f+

0 ( · , x(·), u(·))|[0,T ] | (x, u)∈Ω}

is uniformly integrable on [0, T ].

(In [2], since the mappings considered there are continuous and compact-valued, condition (xi′) is
satisfied automatically.)

Let us make the following important observation.

Proposition 1. Under condition (xi′), condition (xii) is equivalent to each of the following
conditions:

(xii′) there is a continuous function ω : R2
+ → R+ such that ω(T, T ′) → 0 as T, T ′ → ∞ and

sup
(x,u)∈Ω

ˆ T ′

T
f0(t, x(t), u(t)) dt ≤ ω(T, T ′) ∀T, T ′ : T ′ > T ≥ 0;

(xii′′) there is a continuous function ω̃ : R+ → R+ such that ω̃(T ) → 0 as T → ∞ and

sup
T ′>T

sup
(x,u)∈Ω

ˆ T ′

T
f0(t, x(t), u(t)) dt ≤ ω̃(T ) ∀T ≥ 0.

Proof. Obviously, condition (xii′′) implies (xii′) (it suffices to set ω(T, T ′) := ω̃(T )), and condition (xii′)
implies (xii) (because limT→∞ supT ′>T is the same as limT,T ′→∞, T ′>T , and the latter does not exceed
limT,T ′→∞). Let us show that condition (xii) implies (xii′′). We set

ω̂(T ) :=

(
sup
T ′>T

sup
(x,u)∈Ω

ˆ T ′

T
f0(t, x(t), u(t)) dt

)+

, T ≥ 0.

By condition (xii), we have limT→∞ ω̂(T ) = 0. Therefore, there is a T1 such that ω̂(T ) ≤ 1 for T ≥ T1.
We show that this function is bounded for all T ≥ 0. For T < T1, we have

ω̂(T ) ≤ sup
(x,u)∈Ω

ˆ T1

0
f+
0 (t, x(t), u(t)) dt + ω̂(T1) ≤ inf

c>0
sup

g∈FT1,+
0

(ˆ

C
T1
g,c

g(t) dt + cT1

)
+ 1.

By condition (xi′), there is a constant c1 > 0 such that

sup
g∈FT1,+

0

ˆ

C
T1
g,c1

g(t) dt ≤ 1.

Then ω̂(T ) ≤ c1T1 + 2 for all T ≥ 0.
We set ω̂1(T ) := supT ′≥T ω̂(T ′) for T ≥ 0. Then ω̂1 is a bounded monotonically nonincreasing

function on R+ which tends to zero as T → ∞.

Finally, we set ω̃(T ) :=
´ T
T−1 ω̂1(t

+) dt (recall that t+ = max{t, 0}). It is clear that ω̃ is a continuous
function on R+ for which all requirements in condition (xii′′) are satisfied.
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An important consequence of condition (xii) is the fact that the value of the functional J( · , · ) is
defined on any admissible pair. For completeness, we present here a proof of this fact which is slightly
shorter than that in [2].

Proposition 2. Under conditions (xi′) and (xii), the value of the functional J(x, u) is defined for
any admissible pair (x, u)∈Ω and equal to either a finite number or −∞.

Proof. The existence of the limit in (5) follows from the estimate

lim
T→+∞

ˆ T

0
f0(t, x(t), u(t)) dt = lim

T1→+∞
lim

T→+∞

(ˆ T1

0
+

ˆ T

T1

)
f0(t, x(t), u(t)) dt

≤ lim
T1→+∞

ˆ T1

0
f0(t, x(t), u(t)) dt + lim

T1→+∞
sup
T>T1

ˆ T

T1

f0(t, x(t), u(t)) dt

≤ lim
T→+∞

ˆ T

0
f0(t, x(t), u(t)) dt,

where condition (xii) was used at the last step. At the same time, the limit under study does not exceed
ω̃(0) for some continuous function ω̃ : R+ → R+.

Now we formulate our main result. To this end, we introduce the following set similar to Ωα:

Ω̃α := {(x, u) ∈ Ω | J(x, u) ≥ α} for α ∈ R.

Theorem 1. If there is an α ∈ R such that Ω̃α �= ∅ and conditions (i)–(x), (xi′), and (xii) (or (xii′),
or (xii′′)) hold with Ωα replaced by Ω̃α, then, in problem (6), (2), (3), there exists an admissible pair
(x∗, u∗) ∈ Ω such that J(x∗, u∗) = sup(x,u)∈Ω J(x, u).

The main role in the proof is played by another result of Balder.

Theorem B ([1, Theorem 3.2]). Suppose that conditions (i)–(vi), (ix), and (x) hold. Suppose also
that {(xk, uk)}∞k=1 is a sequence in Ω such that the sequence {xk}∞k=1 converges weakly6 to a
function x0 ∈ ACn

loc(R+) and the set of functions {f+
0 ( · , xk(·), uk(·))}∞k=1 is strongly uniformly

integrable on R+. Then there exists a Lebesgue measurable function u∗ : R+ → R
m such that

(x0, u∗) ∈ Ω and

I(x0, u∗) ≥ lim
k→∞

I(xk, uk).

Proof of Theorem 1. Let {(xk, uk)}∞k=1 be a maximizing sequence for J( · , · ) in Ω̃α. It follows from
conditions (vii), (viii) (with Ωα replaced by Ω̃α) and Theorem 2.1 in [1] that the sequence {xk}∞k=1
contains a subsequence converging weakly to a function x0 ∈ ACn

loc(R+). We pass to this subsequence
and denote it again by {(xk, uk)}∞k=1.

For N ∈ N, we introduce the function

fN
0 (t, χ, υ) :=

{
f0(t, χ, υ), t ∈ [N − 1, N), (t, χ, υ) ∈ U ,
0, t ∈ R+ \ [N − 1, N), (t, χ, υ) ∈ U ,

and consider problem (1)–(3) with fN
0 instead of f0. Let us denote the corresponding functional (in

which the integral is actually taken over the interval [N − 1, N)) by IN . We first assume that, for
each N ∈ N, all assumptions of Theorem B are satisfied for this truncated problem (with the objective

6For the definition of weak convergence in ACn
loc(R+), see [1].
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functional IN ) and for our sequence {(xk, uk)}∞k=1. Then there exists a Lebesgue measurable function
uN∗ : R+ → R

m such that (x0, uN∗) ∈ Ω and

IN (x0, uN∗) ≥ lim
k→∞

IN (xk, uk).

We set u∗(t) := uN∗(t) for t ∈ [N − 1, N), N ∈ N. It is clear that (x0, u∗) ∈ Ω and

J(x0, u∗) = lim
K→∞

K∑

N=1

IN (x0, u∗) = lim
K→∞

K∑

N=1

IN (x0, uN∗)

≥ lim
K→∞

K∑

N=1

lim
k→∞

IN (xk, uk) ≥ lim
K→∞

lim
k→∞

K∑

N=1

IN (xk, uk)

≥ lim
K→∞

lim
k→∞

(J(xk, uk)− ω̃(K)) = lim
k→∞

J(xk, uk),

where ω̃ is a function in condition (xii′′).
So (x0, u∗) is the desired admissible pair. It remains to explain why the conclusion of Theorem B

holds for the truncated problem with the objective functional IN . Among all assumptions of Theorem B,
only conditions (ix), (x) need to be checked for t /∈ [N − 1, N). Condition (ix) holds, because the
projection of a convex set is a convex set. But condition (x) (if it is at all satisfied) cannot be verified
so simply.

To overcome this difficulty, we proceed as follows. We note that, in the above reasoning, the values
uN∗(t) are used only for t ∈ [N − 1, N). Therefore, we can arbitrarily change the sequence {(xk, uk)}∞k=1
and the parameters of problem (1)–(3) outside the interval [N − 1, N). In particular, we can set
f(t, · , · ) = 0, A(t) = R

n, U(t, · ) = {0}, and uk(t) = 0 for t /∈ [N − 1, N), and also xk(t) = xk(N − 1)
for 0 ≤ t < N − 1 and xk(t) = xk(N) for t ≥ N . For the problem thus modified (with the functional IN
as before), all assumptions of Theorem B undoubtedly hold, and we obtain the required function uN∗ on
the interval [N − 1, N).

Remark 2. From the formal point of view, Theorem 1 cannot be said to strengthen Theorem A not only
for reasons explained in footnote 5, but also in view of the following important remark. Theorems 1 and A
deal with problems in which the objective functionals are defined differently. In particular, it may happen
that for the same parameters of the problem, an optimal solution exists in one problem and does not
exist in the other, or that optimal solutions exist in both problems but are different. Nevertheless, the
hypothesis in Theorem 1 concerning the behavior of the control system at infinity seems to be essentially
weaker than that in Theorem A. As an illustration, we give the following example.

Example 1. We consider the problem
ˆ ∞

0

u(t)

t+ 1
dt → max, (7)

ẋ(t) = u(t) for a.e. t ∈ R, (8)

x(t) ∈ [−t, t] ∩ [−1, 1], u(t) ∈ [−1, 1] for a.e. t ∈ R+. (9)

It is clear that x(0) = 0 and the integrand in (7) is bounded in absolute value by 1/(t+ 1) for any
admissible pair (x, u). All local conditions (i)–(x) and (xi′) are satisfied. Let us show that condition (xii′′)
also holds:

ˆ T ′

T

u(t)

t+ 1
dt =

ˆ T ′

T

ẋ(t)

t+ 1
dt =

x(T ′)

T ′ + 1
− x(T )

T + 1
+

ˆ T ′

T

x(t)

(t+ 1)2
dt

≤ 1

T ′ + 1
+

1

T + 1
+

ˆ T ′

T

dt

(t+ 1)2
=

2

T + 1
∀T > 0. (10)

Thus, if we consider the functional (7) as an improper integral, i.e., in the sense of (5), then Theorem 1
can be applied, which guarantees the existence of an optimal solution.
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This optimal solution can easily be found explicitly. Indeed, since

lim
T→∞

ˆ T

0

u(t)

t+ 1
dt = lim

T→∞

(
x(T )

T + 1
+

ˆ T

0

x(t)

(t+ 1)2
dt

)
= lim

T→∞

ˆ T

0

x(t)

(t+ 1)2
dt,

it suffices to maximize x(t) for every t (which is possible here), i.e., to set u∗(t) = 1 for t < 1 and
u∗(t) = 0 for t ≥ 1. The corresponding optimal trajectory is x∗(t) = min{t, 1}.

Since the integrand is positive, by Remark 1 the same solution is also optimal in the case where the
objective functional is understood in the sense of (4). Let us show that, nevertheless, Theorem A is
inapplicable in this case for any α (except for α equal to the exact value α∗ (= ln 2) of the functional on
the optimal solution, but, in that case, the theorem is almost worthless, because the set Ωα∗ consists of
a single admissible pair). The reason is that condition (xi) of strong uniform integrability does not hold
for α < α∗. Let us show this.

First, we consider an admissible pair with u(t) = cos t, i.e., the pair

u0(t) = cos t, x0(t) = sin t, t ≥ 0.

In this case,
ˆ ∞

0

(
u0(t)

t+ 1

)+

dt =

ˆ ∞

0

max{cos t, 0}
t+ 1

dt = +∞, (11)

i.e., no family of functions containing the integrand from (11) can be strongly uniformly integrable.
To show that condition (xi) is also violated for admissible pairs for which the value of the functional

is (in any sense) close to the optimal one, it suffices to construct such an admissible pair by gluing parts
together as follows:

• first, on a sufficiently large interval [0, T1], where T1 = π/2 + 2πk, k ∈ N, we use the optimal
control u∗ and follow the optimal trajectory x∗;

• further, on a sufficiently large interval [T1, T2], we use the control u0 and follow the trajectory x0
(since x0(T1) = 1 = x∗(T1), we can switch from one trajectory to the other);

• for t > T2, we use the control u = 0.

Because of the zero control on the last interval, the value of the functional (in any sense) is finite on such
an admissible pair. In view of the estimate (10) (we note that the replacement of u by −u results in the
change of the trajectory x to −x, so the estimate (10) is also valid for the absolute value of the integral
on its left-hand side), the value of the functional (in any sense) on such an admissible pair differs from
the optimal value by at most 4/(T1 + 1). Choosing a sufficiently large T2 (depending on T1), we can
make the integral analogous to (11) arbitrarily large. This implies that condition (xi) of strong uniform
integrability is not satisfied for Ωα for any α < α∗.

Remark 3. One can also construct a similar example without any state constraint. For example, it
suffices to replace u(t) by u(t)(1− x(t)2) in (7) and (8) and to introduce the initial condition x(0) = 0 in
(9) instead of the state constraint.

Remark 4. In the problem considered in Example 1, the existence result from [4, Theorem 7.9] cannot
be applied either, because it requires that there should exist a locally integrable function λ : R+ → R

with finite improper integral
´∞
0 λ(t) dt which would majorize the integrand in the objective functional

for all admissible pairs from Ω̃α. It is clear that, in our case, such a function does not exist for α < α∗
(while, for α = α∗, as mentioned above, the set Ω̃α consists of a single pair and the theorem becomes
almost worthless).
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